首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleotide sequence has been determined for two genes involved in methanol oxidation in the facultative methylotroph, Methylobacterium extorquens AM1. The two genes are moxF, encoding the 66-kDa subunit of the methanol dehydrogenase and moxJ, located immediately downstream from moxF, which encodes a 30-kDa protein with unknown function. This information completes the sequence of the 5.86-kb XhoI-SalI fragment containing the moxFJGI region in M. extorquens AM1, and the structure of this gene cluster is presented. Evidence is presented that moxJ is also present in Paracoccus denitrificans. The aa sequence of MoxJ has provided little information concerning its function, but it does appear to contain a signal sequence suggesting a periplasmic location.  相似文献   

2.
Methylobacterium extorquens AM1 pqqEF are genes required for synthesis of pyrroloquinoline quinone (PQQ). The nucleotide sequence of these genes indicates PqqE belongs to an endopeptidase family, including PqqF of Klebsiella pneumoniae, and M. extorquens AM1 PqqF has low identity with the same endopeptidase family. M. extorquens AM1 pqqE complemented a K. pneumoniae pqqF mutant.  相似文献   

3.
The gene for amicyanin from the methylotrophic bacterium, Methylobacterium extorquens AM1 was identified. It encodes a protein consisting of 119 amino acids with a molecular weight of 12,609 kDa. The amino acid sequence shows the presence of a typical leader sequence and signal peptidase recognition site. Two putative hairpin structures were found, one located directly behind the amicyanin gene and another located 50 bp upstream. The same sequence AAAATCCC was found near the start codons for the small subunit of methylamine dehydrogenase and amicyanin, but its significance is not known.  相似文献   

4.
The nucleotide sequence and deduced amino acid sequence of the cytochrome cL of Methylobacterium extorquens (Pseudomonas AM1; Methylobacterium AM1) shows that this cytochrome c is completely different, except for its haem-binding site, from all other cytochromes.  相似文献   

5.
D N Nunn  D Day    C Anthony 《The Biochemical journal》1989,260(3):857-862
The nucleotide and deduced amino acid sequence of a novel small (beta) subunit of methanol dehydrogenase of Methylobacterium extorquens AM1 (previously Pseudomonas AM1) has been determined. Work with the whole protein has shown that is has an alpha 2 beta 2 configuration.  相似文献   

6.
Methylobacterium extorquens AM1 possesses a formaldehyde-oxidation pathway that involves enzymes with high sequence identity with enzymes from methanogenic and sulfate-reducing archaea. Here we describe the purification and characterization of formylmethanofuran-tetrahydromethanopterin formyltransferase (Ftr), which catalyzes the reversible formation of formylmethanofuran (formylMFR) and tetrahydromethanopterin (H4MPT) from N5-formylH4MPT and methanofuran (MFR). Formyltransferase from M. extorquens AM1 showed activity with MFR and H4MPT isolated from the methanogenic archaeon Methanothermobacter marburgensis (apparent Km for formylMFR = 50 microM; apparent Km for H4MPT = 30 microM). The enzyme is encoded by the ffsA gene and exhibits a sequence identity of approximately 40% with Ftr from methanogenic and sulfate-reducing archaea. The 32-kDa Ftr protein from M. extorquens AM1 copurified in a complex with three other polypeptides of 60 kDa, 37 kDa and 29 kDa. Interestingly, these are encoded by the genes orf1, orf2 and orf3 which show sequence identity with the formylMFR dehydrogenase subunits FmdA, FmdB and FmdC, respectively. The clustering of the genes orf2, orf1, ffsA, and orf3 in the chromosome of M. extorquens AM1 indicates that, in the bacterium, the respective polypeptides form a functional unit. Expression studies in Escherichia coli indicate that Ftr requires the other subunits of the complex for stability. Despite the fact that three of the polypeptides of the complex showed sequence similarity to subunits of Fmd from methanogens, the complex was not found to catalyze the oxidation of formylMFR. Detailed comparison of the primary structure revealed that Orf2, the homolog of the active site harboring subunit FmdB, lacks the binding motifs for the active-site cofactors molybdenum, molybdopterin and a [4Fe-4S] cluster. Cytochrome c was found to be spontaneously reduced by H4MPT. On the basis of this property, a novel assay for Ftr activity and MFR is described.  相似文献   

7.
【背景】由于甲基营养菌被发现的时间较短,而且可以生产吡咯喹啉醌(pyrroloquinoline quinone,PQQ)的甲基杆菌属细菌只有少数菌株的全基因组序列被公布,增加了该类细菌基因组学和生物代谢途径研究的难度。【目的】将本实验室筛选的PQQ生产菌经多种诱变方式处理,用于提高PQQ的发酵产量。对高产突变菌株进行全基因组解析,以探究甲基杆菌PQQ合成的分子机制,为后续分子育种提供序列背景信息。【方法】将野生型PQQ生产菌株进行紫外诱变、亚硝基胍诱变、甲基磺酸乙酯诱变、硫酸二乙酯诱变和紫外-氯化锂复合诱变。将突变菌株利用PromethION三代测序平台和MGISEQ-2000二代测序平台测序,然后进行组装和功能注释。组装得到的全基因组序列与模式菌株扭脱甲基杆菌AM1 (Methylobacterium extorquens AM1)进行比较基因组学分析。【结果】经11轮诱变获得一株突变菌株NI91,其PQQ产量为19.49 mg/L,相较原始菌株提高44.91%。突变菌株NI91的基因组由一个5 409 262 bp的染色体组成,共编码4 957个蛋白,与模式菌株M. extorquens AM1比较发现其PQQ合成过程中剪切加工相关的基因pqqF和pqqG缺失,但首次在甲基营养菌中发现与基因pqqF具有相似功能的基因pqqL,且基因pqqC/D的序列存在较大差异。【结论】为甲基营养类细菌甲基杆菌的功能基因组学研究及PQQ合成机理研究提供了基础数据支持,NI91与模式菌株M. extorquens AM1的比较基因组学分析为揭示PQQ合成的不同机理提供了分子基础。  相似文献   

8.
Hu B  Lidstrom M 《Journal of bacteriology》2012,194(11):2802-2808
The ethylmalonyl coenzyme A (ethylmalonyl-CoA) pathway is one of the central methylotrophy pathways in Methylobacterium extorquens involved in glyoxylate generation and acetyl-CoA assimilation. Previous studies have elucidated the operation of the ethylmalonyl-CoA pathway in C(1) and C(2) assimilation, but the regulatory mechanisms for the ethylmalonyl-CoA pathway have not been reported. In this study, a TetR-type activator, CcrR, was shown to regulate the expression of crotonyl-CoA reductase/carboxylase, an enzyme of the ethylmalonyl-CoA pathway involved in the assimilation of C(1) and C(2) compounds in Methylobacterium extorquens AM1. A ccrR null mutant strain was impaired in its ability to grow on C(1) and C(2) compounds, correlating with the reduced activity of crotonyl-CoA reductase/carboxylase. Promoter fusion assays demonstrated that the activity of the promoter required for ccr expression (the katA-ccr promoter) decreased as much as 50% in the absence of ccrR compared to wild-type M. extorquens AM1. Gel mobility shift assays confirmed that CcrR directly binds to the region upstream of the katA-ccr promoter. A palindromic sequence upstream of katA at positions -334 to -321 with respect to the predicted translational start site was identified, and mutations in this region eliminated the gel retardation of the katA-ccr promoter region by CcrR. CcrR does not appear to regulate the expression of other ethylmalonyl-CoA pathway genes, suggesting the existence of additional regulators.  相似文献   

9.
The gene (glyA) of Methylobacterium extorquens AM1 encoding serine hydroxymethyltransferase (SHMT), one of the key enzymes of the serine cycle for C1 assimilation, was isolated by using a synthetic oligonucleotide with a sequence based on amino acid sequence conserved in SHMTs from different sources. The amino acid sequence deduced from the gene revealed high similarity to those of known SHMTs. The cloned gene was inactivated by insertion of a kanamycin resistance gene, and recombination of this insertion derivative with the wild-type gene produced an SHMT null mutant. Surprisingly, this mutant had lost its ability to grow on C1 as well as on C2 compounds but was still able to grow on succinate. The DNA fragment containing glyA was shown not to be linked with fragments carrying serine cycle genes identified earlier, making it the fourth chromosomal region of M. extorquens AM1 to be indicated as being involved in C1 assimilation.  相似文献   

10.
The gene encoding the serine cycle hydroxypyruvate reductase of Methylobacterium extorquens AM1 was isolated by using a synthetic oligonucleotide with a sequence based on a known N-terminal amino acid sequence. The cloned gene was inactivated by insertion of a kanamycin resistance gene, and recombination of this insertion derivative with the wild-type gene produced a serine cycle hydroxypyruvate reductase null mutant. This mutant had lost its ability to grow on C-1 compounds but retained the ability to grow on C-2 compounds, showing that the hydroxypyruvate reductase operating in the serine cycle is not involved in the conversion of acetyl coenzyme A to glycine as previously proposed. A second hydroxypyruvate-reducing enzyme with a low level of activity was found in M. extorquens AM1; this enzyme was able to interconvert glyoxylate and glycollate. The gene encoding hydroxypyruvate reductase was shown to be located about 3 kb upstream of two other serine cycles genes encoding phosphoenolpyruvate carboxylase and malyl coenzyme A lyase.  相似文献   

11.
The organization of genes involved in utilization of methylamine (mau genes) was studied in Methylophilus methylotrophus W3A1. The strain used was a nonmucoid variant termed NS (nonslimy). The original mucoid strain was shown to be identical to the NS strains on the basis of chromosomal digest and hybridization patterns. An 8-kb PstI fragment of the chromosome from M. methylotrophus W3A1-NS encoding the mau genes was cloned and a 6,533-bp region was sequenced. Eight open reading frames were found inside the sequenced area. On the basis of a high level of sequence identity with the Mau polypeptides from Methylobacterium extorquens AM1, the eight open reading frames were identified as mauFBEDAGLM. The mau gene cluster from M. methylotrophus W3A1 is missing two genes, mauC (amicyanin) and mauJ (whose function is unknown), which have been found between mauA and mauG in all studied mau gene clusters. Mau polypeptides sequenced so far from five different bacteria show considerable identity. A mauA mutant of M. methylotrophus W3A1-NS that was constructed lost the ability to grow on all amines as sources of nitrogen but still retained the ability to grow on trimethylamine as a source of carbon. Thus, unlike M. extorquens AM1 and Methylobacillus flagellatum KT, M. methylotrophus W3A1-NS does not have an additional methylamine dehydrogenase system for amine oxidation. Using a promoter-probe vector, we identified a promoter upstream of mauF and used it to construct a potential expression vector, pAYC229.  相似文献   

12.
13.
Recently it was found that Methylobacterium extorquens AM1 contains both tetrahydromethanopterin (H4MPT) and tetrahydrofolate (H4F) as carriers of C1 units. In this paper we report that the aerobic methylotroph contains a methenyl H4MPT cyclohydrolase (0.9 U x mg-1 cell extract protein) and a methenyl H4F cyclohydrolase (0.23 U x mg-1). Both enzymes, which were specific for their substrates, were purified and characterized and the encoding genes identified via the N-terminal amino acid sequence. The purified methenyl H4MPT cyclohydrolase with a specific activity of 630 U x mg-1 (Vmax = 1500 U x mg-1; Km = 30 microm) was found to be composed of two identical subunits of molecular mass 33 kDa. Its sequence was approximately 40% identical to that of methenyl H4MPT cyclohydrolases from methanogenic archaea. The methenyl H4F cyclohydrolase with a specific activity of 100 U x mg-1 (Vmax = 330 U x mg-1; Km = 80 microm) was found to be composed of two identical subunits of molecular mass 22 kDa. Its sequence was not similar to that of methenyl H4MPT cyclohydrolases or to that of other methenyl H4F cyclohydrolases. Based on the specific activities in cell extract and from the growth properties of insertion mutants it is suggested that the methenyl H4MPT cyclohydrolase might have a catabolic, and the methenyl-H4F cyclohydrolase an anabolic function in the C1-unit metabolism of M. extorquens AM1.  相似文献   

14.
Acetyl-CoA assimilation was extensively studied in organisms harboring the glyoxylate cycle. In this study, we analyzed the metabolism of the facultative methylotroph Methylobacterium extorquens AM1, which lacks isocitrate lyase, the key enzyme in the glyoxylate cycle, during growth on acetate. MS/MS-based proteomic analysis revealed that the protein repertoire of M. extorquens AM1 grown on acetate is similar to that of cells grown on methanol and includes enzymes of the ethylmalonyl-CoA (EMC) pathway that were recently shown to operate during growth on methanol. Dynamic 13C labeling experiments indicate the presence of distinct entry points for acetate: the EMC pathway and the TCA cycle. 13C steady-state metabolic flux analysis showed that oxidation of acetyl-CoA occurs predominantly via the TCA cycle and that assimilation occurs via the EMC pathway. Furthermore, acetyl-CoA condenses with the EMC pathway product glyoxylate, resulting in malate formation. The latter, also formed by the TCA cycle, is converted to phosphoglycerate by a reaction sequence that is reversed with respect to the serine cycle. Thus, the results obtained in this study reveal the utilization of common pathways during the growth of M. extorquens AM1 on C1 and C2 compounds, but with a major redirection of flux within the central metabolism. Furthermore, our results indicate that the metabolic flux distribution is highly complex in this model methylotroph during growth on acetate and is fundamentally different from organisms using the glyoxylate cycle.  相似文献   

15.
The serine cycle methylotroph Methylobacterium extorquens AM1 contains two pterin-dependent pathways for C(1) transfers, the tetrahydrofolate (H(4)F) pathway and the tetrahydromethanopterin (H(4)MPT) pathway, and both are required for growth on C(1) compounds. With the exception of formate-tetrahydrofolate ligase (FtfL, alternatively termed formyl-H(4)F synthetase), all of the genes encoding the enzymes comprising these two pathways have been identified, and the corresponding gene products have been purified and characterized. We present here the purification and characterization of FtfL from M. extorquens AM1 and the confirmation that this enzyme is encoded by an ftfL homolog identified previously through transposon mutagenesis. Phenotypic analyses of the ftfL mutant strain demonstrated that FtfL activity is required for growth on C(1) compounds. Unlike mutants defective for the H(4)MPT pathway, the ftfL mutant strain does not exhibit phenotypes indicative of defective formaldehyde oxidation. Furthermore, the ftfL mutant strain remained competent for wild-type conversion of [(14)C]methanol to [(14)C]CO(2). Collectively, these data confirm our previous presumptions that the H(4)F pathway is not the key formaldehyde oxidation pathway in M. extorquens AM1. Rather, our data suggest an alternative model for the role of the H(4)F pathway in this organism in which it functions to convert formate to methylene H(4)F for assimilatory metabolism.  相似文献   

16.
In order to validate a gel free quantitative proteomics assay for the model methylotrophic bacterium Methylobacterium extorquens AM1, we examined the M. extorquens AM1 proteome under single carbon (methanol) and multicarbon (succinate) growth, conditions that have been studied for decades and for which extensive corroborative data have been compiled. In total, 4447 proteins from a database containing 7556 putative ORFs from M. extorquens AM1 could be identified with two or more peptide sequences, corresponding to a qualitative proteome coverage of 58%. Statistically significant nonzero (log(2) scale) differential abundance ratios of methanol/succinate could be detected for 317 proteins using summed ion intensity measurements and 585 proteins using spectral counting, at a q-value cut-off of 0.01, a measure of false discovery rate. The results were compared to recent microarray studies performed under equivalent chemostat conditions. The M. extorquens AM1 studies demonstrated the feasibility of scaling up the multidimensional capillary HPLC MS/MS approach to a prokaryotic organism with a proteome more than three times the size of microbes we have investigated previously, while maintaining a high degree of proteome coverage and reliable quantitative abundance ratios.  相似文献   

17.
The facultative methylotroph Methylobacterium extorquens AM1 possesses two pterin-dependent pathways for C(1) transfer between formaldehyde and formate, the tetrahydrofolate (H(4)F)-linked pathway and the tetrahydromethanopterin (H(4)MPT)-linked pathway. Both pathways are required for growth on C(1) substrates; however, mutants defective for the H(4)MPT pathway reveal a unique phenotype of being inhibited by methanol during growth on multicarbon compounds such as succinate. It has been previously proposed that this methanol-sensitive phenotype is due to the inability to effectively detoxify formaldehyde produced from methanol. Here we present a comparative physiological characterization of four mutants defective in the H(4)MPT pathway and place them into three different phenotypic classes that are concordant with the biochemical roles of the respective enzymes. We demonstrate that the analogous H(4)F pathway present in M. extorquens AM1 cannot fulfill the formaldehyde detoxification function, while a heterologously expressed pathway linked to glutathione and NAD(+) can successfully substitute for the H(4)MPT pathway. Additionally, null mutants were generated in genes previously thought to be essential, indicating that the H(4)MPT pathway is not absolutely required during growth on multicarbon compounds. These results define the role of the H(4)MPT pathway as the primary formaldehyde oxidation and detoxification pathway in M. extorquens AM1.  相似文献   

18.
In a previous paper, we reported identification of the 5' part of hprA of Methylobacterium extorquens AM1, which encodes the serine cycle enzyme hydroxypyruvate reductase (L. V. Chistoserdova and M. E. Lidstrom, J. Bacteriol. 174:71-77, 1992). Here we present the complete sequence of hprA and partial sequence of genes adjacent to hprA. Upstream of hprA, the 3' part of an open reading frame was discovered, separated from hprA by 263 bp. This open reading frame was identified as the gene encoding another serine cycle enzyme, serine glyoxylate aminotransferase (sgaA). Cells containing an insertion mutation into sgaA were unable to grow on C1 compounds, demonstrating that the gene is required for C1 metabolism. Sequencing downstream of hprA has revealed the presence of another open reading frame (mtdA), which is probably cotranscribed with hprA. This open reading frame was identified as the gene required for the synthesis of 5,10-methylenetetrahydrofolate dehydrogenase. Our data suggest that this enzyme plays an integral role in methylotrophic metabolism in M. extorquens AM1, either in formaldehyde oxidation or as part of the serine cycle.  相似文献   

19.
Oxalate catabolism is conducted by phylogenetically diverse organisms, including Methylobacterium extorquens AM1. Here, we investigate the central metabolism of this alphaproteobacterium during growth on oxalate by using proteomics, mutant characterization, and (13)C-labeling experiments. Our results confirm that energy conservation proceeds as previously described for M. extorquens AM1 and other characterized oxalotrophic bacteria via oxalyl-coenzyme A (oxalyl-CoA) decarboxylase and formyl-CoA transferase and subsequent oxidation to carbon dioxide via formate dehydrogenase. However, in contrast to other oxalate-degrading organisms, the assimilation of this carbon compound in M. extorquens AM1 occurs via the operation of a variant of the serine cycle as follows: oxalyl-CoA reduction to glyoxylate and conversion to glycine and its condensation with methylene-tetrahydrofolate derived from formate, resulting in the formation of C3 units. The recently discovered ethylmalonyl-CoA pathway operates during growth on oxalate but is nevertheless dispensable, indicating that oxalyl-CoA reductase is sufficient to provide the glyoxylate required for biosynthesis. Analysis of an oxalyl-CoA synthetase- and oxalyl-CoA-reductase-deficient double mutant revealed an alternative, although less efficient, strategy for oxalate assimilation via one-carbon intermediates. The alternative process consists of formate assimilation via the tetrahydrofolate pathway to fuel the serine cycle, and the ethylmalonyl-CoA pathway is used for glyoxylate regeneration. Our results support the notion that M. extorquens AM1 has a plastic central metabolism featuring multiple assimilation routes for C1 and C2 substrates, which may contribute to the rapid adaptation of this organism to new substrates and the eventual coconsumption of substrates under environmental conditions.  相似文献   

20.
Methylobacterium extorquens AM1 was used to explore the genetics of dephosphotetrahydromethanopterin (dH(4)MPT) biosynthesis. Strains with mutations in eight "archaeal-type" genes linked on the chromosome of M. extorquens AM1 were analyzed for the ability to synthesize dH(4)MPT, and six were found to be dH(4)MPT negative. Putative functions of these genes in dH(4)MPT biosynthesis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号