首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
Ultraviolet (260 and 280 nm) and Fourier-transform infrared (FT-IR) spectra of Bacillus subtilis ribosomal 5S RNA have been acquired between 20 and 90 degrees C. In the presence of added Mg2+, the average UV melting midpoint, Tm, is 60 (A260) or 62 degrees C (A280), resolving into two components (Tm = 54 and 68 degrees C). In the presence of 10 mM Mg2+, the normalized A260 increases by about 5%, and the average Tm increases to 70 degrees C (A260 or A280), resolving into components at 63 and 73 degrees C at 260 nm but not resolved at 280 nm. From the difference of the 5S RNA FT-IR spectra between 90 and 30 degrees C, the number of base pairs in B. subtilis 5S RNA was determined by the procedure outlined in the accompanying paper [Li, S.-J., Burkey, K. O., Luoma, G. A., Alben, J. O., & Marshall, A. G. (1984) Biochemistry (preceding paper in this issue)]. Addition of 10 mM Mg2+ increases the number of A-U pairs by 1 (from 11 to 12) and the number of G-C pairs by 2 (from 15 to 17). FT-IR melting curve midpoints show that addition of Mg2+ increases the melting point for both A-U and G-C pairs in B. subtilis 5S RNA. The A-U pairs melt before G-C pairs (56 vs. 64 degrees C) in the absence of Mg2+, but both types of pairs melt at the same temperature (67 vs. 70 degrees C) in the presence of Mg2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Characterization of both the cis and trans -acting regulatory elements indicates that the Bacillus stearothermophilustrp operon is regulated by an attenuation mechanism similar to that which controls the trp operon in Bacillus subtilis. Secondary structure predictions indicate that the leader region of the trp mRNA is capable of folding into terminator and anti- terminator RNA structures. B. stearothermophilus also encodes an RNA-binding protein with 77% sequence identity with the RNA-binding protein (TRAP) that regulates attenuation in B. subtilis. The X-ray structure of this protein has been determined in complex with L-tryptophan at 2.5 A resolution. Like the B. subtilis protein, B. stearothermophilus TRAP has 11 subunits arranged in a ring-like structure. The central cavities in these two structures have different sizes and opposite charge distributions, and packing within the B. stearothermophilus TRAP crystal form does not generate the head-to-head dimers seen in the B. subtilis protein, suggesting that neither of these properties is functionally important. However, the mode of L-tryptophan binding and the proposed RNA binding surfaces are similar, indicating that both proteins are activated by l -tryptophan and bind RNA in essentially the same way. As expected, the TRAP:RNA complex from B. stearothermophilus is significantly more thermostable than that from B. subtilis, with optimal binding occurring at 70 degrees C.  相似文献   

4.
A chimeric poliovirus type 1 (PV1) genome was constructed in which the 3D RNA polymerase (3D(pol)) coding sequences were replaced with those from coxsackievirus B3 (CVB3). No infectious virus was produced from HeLa cells transfected with the chimeric RNA. Processing of the PV1 capsid protein precursor was incomplete, presumably due to inefficient recognition of the P1 protein substrate by the chimeric 3CD proteinase containing CVB3 3D sequences. The ability of the chimeric RNA to replicate in the absence of capsid formation was measured after replacement of the P1 region with a luciferase reporter gene. No RNA synthesis was detected, despite efficient production of enzymatically active 3D(pol) from the 3D portion of the chimeric 3CD. The chimeric 3CD protein was unable to efficiently bind to the cloverleaf-like structure (CL) at the 5' end of PV1 RNA, which has been demonstrated previously to be required for viral RNA synthesis. The CVB3 3CD protein bound the PV1 CL as well as PV1 3CD. An additional chimeric PV1 RNA that contained CVB3 3CD sequences also failed to produce virus after transfection. Since processing of PV1 capsid protein precursors by the CVB3 3CD was again incomplete, a luciferase-containing replicon was also analyzed for RNA replication. The 3CD chimera replicated at 33 degrees C, but not at 37 degrees C. Replacement of the PV1 5'-terminal CL with that of CVB3 did not rescue the temperature-sensitive phenotype. Thus, there is an essential interaction(s) between 3CD and other viral P2 or P3 protein products required for efficient RNA replication which is not fully achieved between proteins from the two different members of the same virus genus.  相似文献   

5.
6.
7.
8.
9.
Cloned gene encoding the delta subunit of Bacillus subtilis RNA polymerase   总被引:5,自引:0,他引:5  
M Lampe  C Binnie  R Schmidt  R Losick 《Gene》1988,67(1):13-19
  相似文献   

10.
11.
12.
6S RNAs function through interaction with housekeeping forms of RNA polymerase holoenzyme (Eσ(70) in Escherichia coli, Eσ(A) in Bacillus subtilis). Escherichia coli 6S RNA accumulates to high levels during stationary phase, and has been shown to be released from Eσ(70) during exit from stationary phase by a process in which 6S RNA serves as a template for Eσ(70) to generate product RNAs (pRNAs). Here, we demonstrate that not only does pRNA synthesis occur, but it is an important mechanism for regulation of 6S RNA function that is required for cells to exit stationary phase efficiently in both E. coli and B. subtilis. Bacillus subtilis has two 6S RNAs, 6S-1 and 6S-2. Intriguingly, 6S-2 RNA does not direct pRNA synthesis under physiological conditions and its non-release from Eσ(A) prevents efficient outgrowth in cells lacking 6S-1 RNA. The behavioral differences in the two B. subtilis RNAs clearly demonstrate that they act independently, revealing a higher than anticipated diversity in 6S RNA function globally. Overexpression of a pRNA-synthesis-defective 6S RNA in E. coli leads to decreased cell viability, suggesting pRNA synthesis-mediated regulation of 6S RNA function is important at other times of growth as well.  相似文献   

13.
AIMS: To study the effect of acid shock in sporulation on the production of acid-shock proteins, and on the heat resistance and germination characteristics of the spores formed subsequently. METHODS AND RESULTS: Bacillus subtilis wild-type (SASP-alpha+beta+) and mutant (SASP-alpha-beta-) cells in 2 x SG medium at 30 degrees C were acid-shocked with HCl (pH 4, 4.3, 5 and 6 against a control pH of 6.2) for 30 min, 1 h into sporulation. The D85-value of B. subtilis wild-type (but not mutant) spores formed from sporulating cells acid-shocked at pH 5 increased from 46.5 min to 78.8 min, and there was also an increase in the resistance of wild-type acid-shocked spores at both 90 degrees C and 95 degrees C. ALA- or AGFK-initiated germination of pH 5-shocked spores was the same as that of non-acid-shocked spores. Two-dimensional gel electrophoresis showed only one novel acid-shock protein, identified as a vegetative catalase 1 (KatA), which appeared 30 min after acid shock but was lost later in sporulation. CONCLUSIONS: Acid shock at pH 5 increased the heat resistance of spores subsequently formed in B. subtilis wild type. The catalase, KatA, was induced by acid shock early in sporulation, but since it was degraded later in sporulation, it appears to act to increase heat resistance by altering spore structure. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first proteomic study of acid shock in sporulating B. subtilis cells. The increasing spore heat resistance produced by acid shock may have significance for the heat resistance of spores formed in the food industry.  相似文献   

14.
P M Padas  K S Wilson  C E Vorgias 《Gene》1992,117(1):39-44
The major histone-like bacterial protein (HU)-encoding genes (hup) from five different Bacilli have been cloned, sequenced and overexpressed in Escherichia coli. The five Bacilli selected are closely related, but have different optimum growth temperatures: greater than 70 degrees C for Bacillus caldolyticus and B. caldotenax; 60-65 degrees C for B. stearothermophilus (Bst); 37 degrees C for B. subtilis and 30 degrees C for B. globigii. The deduced amino acid (aa) sequences from the three thermophiles are identical. Those from the two mesophiles are also identical and differ from those of the thermophiles at eleven aa positions. The mesophilic proteins have an extra two aa at the C terminus. Cells harbouring plasmids containing the hup genes can produce HU. An efficient purification scheme using cation-exchange chromatography and fast protein liquid chromatography is presented. This gives approx. 30-40 mg of more than 95% pure Bst HU per litre of E. coli culture.  相似文献   

15.
16.
The Bacillus subtilis gene (sspE) which codes for small acid-soluble spore protein gamma (SASP-gamma) was cloned, and its chromosomal location (65 degrees, linked to glpD) and nucleotide sequence were determined. The amino acid sequence of SASP-gamma is similar to that of SASP-B of Bacillus megaterium, but these sequences are not as highly conserved across species as are those of other SASPs. The SASP-gamma gene is transcribed only in sporulation in parallel with other SASP genes and gives a single mRNA that is approximately 340 nucleotides long. The results of hybridization of an sspE gene probe to Southern blots of B. subtilis DNA suggested that there is only a single gene coding for the SASP-gamma type of protein in B. subtilis. This was confirmed by introducing a deletion mutation into the cloned sspE gene and transferring the deletion into the B. subtilis chromosome, with concomitant loss of the wild-type gene. This sspE deletion strain sporulated well, but lacked the SASP-gamma type of protein.  相似文献   

17.
18.
We isolated and characterized a novel small RNA from Bacillus subtilis. We termed this molecule BS203 RNA from the length of its mature form (203 nt) and located the corresponding gene at the yocI-yocJ intergenic region on the B. subtilis genome. Northern blotting revealed that it is transcribed in vegetative growing cells and that the amount of BS203 RNA decreased in the middle of the vegetative phase. A computer-aided prediction of the BS203 RNA secondary structure revealed three characteristic stem-loop structures. Despite active expression during the vegetative phase, growth of the knockout mutant was not affected by depletion of BS203 RNA. A phylogenetic comparison of the sequence of the BS203 RNA with other Bacillus species including B. cereus and B. halodurans C-125, or Clostridium perfringens suggests that the sequence is unique to Bacillus subtilis.  相似文献   

19.
Glutamine synthetase (GS) activity is enhanced in cultured whole retinas when a 72 h incubation at 37 degrees C is preceded by storage at 4 degrees C for 2-24 h. This enhancement occurs even in the absence of glucocorticoids and is maximal in retinas from 11 to 14 d embryos. In comparison, cortisol-induced increases in retinal GS activity at 37 degrees C are optimal in retinas from 8 to 12 d embryos. This study, using cycloheximide (an inhibitor of protein synthesis) and cordycepin (an inhibitor of RNA synthesis), indicates that both protein and RNA synthesis are required for the 4 degrees C storage enhancement of GS activity. The necessary RNA synthesis occurs within the first 48 h following transfer to 37 degrees C and does not require concomitant protein synthesis. Uridine uptake, but not incorporation into trichloroacetic acid-precipitable material, is increased by initial 4 degrees C storage when compared with whole retina controls incubated at 37 degrees C for the total time. In contrast, both uptake and incorporation of amino acids are increased in 4 degrees C-stored retinas for as long as 72 h subsequent to transfer from 4 to 37 degrees C. This suggests that enhancement GS activity may arise from a combination of elevated general protein synthesis and specific messenger-RNA synthesis following 4 degrees C storage.  相似文献   

20.
Deamidation of one specific asparagine residue in an alpha/beta-type small, acid-soluble spore protein (SASP) of Bacillus subtilis took place readily in vitro (time for 50% deamidation [t(1/2)], approximately 1 h at 70 degrees C), and the deamidated SASP no longer bound to DNA effectively. However, DNA binding protected against this deamidation in vitro. A mutant alpha/beta-type SASP in which the reactive asparagine was changed to aspartate also failed to bind to DNA in vitro, and this protein did not restore UV radiation and heat resistance to spores lacking the majority of their alpha/beta-type SASP. When expressed in Escherichia coli, where it is bound to DNA, the alpha/beta-type SASP deamidated with a t(1/2) of 2 to 3 h at 95 degrees C. However, the alpha/beta-type SASP was extremely resistant to deamidation within spores (t(1/2), >50 h at 95 degrees C). A gamma-type SASP of B. subtilis also deamidated readily in vitro (t(1/2) for one net deamidation, approximately 1 h at 70 degrees C), but this protein (which is not associated with DNA) deamidated fairly readily in spores (t(1/2), approximately 1 h at 95 degrees C). Total spore core protein also deamidated in vivo, although the rate was two- to threefold slower than that of deamidation of total protein in heated vegetative cells. These data indicate that protein deamidation is slowed significantly in spores, presumably due to the spore's environment. However, alpha/beta-type SASP are even more strongly protected against deamidation in vivo, presumably by their binding to spore DNA. Thus, not only do alpha/beta-type SASP protect spore DNA from damage; DNA also protects alpha/beta-type SASP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号