首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
摘要 目的:探究炙甘草汤加减缓解神经根型颈椎病大鼠疼痛和对炎症反应的影响及机制。方法:采用免疫组织化学对接受炙甘草汤加减治疗的大鼠的脊髓组织神经元、小胶质细胞和星形胶质细胞中sPLA2的表达进行检测。使用免疫组织化学法通过测量DNA损伤标记物8-OHG检测氧化应激的程度。结果:与在神经根受压之前进行炙甘草汤加减灌胃可显著减少脊髓炎症以及DRG中的外周氧化损伤(P<0.05)。炙甘草汤加减降低了脊髓中的小胶质细胞和星形胶质细胞的激活,差异有统计学意义(P<0.05)。与第7天神经胶质激活减少的同时,脊髓sPLA2的产生亦受到抑制,神经胶质和神经元均减少,差异有统计学意义(P<0.05)。在疼痛性神经根损伤后,氧化应激标记物8-OHG几乎只存在于脊髓神经元中。在神经创伤前立即进行炙甘草汤加减治疗可防止外周DRG神经元中DNA和RNA中8-OHG增加,差异有统计学意义(P<0.05)。结论:炙甘草汤加减可以通过减少中枢和外周神经炎症和氧化应激来预防疼痛的发展。  相似文献   

2.
胶质细胞是中枢神经系统内的一类有别于神经元的细胞,可表达多种神经递质或细胞因子受体,在神经系统的多种功能中扮演着重要角色。组织损伤或炎症引起脊髓胶质细胞大量激活,激活的胶质细胞分泌多种细胞因子和神经-胶质兴奋物质,参与病理性疼痛的产生与维持。以胶质细胞为靶点可能为病理性疼痛的治疗另辟蹊径。  相似文献   

3.
Han M  Huang RY  Du YM  Zhao ZQ  Zhang YQ 《生理学报》2011,63(2):106-114
本文采用大鼠坐骨神经慢性压迫损伤引起的神经病理痛模型,研究脊髓背角细胞外信号调节激酶(extracellular signal-regulatedkinase,ERK)在外周神经损伤引起的神经病理疼痛发生中的作用.结果显示,单侧坐骨神经压迫性损伤后1天,大鼠损伤侧脊髓背角ERK的磷酸化(激活)水平显著上调,其下游转录因...  相似文献   

4.
目的:比较脑桥以上中枢损伤与腰骶段脊髓损伤患者的膀胱功能障碍及尿动力学特点。方法:回顾性分析2011年3月至2014年5月我院收治的78例中枢神经损伤患者的临床资料,包括临床表现、诊断、排尿方式、残余尿、尿动力学检查结果。其中,脑桥以上中枢损伤组43例,腰骶段脊髓损伤组35例,分析和比较两组患者的自由尿流率参数和完全膀胱测压参数。结果:两组间的最大尿流率、排尿量比较差异无统计学意义(P0.05),脑桥上中枢损伤组的残余尿量明显低于腰骶段脊髓损伤组,差异有统计学意义(P0.05)。与腰骶段脊髓损伤组比较,脑桥以上损伤组的膀胱容量明显减少,最大尿流率时的压力、逼尿肌的最大压力及平均压力明显增加,差异均有统计学意义(P0.05)。两组膀胱的顺应性、逼尿肌稳定性比较差异有统计学意义(P0.05),脑桥以上中枢损伤患者的多数表现为低顺应性膀胱(27/43),胸腰段脊髓损伤患者主要表现为高顺应性膀胱(21/35);脑桥以上损伤组多表现为逼尿肌的过度活动(29/43),而腰骶段脊髓损伤组更多表现为逼尿肌的无反射和弱反射(20/35)。结论:脑桥以上损伤患者主要表现为逼尿肌过度活动和膀胱容量的显著降低,以低顺应性膀胱为主;腰骶段脊髓损伤患者的逼尿肌多为无反射和弱反射,以高顺应性膀胱为主。  相似文献   

5.
延髓腹外侧部对心血管活动的调节   总被引:2,自引:0,他引:2  
延髓腹外侧中枢化学敏感区的激活,可引起血压、心率和血管张力变化。中枢化学敏感区的活动受高位中枢和外周传入冲动调变、整合后,传到脊髓交感节前神经元;通过后者调节心血管系统的活动。  相似文献   

6.
活性氧簇是细胞有氧代谢过程中产生的一类化学基团。线粒体是活性氧簇的主要生成位点。一般观点认为,在脑缺血-再灌注损伤过程中,活性氧簇发挥神经细胞损伤作用。活性氧簇不仅直接参与神经细胞氧化损伤过程,也可通过外源性途径和内源性途径,引起神经细胞凋亡。然而,除神经细胞损伤作用外,活性氧簇也可发挥神经细胞保护作用。活性氧簇可激活低氧诱导因子、核转录因子κB、PI3K/Akt通路和MAPK通路等,参与神经细胞存活机制,减轻神经细胞损伤。本文对活性氧簇在脑缺血-再灌注损伤中的双重作用进行综述。  相似文献   

7.
电针对脊髓损伤大鼠肾功能的影响   总被引:1,自引:0,他引:1  
随着现代化工业、交通、建筑等领域的高速发展,脊髓损伤的发病率呈逐年上升的趋势,给社会、家庭和个人带来了沉重的经济和精神负担。脊髓损伤会使损伤平面以下的内脏器官失去高级中枢的调节和支配,引起神经性器官功能紊乱,对泌尿系统的影响尤为严重。祖国医学认为脊髓损伤属“体惰”或“痿证”范畴,其病机为督脉受损,经脉不通。  相似文献   

8.
NMDA受体在痛觉过敏中的作用   总被引:6,自引:0,他引:6  
陈菲  方步武 《生命科学》2006,18(1):51-54
N-甲基-D-天冬氨酸受体(NMDA受体)是中枢神经系统中兴奋性递质谷氨酸受体的一种类型,属于离子型受体。它涉及了体内许多复杂的生理和病理过程,包括wind-up、中枢敏化、长时程增强、外周敏化和内脏疼痛、细胞坏死和凋亡,除此以外,还参与了痛觉过敏的产生和维持。对NMDA受体在痛觉过敏中作用的探讨为研发新一代的镇痛药提供了广阔的思路和前景。  相似文献   

9.
脊髓损伤是一种严重的中枢神经系统损伤,常导致患者瘫痪或死亡,预后差。脊髓损伤主要包括机械损伤和继发性损伤两个过程。在继发性损伤过程中,多种信号通路被激活,在脊髓损伤的发病机制中起重要作用,其中,RhoA/Rho信号通路在脊髓变性和再生中起着特殊的作用。本文讨论RhoA/Rho激酶信号介导的脊髓发病机制,以及针对RhoA/ROCK通路靶向药物的治疗进展。  相似文献   

10.
在健康受试者或部分慢性疼痛人群中,一定强度和时长的运动锻炼或针对性的运动疗法,已被广泛验证可以有效提高疼痛阈值并改善疼痛症状。上述运动诱发的镇痛效应(exercise induced hypoalgesia,EIH)被认为与痛觉内源性调控系统在神经系统不同水平上的调控作用紧密联系;合适类型的运动刺激可以在脊髓水平诱发镇痛效应,亦可激活脊髓以上高位中枢神经系统的痛觉内源性调控系统,进而对脊髓水平的伤害性反应进行调控。病理性痛状态下,EIH的产生与运动皮层的激活水平以及痛觉下行抑制作用均有关。研究脊髓、皮层下和皮层水平EIH效应的确切机制,将为非药物运动手段预防疼痛慢性化提供帮助。  相似文献   

11.
铁死亡是一种铁依赖性的,以细胞内脂质活性氧堆积为特征的细胞程序性死亡方式。广泛存在于肿瘤、癌症、急性肾损伤等多种疾病当中。脊髓损伤(spinal cord injury, SCI) 是一种严重的创伤性神经系统疾病,具有高发病率、高死亡率、高致残率的特点。目前,脊髓损伤的具体发生机制及高效治疗方法仍在探索当中,这也是亟待解决的世界性难题。研究表明,脊髓损伤后调控神经细胞的程序性死亡是治疗SCI的重点。然而,对于铁死亡参与脊髓损伤的分子生物学机制尚缺乏系统和深入的认识。收集和整理了近几年国内外有关脊髓损伤后铁死亡方面的相关文献,针对铁死亡参与脊髓损伤的调控机制和研究进展进行了综述,以期为治疗脊髓损伤带来新的思路。  相似文献   

12.
麦芽酚对活性氧损伤人神经瘤细胞的保护作用   总被引:1,自引:0,他引:1  
以人神经瘤细胞株 (SH SY5Y)为材料 ,使用过氧化氢 (H2 O2 )产生过量活性氧诱导SH SY5Y细胞株进入氧化应激状态 .研究麦芽酚对过量活性氧造成的SH SY5Y细胞株氧化损伤的保护作用 .分析活性氧对细胞膜蛋白和DNA的损伤 ,细胞线粒体功能变化 ,白介素 6 (IL 6 )的表达变化以及细胞核因子κB(NF κB)的激活 .结果显示 ,2mmol L麦芽酚保护细胞 2h后 ,对细胞膜蛋白和DNA的损伤均有明显的保护作用 ,减少了膜蛋白的氧化和细胞DNA片段化的形成 ,细胞线粒体功能损伤减小 ,细胞表达的IL 6减少 ,被激活的NF κB水平同时降低 .结果证明 ,麦芽酚可以有效保护活性氧对神经细胞的氧化损伤 ,维持细胞的正常生理功能  相似文献   

13.
目的:通过硬膜外注射局麻药罗哌卡因,评价其对神经病理性疼痛模型大鼠的作用及其机制.方法:在坐骨神经损伤神经病理性疼痛大鼠模型(CCI)术后7d,进行硬膜外置管手术,在术后8d和11d由硬膜外导管注入罗哌卡因,观测CCI大鼠机械痛阈(PWT)和脊髓后角纤维酸性蛋白(GFAP)的变化.结果:硬膜外注射罗哌卡因能够升高CCI大鼠患肢的机械痛阈,降低脊髓后角GFAP的表达.结论:在CCI大鼠模型硬膜外注射罗哌卡因可以较长时间抑制脊髓胶质细胞的激活,从而减轻神经病理性疼痛.  相似文献   

14.
将乙酰胆碱(ACh)注入麻醉家兔脊髓蛛网膜下腔,观察其对心血管活动的影响。结果表明:(1)脊髓蛛网膜下腔注射50~100μg ACh可使血压下降,心率减慢;(2)预先由脊髓蛛网膜下腔注射阿托品,可阻断ACh引起的降压和降心率作用;(3)脊髓蛛网膜下腔注射六甲双铵、酚妥拉明或心得安均不能阻断上述ACh的心血管反应;(4)切断两侧颈部迷走神经,ACh不再使心率减慢,但其降低血压的作用不受到任何影响。 脊髓中ACh水平升高可通过激活胆碱能M-受体引起血压下降和心率减慢。ACh的这种降压作用既没有中枢肾上腺素能受体活动参与,也不是通过迷走神经实现的,可能是由于脊髓交感血管中枢紧张性降低所造成的。  相似文献   

15.
内容脊蛙反射机能目的通过实验观察,使学生进一步了解脊髓的反射机能,认识脊髓是反射的低级中枢,并掌握这一生理实验的实验技术。实验原理 1.脊髓是低级中枢,主要具有反射机能,它可以对体内、外的刺激完成一些简单的低级的反射活动。2.反射的实现必须有完整的反射弧,反射弧的任何一部分有损伤,都将使反射不能实现。由于脊髓是中枢神经系统的  相似文献   

16.
在应用磁控机械夹断法复制的大鼠脊髓损伤模型上,动态地观察了脊髓损伤后的感觉及运动机能变化,并进行了电生理学研究。结果表明,0.3A电流未能导致永久性瘫痪。术后2周,后肢的感觉及运动功能逐渐恢复;可记录到体感诱发电位(SEP)。0.4,0.5和0.8A电流均能导致大鼠永久性瘫痪;倾斜板及开阔场地行走分数均显著低于0.3A组;术后4周这些大鼠可产生行走样动作,于损伤部位再次切断脊髓后仍能出现这些动作;0.4A组可记录到早期SEP,再次切断脊髓后SEP消失。结果提示:(1)脊髓不全横断后,由于残留纤维活动,可在相当程度上导致大鼠感觉和运动机能的恢复;(2)脊髓完全横断后,后肢的上行冲动可能经再生的神经纤维向中枢端传导至脑;(3)大鼠脊髓内可能存在行走中枢模式发生器(CPG),适当刺激可激发其活动,并产生行走样运动。  相似文献   

17.
Nrf2抗氧化的分子调控机制   总被引:2,自引:0,他引:2       下载免费PDF全文
Nrf2是调控细胞氧化应激反应的重要转录因子,同时也是维持细胞内氧化还原稳态的中枢调节者。Nrf2通过诱导调控一系列抗氧化蛋白的组成型和诱导型表达,可以减轻活性氧和亲电体引起的细胞损伤,使细胞处于稳定状态,维持机体氧化还原动态平衡。本研究为了从分子层面深入探讨剖析Nrf2发挥抗氧化功能的作用机制,通过查找阅读大量相关文献并进行整理归纳,最终从Nrf2的结构与激活、Nrf2抗氧化功能以及Nrf2抗氧化的分子调控机制三个方面进行了概述分析。其中在对Nrf2抗氧化的分子调控机制的探讨部分,既探析了对Nrf2起激活作用的相关调节因子的作用机制,又分析了Nrf2被激活后对其下游多种抗氧化因子及谷胱甘肽氧化还原系统的诱导调控机制,以期较深入了解Nrf2抵抗机体氧化应激损伤作用及其抗氧化分子调控机制。  相似文献   

18.
下行易化系统及其参与神经病理痛的机制   总被引:1,自引:0,他引:1  
Liu FY  Xing GG  Qu XX  Zhang Z  Wan Y 《生理科学进展》2008,39(2):101-104
神经病理痛是指由中枢或外周神经系统损伤或疾病引起的疼痛综合征.神经病理痛是临床上常见的一种疾病,但是其发病机制不甚清楚,临床上也缺乏有效的治疗手段.近年来的研究除了集中于痛觉的上行传导及中枢机制,以及痛觉的下行抑制之外,也证明下行易化系统激活参与神经病理痛的发病机制.本文拟对此进行综述,希望为治疗神经病理痛提供新思路.  相似文献   

19.
脊髓损伤的治疗与康复一直是医学领域的重大难题,尤其是在改善损伤的神经功能方面进展甚微。继发性损伤是造成脊髓损伤后神经功能障碍的主要原因,炎症反应是继发性损伤阶段最重要的病理过程。急性期通过抑制神经炎症来减轻继发性损伤被认为可减轻神经功能损害而达到神经保护作用。炎性小体是一类蛋白质复合体,由模式识别受体中的NLRs家族和PHYIN家族的受体蛋白质作为主要框架组装并命名,常见的炎性小体包括NLRP1、NLRP3、NLRC4(IPAF)、AIM2等。在感染或受到损伤刺激时,炎性小体在细胞质内组装,并激活促炎症蛋白酶胱天蛋白酶1(caspase-1),活化的胱天蛋白酶1一方面促进促炎症细胞因子IL-1β和IL-18的前体成熟和分泌,另一方面介导细胞焦亡。细胞焦亡以细胞肿胀破裂并释放细胞内容物为特征,是在炎症和应激的病理条件下诱导的程序性细胞死亡方式。促炎症细胞因子和焦亡释放的胞内物质都可作为促炎信号引发炎症反应。近期发现,炎性小体通过诱导促炎因子释放以及介导细胞焦亡等途径, 参与激活脊髓损伤后的炎症级联反应,加重继发性神经炎症。靶向抑制炎性小体的激活可减轻炎症反应,促进神经细胞存活,达到神经保护作用。因此,炎性小体有望成为脊髓损伤治疗的新靶点。本文拟从炎性小体的结构及其在脊髓损伤中的作用、激活机制和治疗前景进行综述,以期为后续研究提供思路。  相似文献   

20.
陈筱静  罗林丽  黄蔚 《蛇志》2014,(1):85-86
<正>腹腔镜手术发展迅速,与开腹手术相比,其切口小,疼痛轻,但术后镇痛不应忽视。如术后疼痛治疗不及时而引起慢性痛,影响患者生活质量。阻止中枢敏化的发生和控制术后痛可减少慢性痛的发生率。术后早期疼痛得到控制的患者能积极参加术后康复训练,有助于其术后短期和长期的康复。因此,控制术后急性痛能促进患者的长期康复,而良好的术后镇痛能提高患者的生活质量[1]。近年来,随着对疼痛  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号