首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epicardial coronary venous pressure in 16 dogs was compared with coronary arterial pressure as well as aortic, intraventricular, and intramyocardial pressures. Partial aortic occlusion augmented intraventricular (IVP), intramyocardial (IMP), aortic (AP), and coronary arterial pressures. Peripheral coronary venous pressure was also elevated. Dobutamine significantly augmented IVP and IMP but not aortic or central coronary artery pressures; this agent significantly elevated coronary venous systolic pressure (28/8 to 84/12 mmHg) (1 mmHg = 133.322 Pa). Nitroglycerine decreased IVP, IMP, and AP significantly. Central coronary arterial pressure also fell significantly, but coronary venous pressures remained unchanged. In contrast dipyridamole resulted in no change in IVP, IMP, AP, or coronary arterial systolic pressures; however, the peripheral coronary venous systolic pressure became significantly elevated. Thus the two vasodilators, nitroglycerine and dipyridamole, had different effects upon coronary venous pressure. These data reinforce the recently expressed view that coronary veins behave in a complex fashion and further suggest that their pressures are dependent upon coronary artery pressure, intramyocardial pressure, and coronary venous tone.  相似文献   

2.
The velocity of blood in a major epicardial coronary vein accompanying the left anterior descending coronary artery of dogs was measured by means of a 140-micron fiber optic probe connected to a laser Doppler velocimeter. Right atrial pressure, left ventricular intramyocardial and cavity pressures, aortic pressure, as well as peripheral and central coronary venous pressures were compared with the velocity of blood measured in the epicardial coronary vein midway between the sites of the catheters measuring proximal and distal coronary vein pressures. During control conditions, coronary vein velocity was 14-18 cm/s during systole and 1.0-2.1 cm/s during diastole. Right stellate ganglion stimulation, norepinephrine or isoproterenol increased diastolic coronary vein velocity significantly, whereas left stellate ganglion stimulation did not. Average peak systolic velocity was not affected by these interventions. During these positive inotropic interventions, the peak coronary vein velocity usually occurred later in the cardiac cycle than during control conditions. Positive inotropic interventions appeared to decrease coronary vein velocity during systole and increase it during diastole. Left vagosympathetic trunk stimulation decreased diastolic but not systolic coronary vein velocity and usually caused peak coronary vein velocity to occur earlier in the cardiac cycle than during control states. Changes induced by vagosympathetic trunk stimulation usually occurred within one cardiac cycle. It is concluded that coronary vein blood velocity can be influenced by the autonomic nervous system.  相似文献   

3.
A modified heart-lung preparation of the rat, which permits measuring systolic and diastolic coronary flow separately and enables coronary compliance to be evaluated, is described. The systemic circulation was substituted by a shunt circuit, and the elastic properties of the arterial tree were mimicked by a rubber balloon. Systolic and diastolic coronary flow was evaluated from the pulmonary and aortic flow signal. Integrated phasic pulmonary flow represented right ventricular stroke volume. Integrated phasic systolic aortic flow represented left ventricular stroke volume minus that volume flowing into the coronary arteries during systole, because the aortic flow probe had to be inserted distal to the origin of the coronary vessels. Because right and left ventricular stroke volume was identical under steady-state conditions, the difference between systolic pulmonary and systolic aortic flow resulted in systolic coronary flow. Diastolic coronary flow was measured by means of the retrograde flow through the aortic flow probe. Coronary compliance was calculated according to Frank's windkessel model from coronary resistance and from central diastolic aortic pressure, which decayed exponentially after switching out the rubber balloon and the shunt circuit. It could be shown that the proportion of systolic to diastolic coronary flow depends on coronary compliance.  相似文献   

4.
Sildenafil, a selective inhibitor of phosphodiesterase type 5, produces relaxation of isolated epicardial coronary artery segments by causing accumulation of cGMP. Because shear-induced nitric oxide-dependent vasodilation is mediated by cGMP, this study was performed to determine whether sildenafil would augment the coronary resistance vessel dilation that occurs during the high-flow states of exercise or reactive hyperemia. In chronically instrumented dogs, sildenafil (2 mg/kg per os) augmented the vasodilator response to acetylcholine, with a leftward shift of the dose-response curve relating coronary flow to acetylcholine dose. Sildenafil caused a 6. 7 +/- 2.1 mmHg decrease of mean aortic pressure, which was similar at rest and during treadmill exercise (P < 0.05), with no change of heart rate, left ventricular (LV) systolic pressure, or LV maximal first time derivative of LV pressure. Sildenafil tended to increase myocardial blood flow at rest and during exercise (mean increase = 14 +/- 3%; P < 0.05 by ANOVA), but this was associated with a significant decrease in hemoglobin, so that the relationship between myocardial oxygen consumption and oxygen delivery to the myocardium (myocardial blood flow x arterial O(2) content) was unchanged. Furthermore, sildenafil did not alter coronary venous PO(2), indicating that the coupling between myocardial blood flow and myocardial oxygen demands was not altered. In addition, sildenafil did not alter the peak coronary flow rate, debt repayment, or duration of reactive hyperemia that followed a 10-s coronary occlusion. The findings suggest that cGMP-mediated resistance vessel dilation contributes little to the increase in myocardial flow that occurs during exercise or reactive hyperemia.  相似文献   

5.
Measurement of left anterior descending coronary arterial pressure, phasic coronary flow, and intramyocardial pressure in an open-chest dog provided data, which when entered into the computer model of the coronary circulation, permitted calculation of coronary artery compliance and resistance during systole and diastole. Resting in vivo compliance averaged 0.21 x 10(-3) mL/mmHg (1 mmHg = 133.322 Pa) while systolic resistance averaged 4.05 mmHg X min-1 X mL-1 and during diastole 2.06 mmHg X min-1 X mL-1. Left stellate ganglion stimulation or vasodilation caused minimal changes in compliance but glutaraldehyde applied to arterial wall caused a decrease in compliance. Sympathetic stimulation and vasodilation decreased both diastolic and systolic resistance. Transmural distribution of coronary flow was not significantly altered by the experimental changes in compliance and resistance.  相似文献   

6.
The response to a bolus injection of nitroglycerine, adenosine, nifedipine, and dipyridamole of the canine systemic as well as coronary artery and venous circulations was observed and contrasted. Particular attention was paid to the time of change of pressures and flows and to changes in oxygen extraction by the myocardium induced by the pharmacological agents. The dosages of vasodilators used were selected so that no significant change in aortic blood flow occurred. Nitroglycerine and adenosine caused a rapid and similar vasodilation in the coronary circulation. Oxygen extraction was not altered by nitroglycerine, but was decreased by adenosine. The onset time of the vasodilation produced by either nifedipine or dipyridamole was similar, but the time to peak action was much slower for dipyridamole. As well, the effect of dipyridamole on intramyocardial and left intraventricular pressures was more delayed than that following the injection of the other agents. Oxygen extraction was reduced by nifedipine and dipyridamole. These results indicate that pharmacological vasodilating agents can affect coronary arteries, coronary veins, and myocardial oxygen extraction differently.  相似文献   

7.
The effects of pressure overload left ventricular hypertrophy (LVH) on heart performance and coronary circulation were investigated in dog experiments. The data obtained clearly demonstrate that left ventricular systolic and end-diastolic pressures were increased in LVH dogs. The heart rate and cardiac output were unchanged. However, there was a tendency toward lowering in the maximal rate of myocardial contractility and relaxation (+dP/dtmax and--dP/dtmax). It has been shown that in LVH dogs, the coronary blood flow was higher and coronary artery resistance was lower than in control ones. The peak reactive hyperemic flow was higher in LVH dogs but the coronary artery resistance calculated at the height of reactive hyperemia was similar both in control and LVH dogs, evidence of a reduction in the total coronary vasodilator reserves in the latter ones. The diastolic pressure-time index-tension time index (DPTI/TTI) ratio in LVH dogs decreased so that the value was sufficiently low to predict a reduction in endocardial perfusion even in experimental increased coronary perfusion pressure.  相似文献   

8.
To determine whether coronary sinus outflow pressure (Pcs) or intramyocardial tissue pressure (IMP) is the effective back pressure in the different layers of the left ventricular (LV) myocardium, we increased Pcs in 14 open-chest dogs under maximal coronary artery vasodilation. Circumflex arterial (flowmeter), LV total, and subendocardial and subepicardial (15-microns radioactive spheres) pressure-flow relationships (PFR) and IMP (needle-tip pressure transducers) were recorded during graded constriction of the artery at two diastolic Pcs levels (7 +/- 3 vs. 23 +/- 4 mmHg). At high Pcs, LV, aortic and diastolic circumflex arterial pressure, heart rate, myocardial oxygen consumption, and lactate extraction were unchanged; IMP in the subendocardium did not change (130/19 mmHg), whereas IMP in the subepicardium increased by 17 mmHg during systole and 10 mmHg during diastole (P < or = 0.001), independently of circumflex arterial pressure. Increasing Pcs did not change the slope of the PFR; however, coronary pressure at zero flow increased in the subepicardium (P < or = 0.008), whereas in the subendocardium it remained unchanged at 24 +/- 3 mmHg. Thus Pcs can regulate IMP independently of circumflex arterial pressure and consequently influence myocardial perfusion, especially in the subepicardial tissue layer of the LV.  相似文献   

9.
Dennis J. Vince 《CMAJ》1970,102(9):946-948
In eight adult dogs the main pulmonary artery was constricted to elevate the right ventricular peak systolic pressure to 50% of the peak aortic pressure at rest. The response of the right ventricle was assessed immediately, at 30 minutes and at six months. The right ventricle responded to acute systolic loading by complete compensation. After 30 minutes there was a reduction in the right ventricular outflow tract resistance. The cardiac output, heart rate and aortic pressure were maintained. The right ventricular systolic ejection period, end-diastolic pressure, peak pressure time, mean systolic pressure, right ventricular—main pulmonary artery mean systolic gradient, right ventricular work index, systolic work and outflow tract resistance were all increased.The right ventricle in the dog was shown to have an immediate capacity to compensate for systolic loading and retains this capacity for long periods of time. The ability to increase work is accomplished by adaptations in right ventricular physiology which increase right ventricular mean systolic pressures and prolong the right ventricular ejection period.  相似文献   

10.
The dorsal mediastinal cardiac nerves were stimulated in 20 patients undergoing coronary artery bypass surgery. In no instance was an untoward effect produced in any of the patients. Stimulation of a cardiac nerve increased heart rate in eight patients and slowed heart rate in eight patients. In 12 patients stimulation of a cardiac nerve increased mean aortic pressure while in 8 patients it was decreased, even though the patients were supported by a total body perfusion pump. In 11 patients stimulation of a cardiac nerve resulted in a decrease in the coronary artery bypass graft flow, even though aortic pressure was unchanged or increased. These preliminary results suggest that individual cardiac nerves in the dorsal mediastinum of man may be capable of modifying heart rate, total peripheral vascular resistance, or coronary artery resistance. Furthermore, they demonstrate that stimulation of human dorsal mediastinal cardiac nerves can be done without untoward effects and that such stimulations may be a means to investigate the complexity of neural regulation of the human heart.  相似文献   

11.
To study systolic pressure gradients developed between the left ventricular wall, its chamber, and the aortic root, in one group of dogs left ventricle ventral wall intramyocardial pressure, left ventricular outflow tract pressure, and aorta pressure were compared with aortic flow as well as left ventricular dimension changes during control conditions as well as during positive intropic states induced by isoproterenol, stellate ganglion stimulation, and noradrenaline. In another group of dogs systolic pressures in the ventral wall of the left ventricle, the main portion of the left ventricular chamber, and the aorta were compared with aortic flow during similar interventions, before and after the administration of phentolamine. Pressure gradients between the wall of the left ventricle and the outflow tract of the left ventricle were minimal during control states, but during the three positive inotropic states were increased significantly. In contrast, pressure gradients between the outflow tract of the left ventricle and the aortic root were insignificant during positive inotropic states; those between the wall and main portion of the chamber were only significantly different during left stellate ganglion stimulation. The data derived from these experiments indicate that useful peak power output of the left ventricle (systolic aortic pressure X flow) is unchanged following isoproterenol infusion, but is increased by stellate ganglion stimulation and noradrenaline. The useful peak power output index (an index of left ventricular efficiency derived by dividing useful peak power output by peak intramyocardial pressure) was reduced more by isoproterenol than the other two interventions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Ischemic heart disease is more apparent in the subendocardial than in subepicardial layers. We investigated coronary pressure-flow relations in layers of the isolated rat left ventricle, using 15 microm microspheres during diastolic and systolic arrest in the vasodilated coronary circulation. A special cannula allowed for selective determination of left main stem pressure-flow relations. Arterio-venous shunt flow was derived from microspheres in the venous effluent. We quantitatively investigated the pressure-flow relations in diastolic arrest (n=8), systolic arrest at normal contractility (n=8) and low contractility (n=6). In all three groups normal and large ventricular volume was studied. In diastolic arrest, at a perfusion pressure of 90 mmHg, subendocardial flow is larger than subepicardial flow, i.e., the endo/epi ratio is approximately 1.2. In systolic arrest the endo/epi ratio is approximately 0.3, and subendocardial flow and subepicardial flow are approximately 12% and approximately 55% of their values during diastolic arrest. The endo/epi ratio in diastolic arrest decreases with increasing perfusion pressure, while in systole the ratio increases. The slope of the pressure-flow relations, i.e., inverse of resistance, changes by a factor of approximately 5.3 in the subendocardium and by a factor approximately 2.2 in the subepicardium from diastole to systole. Lowering contractility affects subendocardial flow more than subepicardial flow, but both contractility and ventricular volume changes have only a limited effect on both subendocardial and subepicardial flow. The resistance (inverse of slope) of the total left main stem pressure-flow relation changes by a factor of approximately 3.4 from diastolic to systolic arrest. The zero-flow pressure increases from diastole to systole. Thus, coronary perfusion flow in diastolic arrest is larger than systolic arrest, with the largest difference in the subendocardium, as a result of layer dependent increases in vascular resistance and intercept pressure. Shunt flow is larger in diastolic than in systolic arrest, and increases with perfusion pressure. We conclude that changes in contractility and ventricular volume have a smaller effect on pressure-flow relations than diastolic-systolic differences. A synthesis of models accounting for the effect of cardiac contraction on perfusion is suggested.  相似文献   

13.
The influence of left ventricle pressure and volume changes on coronary blood flow was investigated in eight anesthetized dogs. Coronary artery pressure-flow relationships were determined at two levels of left ventricular pressure and volume. The distribution of blood flow within the myocardium was also determined when these relationships varied. Reducing left ventricle pressures and volumes increased heart rate. Rate-pressure product, diastolic coronary pressure, myocardial O2 consumption, total, subendocardial and subepicardial flow decreased. Hematocrit and blood gas data were unchanged. The pressure-flow relationships were shifted leftward (p = 0.001) but the range of autoregulation was not altered. At low left ventricle pressures and volumes, the lower coronary artery pressure limit was shifted leftward (from 75 to 45 mm Hg (1 mm Hg = 133.3 Pa)), while total, subendocardial, and subepicardial blood flow did not change compared with the control. Below the lower coronary artery pressure limit, subendocardial but not subepicardial flow decreased, resulting in maldistribution of flow across the left ventricular wall. When coronary pressure was reset between control and the lower coronary artery pressure limit, subendocardial flow was restored. These results show that the lower coronary artery pressure limit can be shifted leftward while the distribution of blood flow across the left ventricular wall is preserved.  相似文献   

14.
The purpose of this investigation was to quantitatively evaluate the role of adenosine in coronary exercise hyperemia. Dogs (n = 10) were chronically instrumented with catheters in the aorta and coronary sinus, and a flow probe on the circumflex coronary artery. Cardiac interstitial adenosine concentration was estimated from arterial and coronary venous plasma concentrations using a previously tested mathematical model. Coronary blood flow, myocardial oxygen consumption, heart rate, and aortic pressure were measured at rest and during graded treadmill exercise with and without adenosine receptor blockade with either 8-phenyltheophylline (8-PT) or 8-p-sulfophenyltheophylline (8-PST). In control vehicle dogs, exercise increased myocardial oxygen consumption 4.2-fold, coronary blood flow 3.8-fold, and heart rate 2.5-fold, whereas mean aortic pressure was unchanged. Coronary venous plasma adenosine concentration was little changed with exercise, and the estimated interstitial adenosine concentration remained well below the threshold for coronary vasodilation. Adenosine receptor blockade did not significantly alter myocardial oxygen consumption or coronary blood flow at rest or during exercise. Coronary venous and estimated interstitial adenosine concentration did not increase to overcome the receptor blockade with either 8-PT or 8-PST as would be predicted if adenosine were part of a high-gain, negative-feedback, local metabolic control mechanism. These results demonstrate that adenosine is not responsible for local metabolic control of coronary blood flow in dogs during exercise.  相似文献   

15.
To evaluate, in the absence of lung inflation, the cardiovascular effects of single and repetitive pleural pressure increments induced by thoracic vest inflations and timed to occur during specific portions of the cardiac cycle, seven chronically instrumented dogs were studied. Reflexes and left ventricular (LV) performance were varied by autonomic blockade, circumflex coronary occlusion (with and without beta-blockade), or cardiac arrest. Single late systolic, but not early systolic, vest inflations significantly increased LV stroke volume both before (+12.4%) and after myocardial depression by coronary occlusion+beta-blockade (+18.5%) when performed after a period of apnea to control preload and rate. During vest inflations, LV and aortic pressures increased to a greater degree than esophageal pressure (by 51 vs. 39 mmHg, P = 0.0001). Lung inflations (26 trials in 3 dogs) during early or late systole failed to increase stroke volume, despite peak esophageal pressures of 11-26 mmHg. With autonomic reflexes intact, repetitive vest inflations coupled to early systole, late systole, or diastole induced a large (40%) but unspecific systemic flow increase. In contrast, during autonomic blockade, flow increased slightly (7.5%, P < 0.05) with late systolic compared with diastolic inflations but not relative to baseline. During coronary occlusion (with or without beta-blockade), no cycle-specific differences were seen, whereas matched vest inflations during cardiac arrest generated 20-30% of normal systemic flow. Thus only single late systolic thoracic vest inflations associated with large increments in pleural pressure increased LV emptying, presumably by decreasing LV afterload and/or focal cardiac compression. However, during myocardial ischemia and depression, coupling of vest inflation to specific parts of the cardiac cycle revealed no hemodynamic improvement, suggesting that benefits of this circulatory assist method, if any, are minor and may be restricted to conditions of cardiac arrest.  相似文献   

16.
Coronary sinus pressure (Pcs) elevation shifts the diastolic coronary pressure-flow relation (PFR) of the entire left ventricular myocardium to a higher pressure intercept. This finding suggests that Pcs is one determinant of zero-flow pressure (Pzf) and challenges the existence of a vascular waterfall mechanism in the coronary circulation. To determine whether coronary sinus or tissue pressure is the effective coronary back pressure in different layers of the left ventricular myocardium, the effect of increasing Pcs was studied while left ventricular preload was low. PFRs were determined experimentally by graded constriction of the circumflex coronary artery while measuring flow using a flowmeter. Transmural myocardial blood flow distribution was studied (15-micron radioactive spheres) at steady state, during maximal coronary artery vasodilatation at three points on the linear portion of the circumflex PFR both at low and high diastolic Pcs (7 +/- 3 vs. 22 +/- 5 mmHg; p less than 0.0001) (1 mmHg = 133.322 Pa). In the uninstrumented anterior wall the blood flow measurements were obtained in triplicate at the two Pcs levels. From low to high Pcs, mean aortic (98 +/- 23 mmHg) and left atrial (5 +/- 3 mmHg) pressure, percent diastolic time (49 +/- 7%), percent left ventricular wall thickening (32 +/- 4%), and percent myocardial lactate extraction (15 +/- 12%) were not significantly changed. Increasing Pcs did not alter the slope of the PFR; however, the Pzf increased in the subepicardial layer (p less than 0.0001), whereas in the subendocardial layer Pzf did not change significantly. Similar slopes and Pzf were observed for the PFR of both total myocardial mass and subepicardial region at low and high Pcs. Subendocardial:subepicardial blood flow ratios increased for each set of measurements when Pcs was elevated (p less than 0.0001), owing to a reduction of subepicardial blood flow; however, subendocardial blood flow remained unchanged, while starting in the subepicardium toward midmyocardium blood flow decreased at high Pcs. This pattern was similar for the uninstrumented anterior wall as well as in the posterior wall. Thus as Pcs increases it becomes the effective coronary back pressure with decreasing magnitude from the subepicardium toward the subendocardium of the left ventricle. Assuming that elevating Pcs results in transmural elevation in coronary venous pressure, these findings support the hypothesis of a differential intramyocardial waterfall mechanism with greater subendo- than subepi-cardial tissue pressure.  相似文献   

17.
The aim of this study was to evaluate how the timing of the pressure pulse produced by peripheral reflection affects the left ventricle (stroke volume, ventricular work, coronary driving pressure). Ten isolated perfused rabbit hearts were attached to rubber tubes of different lengths (0.5, 0.8 and 1 m) connected to a hydraulic resistance. The different lengths produced reflections at different times and the reflected pulse returned to the ventricle in early (at 84 ms), middle (at 134 ms) and late systole (at 168 ms) for the three tubes, respectively. The loading parameters (ventricular filling pressure and hydraulic resistance) were not changed during the procedure. Ventricular and aortic pressure and aortic flow were monitored continuously and recorded; cardiac cycle was fixed at 800 ms. An operator-independent procedure was used to calculate instantaneous and total systolic external work, mean diastolic aorto-ventricular pressure difference and ventricular stroke volume. RESULTS: The mean value of stroke volume for the three different length rubber tubes was 320 +/- 71, 348 +/- 77 and 368 +/- 87 microliters, respectively. The mean value of total external work was 20.3 +/- 8.3, 22.5 +/- 8.8 and 24.2 +/- 9.6 mJ, respectively. The mean aortoventricular pressure difference was 40 +/- 12, 46 +/- 13, 50 +/- 14 mmHg, respectively (1 mmHg = 133 Pa). The differences between the parameters measured in the three conditions were statistically significant (p < 0.05). A reduction of reflection timing, reduces, on a pure mechanical basis, cardiac output and external ventricular work and has a negative effect on coronary driving pressure.  相似文献   

18.
Six healthy males were exposed to 20 mm Hg lower body negative pressure (LBNP) for 8 min followed by 40 mm Hg LBNP for 8 min. Naloxone (0.1 mg.kg-1) was injected intravenously during a 1 h resting period after which the LBNP protocol was repeated. Systolic, mean, and diastolic arterial blood pressures (SAP, MAP, DAP), and central venous pressure (CVP) were obtained using indwelling catheters. Cardiac output (CO), forearm blood flow (FBF), heart rate (HR), left ventricular ejection time (LVET), and electromechanical systole (EMS) were measured non-invasively. Pulse pressure (PP), stroke volume (SV), total peripheral resistance (TPR), forearm vascular resistance (FVR), systolic ejection rate (SER), pre-ejection period (PEP), PEP/LVET and indices for the systolic time intervals (LVETI, EMSI, PEPI) were calculated. During the second LBNP exposure, only two parameters differed from the pre-injection values: DAP at LBNP = 40 mm Hg increased from 60.0 +/- 4.8 mm Hg to 64.8 +/- 4.1 mm Hg (N = 4, p less than 0.02) and LVETI at LBNP = 20 mm Hg increased from 384.4 +/- 5.2 ms to 396.8 +/- 6.2 ms (N = 6, p less than 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We analysed the relationship between artery pressure (AP) and coronary flow (F) in the canine coronary bed, using an electrical analog model of the coronary circulation. The model contained a capacitance of epicardial vessels, input and terminal resistances, diode, and the number of e.m.f., simulated the intramyocardial pressure and zero-flow pressure. These e.m.f. are assumed to be a linear functions of left ventricular and aortic pressure. The value of coronary blood flow was calculated from experimental curves of AP and LVP and setting parameters. Good agreement was obtained between theoretical and experimental curves of coronary blood flow.  相似文献   

20.
The purpose of our study was to investigate the role of prostaglandins in the changes in myocardial function and peripheral and coronary vascular resistance which accompany a generalized increase in sympathetic tone caused by carotid baroreflex unloading in the anesthetized dog. Bilateral carotid artery occlusion (BCO) with heart rate held constant by electrical pacing (150 beats/min) resulted in increases in systolic, (33%) diastolic (40%), and mean (35%) arterial pressures, LV systolic pressure (33%) and left ventricular (LV) dP/dt (37%). After blockade of prostaglandin synthesis with indomethacin (N = 11) or meclofenamate (N = 6) the increases in systolic (41%), diastolic (45%), and mean (41%) arterial pressures, LV systolic pressure (39%), LV dP/dt (52%), and cardiac work caused by BCO were significantly greater, in spite of the initially higher baseline values (11-18%) following the administration of the drugs. In contrast, the changes in circumflex coronary blood flow and coronary vascular resistance to BCO were essentially the same before and after inhibition of prostaglandin synthesis. Systemic prostaglandin synthesis may, therefore, play a significant role in the control of systemic arterial pressure and myocardial function, most probably by modulating the release of norepinephrine from adrenergic nerve terminals, without adversely affecting coronary blood flow regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号