首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of rRNA was unbalanced by the introduction of plasmids containing rRNA operons with large internal deletions. Significant unbalanced synthesis was achieved only when the deletions affected both 16S and 23S RNA genes or when the deletions affected the 23S RNA gene alone. Although large imbalances in rRNA synthesis resulted from deletions affecting 16S and 23S RNA genes or only 23S RNA genes, excess 16S RNA and defective rRNA species were rapidly degraded. Large imbalances in the synthesis of regions of rRNA did not result in significantly unbalanced synthesis of ribosomal proteins. It therefore is probable that excess intact 16S RNA is degraded because ribosomal proteins are not available for packaging the RNA into ribosomes. Defective RNA species also may be degraded for this reason or because proper ribosome assembly is prevented by the defects in RNA structure. We propose two possible explanations for the finding that unbalanced overproduction of binding sites for feedback ribosomal protein does not result in significant unbalanced translational feedback depression of ribosomal protein mRNAs.  相似文献   

2.
We cloned and sequenced the second gene coding for yeast ribosomal protein 51 (RP51B). When the DNA sequence of this gene was compared with the DNA sequence of RP51A (J.L. Teem and M. Rosbash, Proc. Natl. Acad. Sci. U.S.A. 80:4403--4407, 1983), the following conclusions emerged: both genes code for a protein of 135 amino acids; both open reading frames are interrupted by a single intron which occurs directly after the initiating methionine; the open reading frames are 96% homologous and code for the same protein with the exception of the carboxy-terminal amino acid; DNA sequence homology outside of the coding region is extremely limited. The cloned genes, in combination with the one-step gene disruption techniques of Rothstein (R. J. Rothstein, Methods Enzymol. 101:202-211, 1983), were used to generate haploid strains containing mutations in the RP51A or RP51B genes or in both. Strains missing a normal RP51A gene grew poorly (180-min generation time versus 130 min for the wild type), whereas strains carrying a mutant RP51B were relatively normal. Strains carrying mutations in the two genes grew extremely poorly (6 to 9 h), which led us to conclude that RP51A and RP51B were both expressed. The results of Northern blot and primer extension experiments indicate that strains with a wild-type copy of the RP51B gene and a mutant (or deleted) RP51A gene grow slowly because of an insufficient amount of RP51 mRNA. The growth defect was completely rescued with additional copies of RP51B. The data suggest that RP51A contributes more RP51 mRNA (and more RP51 protein) than does RP51B and that intergenic dosage compensation, sufficient to rescue the growth defect of strains missing a wild-type RP51A gene, does not take place.  相似文献   

3.
The suggestion that compensation for overabundant mRNA of the genes for Saccharomyces cerevisiae ribosomal protein (r-protein) L3, L29, or rp59 occurs by translation repression has been reinvestigated. First, analysis of the distribution of these three mRNAs in polysome profiles revealed no differences between normal and mRNA-overproducing strains, indicating that initiation of r-protein translation is not repressed under conditions of mRNA overaccumulation. Second, experiments involving radioactive pulse-labeling of proteins were done by using a modified method of data collection and analysis that allows quantitation and correction for fast decay during the pulse. These measurements revealed that the synthesis rate of the three r-proteins is increased when their mRNA levels are elevated and that their decay rate is also high, with half-lives ranging from a fraction of a minute to more than 10 min. We conclude that accumulation of excess r-protein mRNA has no effect on translation rate; rapid decay of protein during the course of the labeling period can account for the apparent discrepancy between mRNA levels and protein synthesis rates. Yeast r-proteins, when produced in excess, are among the most rapidly degraded proteins so far described.  相似文献   

4.
5.
6.
7.
A functional ribosomal protein mRNA, encoding the 60 S subunit protein L1, has been synthesized in vitro using bacteriophage SP6 RNA polymerase. This mRNA directs the synthesis of a product indistinguishable from L1 protein purified from Xenopus ovarian ribosomes. Our results show that L1 synthesis in stage VI oocytes increases in response to microinjection of exogenous SP6-L1 mRNA, but excess L1 protein is not stably accumulated. These results indicate that dosage compensation does not occur at the translational level for this ribosomal protein mRNA and that the abundance of this protein in fully grown oocytes is subject to post-translational regulation.  相似文献   

8.
9.
10.
11.
《The Journal of cell biology》1990,111(6):2261-2274
Two strains of Saccharomyces cerevisiae were constructed that are conditional for synthesis of the 60S ribosomal subunit protein, L16, or the 40S ribosomal subunit protein, rp59. These strains were used to determine the effects of depriving cells of either of these ribosomal proteins on ribosome assembly and on the synthesis and stability of other ribosomal proteins and ribosomal RNAs. Termination of synthesis of either protein leads to diminished accumulation of the subunit into which it normally assembles. Depletion of L16 or rp59 has no effect on synthesis of most other ribosomal proteins or ribosomal RNAs. However, most ribosomal proteins and ribosomal RNAs that are components of the same subunit as L16 or rp59 are rapidly degraded upon depletion of L16 or rp59, presumably resulting from abortive assembly of the subunit. Depletion of L16 has no effect on the stability of most components of the 40S subunit. Conversely, termination of synthesis of rp59 has no effect on the stability of most 60S subunit components. The implications of these findings for control of ribosome assembly and the order of assembly of ribosomal proteins into the ribosome are discussed.  相似文献   

12.
13.
14.
15.
Mutant 5 S rRNA genes were expressed in Saccharomyces cerevisiae to further define the function of the ribosomal 5 S RNA. RNA synthesis and utilization were assayed using previously constructed markers which have been shown to be functionally neutral and easily detected by gel electrophoresis. Most mutations were found not to affect the growth rate because they were poorly expressed or could be accommodated effectively in the ribosomal structure. Two of the mutants, Y5A99U56U57 and Y5U90i5 adversely affected cell growth as well as protein synthesis in vitro. Polyribosome profiles in both of these mutants were substantially shorter, and an analysis of the ribosomal subunit composition revealed a significant imbalance with a 25-35% excess in 40 S subunits. Kinetic analyses of RNA labeling indicated very low cellular levels of mutant RNA either because it was poorly expressed (Y5U90i5) or rapidly degraded before being incorporated into mature 60 subunits (Y5A99U56U57). The results suggest that the 5 S RNA is required for the assembly of stable ribosomal 60 S subunits and raise the possibility that this RNA or, more likely, its corresponding ribonucleoprotein complex is critical for subunit assembly or even RNA processing.  相似文献   

16.
When resting (G0) mouse 3T6 fibroblasts are serum stimulated to reenter the cell cycle, the rates of synthesis of rRNA and ribosomal proteins increase, resulting in an increase in ribosome content beginning about 6 h after stimulation. In this study, we monitored the content, metabolism, and translation of ribosomal protein mRNA (rp mRNA) in resting, exponentially growing, and serum-stimulated 3T6 cells. Cloned cDNAs for seven rp mRNAs were used in DNA-excess filter hybridization studies to assay rp mRNA. We found that about 85% of rp mRNA is polyadenylated under all growth conditions. The rate of labeling of rp mRNA relative to total polyadenylated mRNA changed very little after stimulation. The half-life of rp mRNA was about 11 h in resting cells and about 8 h in exponentially growing cells, values which are similar to the half-lives of total mRNA in resting and growing cells (about 9 h). The content of rp mRNA relative to total mRNA was about the same in resting and growing 3T6 cells. Furthermore, the total amount of rp mRNA did not begin to increase until about 6 h after stimulation. Since an increase in rp mRNA content did not appear to be responsible for the increase in ribosomal protein synthesis, we determined the efficiency of translation of rp mRNA under different conditions. We found that about 85% of pulse-labeled rp mRNA was associated with polysomes in exponentially growing cells. In resting cells, however, only about half was associated with polysomes, and about 30% was found in the monosomal fraction. The distribution shifted to that found in growing cells within 3 h after serum stimulation. Similar results were obtained when cells were labeled for 10.5 h. About 70% of total polyadenylated mRNA was in the polysome fraction in all growth states regardless of labeling time, indicating that the shift in mRNA distribution was species specific. These results indicate that the content and metabolism of rp mRNA do not change significantly after growth stimulation. The rate of ribosomal protein synthesis appears to be controlled during the resting-growing transition by an alteration of the efficiency of translation of rp mRNA, possibly at the level of protein synthesis initiation.  相似文献   

17.
The Saccharomyces cerevisiae CRY1 gene encodes the 40S ribosomal subunit protein rp59 and confers sensitivity to the protein synthesis inhibitor cryptopleurine. A yeast strain containing the cry1-δ1::URA3 null allele is viable, cryptopleurine sensitive (Cry(S)), and expresses rp59 mRNA, suggesting that there is a second functional CRY gene. The CRY2 gene has been isolated from a yeast genomic library cloned in bacteriophage λ, using a CRY1 DNA probe. The DNA sequence of the CRY2 gene contains an open reading frame encoding ribosomal protein 59 that differs at five residues from rp59 encoded by the CRY1 gene. The CRY2 gene was mapped to the left arm of chromosome X, centromere-proximal to cdc6 and immediately adjacent to ribosomal protein genes RPS24A and RPL46. Ribosomal protein 59 is an essential protein; upon sporulation of a diploid doubly heterozygous for cry1-δ2::TRP1 cry2-δ1::LEU2 null alleles, no spore clones containing both null alleles were recovered. Several results indicate that CRY2 is expressed, but at lower levels than CRY1: (1) Introduction of CRY2 on high copy plasmids into Cry(R) yeast of genotype cry1 CRY2 confers a Cry(S) phenotype. Transformation of these Cry(R) yeast with CRY2 on a low copy CEN plasmid does not confer a Cry(S) phenotype. (2) Haploids containing the cry1-δ2::TRP1 null allele have a deficit of 40S ribosomal subunits, but cry2-δ1::LEU2 strains have wild-type amounts of 40S ribosomal subunits. (3) CRY2 mRNA is present at lower levels than CRY1 mRNA. (4) Higher levels of β-galactosidase are expressed from a CRY1-lacZ gene fusion than from a CRY2-lacZ gene fusion. Mutations that alter or eliminate the last amino acid of rp59 encoded by either CRY1 or CRY2 result in resistance to cryptopleurine. Because CRY2 (and cry2) is expressed at lower levels than CRY1 (and cry1), the Cry(R) phenotype of cry2 mutants is only expressed in strains containing a cry1-δ null allele.  相似文献   

18.
Addition of insulin to maize seed ( Zea mays L. cv. Chalqueño) was found to accelerate germination and seedling growth. Insulin-stimulated maize axes showed enhancement of 35 S-methionine incorporation into ribosomal proteins (rp) and mobilization of S6 rp mRNA into polysomes. Increase in S6 rp phosphorylation of the small ribosomal subunit (40S) was observed in 32 P-orthophosphate pulse-labeled experiments when maize axes were stimulated by insulin. Application of either wortmannin or rapamycin, inhibitors of protein kinases of the insulin transduction pathway, abolished the insulin stimulatory effect on S6 rp phosphorylation and on ribosomal protein synthesis. The above data are interpreted as an indication of the existence of an insulin-stimulated signal transduction pathway in maize tissues that is involved in the regulation of translation.  相似文献   

19.
A considerable excess of small ribosomal subunits was observed in L cells grown in suspension culture. The ratio between the small and large ribosomal subunits in the cytoplasm was estimated to be 1.17 ± 0.05 for cells dividing every 20 to 24 hours.The 60 S ribosomal subunits were turning over much faster than the 40 S subunits. Half-lives of 155 ± 20 hours for 18 S ribosomal RNA and 82 ± 15 hours for 28 S ribosomal RNA were observed under conditions where the cell number doubled every 24 hours and the viability was 95%. By correcting for cell death the half-lives of 18 S and 28 S ribosomal RNA were estimated to be approximately 300 hours and 110 hours, respectively. During storage of isolated ribosomes the small ribosomal subunits were degraded faster than the large subunits. This shows that the degradation of 60 S subunits was not an artifact taking place during the isolation procedure.It is postulated that the small ribosomal subunits are protected by protein to a greater extent than the 60 S subunits in these rapidly growing cells in suspension culture. The protection may take place both in the nucleus during synthesis, thus avoiding degradation (“wastage”) of nascent subunit precursors, and later in the cytoplasm. A calculation has been carried out to show that the observed excess of small subunits may be accounted for on the basis of a 1:1 synthesis of the small and large ribosomal subunits in the nucleus and different degradation rates in the cytoplasm. The results do not exclude the possibility of a difference in the “wastage” of 18 S and 28 S ribosomal RNA in the nucleus in addition to the difference in the turnover rates in the cytoplasm.  相似文献   

20.
Different forms of 40-S ribosomal subunit, distinguishable by their buoyant densities on CsCl equilibrium density gradients, are formed when derived 40-S ribosomal subunits are incubated with partially purified reticulocyte ribosomal wash proteins. One of these subunits, the 1.37-g-cm-3 form is not present in the cell but the other two forms, the 1.40-g-cm-3 and 1.40-g-cm-3 subunits, are present in cell extracts. 35S label is bound to 1.37-g-cm-3 and 1.40-g-cm-s subunits when [35S]Met-tRANf, GTP and poly(A,U,G) are included in the incubations. The 35S-labelled 40-S subunits recovered, and the amount of 35S label bound to them, are changed if the [35S]Met-tRNAf-40-S-subunit-poly(A,U,G) complexes are first purified on sucrose gradients before analysing them on CsCl. The 1.37-g-cm-3 particle is no longer seen and the total quantity of 35S label on the 40-S subunits is 90% lower after sucrose gradient purification. Between 30% and 40% of the 40-S subunits bind [35S]Met-tRNAf when 1 mM GTP, an excess of ribosomal wash proteins and [35S]Met-tRNAf over derived 40-S subunits, and poly(A,U,G) or AUG is included in the incubations. The omission of poly(A,U,G) or AUG from the incubations substantially lowers the amount of subunit-bound 35S label ultimately recovered. With these incubations less than 10% of the 40-S subunits have bound [35S]Met-tRNAf. [35S]Met-tRNAf binding is affected by the nature of the RNA added. The addition of poly(U), rRNA and native 9-S golbin mRNA is without effect, whereas denatured globin mRNA is stimulatory. Maximum binding is obtained however with AUG. Poly(A,U,G) is less stimulatory than AUG but more stimulatory than denatured mRNA, suggesting that the number as well the accessibility of the AUG initiations condons determines the amount of 35S label bound. Similar results are obtained for the ribosomal-wash-dependent binding of [35S]Met-tRNAf to 80-S ribosomes. Contrary to the binding results, the ability of mRNA to stimulate protein synthesis is dependent on the integrity of the mRNA. Thus, native 9-S globin mRNA but not poly(A,U,G) stimulatex protein synthesis in the wheat germ system. HCHO-treated globin mRNA, although stimulatory, is 45% less effective than native mRNA. The addition of AUG, derived 60-S subunits and extra ribosomal wash is required for the formation of [35S]Met-tRNAf-80-S-ribosome complexes from sucrose-gradient-purified [35S]Met-tRNAf-40-S-subunit complexes. The 80-S ribosome complexes are able to form peptide bonds. Thus, if puromycin is added to the full incubations at zero time, no 35S label is present on the 80-S ribosome. 35S label is released as methionyl-puromycin. If the [35S]Met-tRNAf-40-S-subunit complexes are assembled with poly(A,U,G) or AUG in the incubations and then purified, only derived 60-S subunits are required to form [35S]Met-tRNAf-80-S-ribosome complexes. 35S label is not released from them when puromycin is added to the incubations unless extra ribosomal wash is also added.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号