首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
René Hessling 《Zoomorphology》2002,121(4):221-234
The phylogenetic position of Echiura is still in continuous debate. The commonly accepted view regards Echiura as a distinct taxon, often classified as phylum, which forms the sister group of the Articulata. The alternative view considers Echiura to be a subtaxon of Annelida, which is supported by numerous shared characters. The correct systematic position of Echiura is inevitably linked to the presence or absence of true segmentation. The apparent lack of segmentation in Echiura is considered to be either primary, thereby supporting their exclusion from Annelida, or alternatively to be the result of reduction. The latter would clearly substantiate their classification as a subtaxon of Annelida. Immunohistochemical methods and confocal laser-scanning microscopy clearly demonstrate a metameric organisation of the nervous system in different larval stages of Urechis caupo, which corresponds to the segmental arrangement of ganglia in "typical" Annelida. This segmental pattern is reflected in the serially repetitive distribution of neurons containing the neurotransmitter serotonin (5-hydroxytryptamine) and also in the corresponding distribution of strictly paired peripheral nerves. Precisely two pairs of peripheral nerves are associated with each of the repetitive units. This metameric pattern also corresponds to the transient annulation of the trunk, which is found in late larval stages. Other characters of the nervous system including the paired origin of the ventral nerve cord, the anterior-posterior development gradient and the presence of a distinct suboesophageal ganglion are also found accordingly in typical Annelida. These results are interpreted as an indication that Echiura are derived from formerly segmented ancestors, and thus support their systematic inclusion within Annelida.  相似文献   

3.
The nervous system of the planktotrophic trochophore larva of Polygordius lacteus has been investigated using antibodies to serotonin (5-HT) and the neuropeptide FMRFamide. The apical ganglion contains three 5-HT-ir neurons, many FMRFamide-ir neurons and a tripartate 5-HT-ir and FMRFamide-ir neuropil. A lateral nerve extends from each side of the apical ganglion across the episphere and the ventral hyposphere, where the two nerves combine to form the paired ventral nerve cord. These nerves have both 5-HT-ir and FMRFamide-ir processes. Three circumferential nerves are associated with the ciliary bands: two prototroch and one metatroch nerve. All contain 5-HT-ir and FMRFamide-ir processes. An oral nerve plexus also contain both 5-HT-ir and FMRFamide-ir processes develops from the metatroch nerve, and an esophageal ring of FMRFamide-ir processes develops in later larval stages. In young stages the ventral ganglion contains two 5-HT-ir and two FMRFamide-ir perikarya; during development the ventral ganglion grows caudally and adds additional 5-HR-ir and FMRFamide-ir perikarya. These are the only perikarya that could be found along the lateral nerve and ventral nerve cord. The telotroch nerve develops from the ventral nerve cord. The 5-HT-ir and FMRFamide-ir part of the nervous system is strictly bilateral symmetric. and much of the system (i.e. apical ganglion, lateral nerves ventral nerve cord, dorsal nerve and oral plexus) is retained in the adult.  相似文献   

4.

Background

A median, segmented, annelid nerve cord has repeatedly been compared to the arthropod and vertebrate nerve cords and became the most used textbook representation of the annelid nervous system. Recent phylogenomic analyses, however, challenge the hypothesis that a subepidermal rope-ladder-like ventral nerve cord (VNC) composed of a paired serial chain of ganglia and somata-free connectives represents either a plesiomorphic or a typical condition in annelids.

Results

Using a comparative approach by combining phylogenomic analyses with morphological methods (immunohistochemistry and CLSM, histology and TEM), we compiled a comprehensive dataset to reconstruct the evolution of the annelid VNC. Our phylogenomic analyses generally support previous topologies. However, the so far hard-to-place Apistobranchidae and Psammodrilidae are now incorporated among the basally branching annelids with high support. Based on this topology we reconstruct an intraepidermal VNC as the ancestral state in Annelida. Thus, a subepidermal ladder-like nerve cord clearly represents a derived condition.

Conclusions

Based on the presented data, a ladder-like appearance of the ventral nerve cord evolved repeatedly, and independently of the transition from an intraepidermal to a subepidermal cord during annelid evolution. Our investigations thereby propose an alternative set of neuroanatomical characteristics for the last common ancestor of Annelida or perhaps even Spiralia.
  相似文献   

5.
Segmental mode of neural patterning in sipuncula   总被引:1,自引:0,他引:1  
Recent molecular phylogenetic analyses suggest a close relationship between two worm-shaped phyla, the nonsegmented Sipuncula (peanut worms) and the segmented Annelida (e.g., earthworms and polychaetes) [1-5]. The striking differences in their bodyplans are exemplified by the annelids' paired, ladder-like ventral nervous system, which contains segmentally arranged ganglia, and the sipunculans' single ventral nerve cord (VNC), which is devoid of any segmental structures [6, 7]. Investigating central nervous system (CNS) formation with serotonin and FMRFamide labeling in a representative sipunculan, Phascolosoma agassizii, we found that neurogenesis initially follows a segmental pattern similar to that of annelids. Starting out with paired FMRFamidergic and serotonergic axons, four pairs of associated serotonergic perikarya and interconnecting commissures form one after another in an anterior-posterior progression. In late-stage larvae, the two serotonergic axons of the VNCs fuse, the commissures disappear, and one additional pair of perikarya is formed. These cells (ten in total) migrate toward one another, eventually forming two clusters of five cells each. These neural-remodeling processes result in the single nonmetameric CNS of the adult sipunculan. Our data confirm the segmental ancestry of Sipuncula and render Phascolosoma a textbook example for the Haeckelian hypothesis of ontogenetic recapitulation of the evolutionary history of a species [8].  相似文献   

6.
 The nervous system of Nectonema munida is shown to be composed of a brain, a ventral nerve cord with an anterior and a posterior enlargement, a dorsal nerve cord and a plexus-like basiepidermal nervous system. The ultrastructure of these parts is given. Additionally, the ventral nerve cord of Gordius aquaticus is ultrastructurally described. The results are compared with the literature to work out the ground pattern of the Nematomorpha according to the nervous system. This contains a circumpharyngeal brain with a main subpharyngeal portion and a weak suprapharyngeal portion, a ventral and dorsal intraepidermal nerve cord and a peripheral nervous system. The ground pattern of the nervous system of Nematomorpha is then compared to that of other Nemathelminthes. The form of the brain and the distribution of perikarya are derived characters of the Nematomorpha. The existence of an unpaired ventral and an unpaired dorsal nerve cord and the position of these two cords in epidermal cords are synapomorphies of the Nematomorpha and the Nematoda. Accepted: 7 July 1996  相似文献   

7.
The nervous system organization is considered a phylogenetically important character among metazoans. The phylum Phoronida is included in a supraphyletic taxon known as Lophotrochozoa. Many lophotrochozoans possess a metameric ventral nerve cord as adults or larvae. Phoronids do not exhibit external metamery either as larvae or as adults. The current study describes the ventral nerve cord in the young larva of Phoronopsis harmeri. This structure is apparent both in the serotonergic and FMRF-amidergic nervous system in young larvae. The ventral nerve cord extends from the mouth to the tentacular ridge. Both serotonergic and FMRF-amidergic components consist of two ventrolateral nerves, each with several unipolar neurons. The ventrolateral nerves connect to each other by means of thin repetitive transversal nerves ("commissures"). The abundance of neurons and nerves in the epidermis of the oral field of actinotrocha larva likely reflects the importance of this area in collection of food particles. The ventral nerve cords of the actinotrocha and the metatrochophore differ in their positions with respect to ciliated bands: the cord is located between the preoral and postoral ciliated bands in the actinotrocha but between the postoral ciliated band and telotroch in the metatrochophore. The presence of the ventral nerve cord, which contains repetitive elements (neurons and "commissures"), in the early development of P. harmeri may recapitulate some stages of nervous system development during phoronid phylogeny. The larval nervous system does not contain nervous centers under the tentacular ridge that can correlate with the catastrophic metamorphosis and unique body plan of phoronids.  相似文献   

8.
Summary Immunohistochemical studies were performed by use of specific rabbit antisera and purified antibodies to human Tg on cephalic and body sections of Eisenia foetida and on cephalic sections of Lumbricus terrestris. Secondary antisera, either fluorescein- or peroxidase-conjugated, were used to identify the immunoreaction. Immunoreactive perikarya and some immunoreactive nerve fibres were detected in both the cerebral ganglion and the ventral nerve cord of E. foetida. From 8 to 19 Tg-like positive neurons per frontal section were observed in the brain, mainly in the dorsal zone. From 2 to 4 positive perikarya per ganglion were found in sagittal sections of the ventral nerve cord with a repetitive distribution. Numerous positive neurons were also found in the cephalic segments of L. terrestris. The present results indicate that a substance immunologically related to mammalian Tg is synthesized in earthworms. This suggests that some conservative sequences of Tg structure arose very early in evolution and supports the idea of a common evolutionary origin for endocrine and nervous systems.  相似文献   

9.
The systematic position of Polygordiidae is still under debate. They have been assigned to various positions among the polychaetes. Recent molecular analyses indicate that they might well be part of a basal radiation in Annelida, suggesting that certain morphological characters could represent primitive character traits adopted from the annelid stem species. To test this hypothesis, an investigation of the muscular and nervous systems by means of immunological staining and confocal laser scanning microscopy and transmission electron microscopy was conducted. With the exception of the brain, the nervous system is entirely basiepidermal and consists of the brain, the esophageal connectives, the subesophageal region, the ventral nerve cord and several smaller longitudinal nerves. These are connected by a considerable number of ring nerves in each segment. The ventral nerve cord is made up of closely apposed longitudinal neurite bundles, a median and two larger lateral ones. Since distinct ganglia are lacking, it represents a medullary cord. The muscular system mainly consists of longitudinal fibers, regularly distributed oblique muscles and strong septa. The longitudinal fibers form a right and a left unit separated along the dorsal midline, each divided into a dorsal and ventral part by the oblique muscles. Anteriorly, the longitudinal musculature passes the brain and terminates in the prostomium. There is no musculature in the palps. In contrast to earlier observations, regularly arranged minute circular muscle fibers are present. Very likely, a basiepithelial and non-ganglionic organization of the ventral nerve cord as well as an orthogonal nervous system represent plesiomorphic characters. The same applies for the predominance of longitudinal muscle fibers.  相似文献   

10.
The phylogenetic position of Sipuncula, a group of unsegmented marine worms, has been controversial for several decades: Especially based on morphological data, closer relationships to Mollusca or Annelida were among the most favoured hypotheses. Increasing amounts of molecular data in recent years have consistently placed Sipuncula either in close affinity to or even within Annelida, the segmented worms, and rejected a close relationship to Mollusca. Yet, it remained uncertain whether Sipuncula is the sister group of Annelida or an annelid subtaxon. Therefore, herein we gathered data for five nuclear genes, which have been rarely used regarding Annelida and Sipuncula, and combined these with data for six previously used genes to further elucidate the phylogenetic position of Sipuncula. We also compiled a data set for 78 ribosomal proteins from publicly available genomic data sets. These are the two largest data sets for annelids with more than 10 taxa to date. All analyses placed Sipuncula within Annelida. For the first time, topology tests significantly rejected the possibility that Sipuncula is sister to Annelida. Thus, our analyses revealed that Sipuncula had secondarily lost segmentation. Given that unsegmented Echiura is also an annelid subtaxon, segmentation, a key character of Annelida, is much more variable than previously thought. Yet, this conclusion does not support the hypothesis that the last common ancestor of Annelida, Arthropoda and Chordata was segmented, assuming several losses along the branches leading to them. As yet no traces of segmentation could be shown in taxa exhibiting serially organized organ systems such as certain Mollusca, while in Sipuncula and Echiura such traces could be demonstrated. An independent origin of segmentation in Annelida, Arthropoda and Chordata thus appears to be more plausible and parsimonious.  相似文献   

11.
The nervous systems of juvenile and adult Myzostoma cirriferum Leuckart, 1836, were stained with antisera against 5-HT (5-hydroxytryptamine, serotonin), FMRFamide, and acetylated alpha-tubulin in combination with the indirect fluorescence technique and analyzed by confocal laser scanning microscopy. The central nervous system consists of two small cerebral ganglia, connected by a dorsal commissure, a ventral nerve mass, and a pair of long circumesophageal connectives joining the former to the latter. The two neuropil cords within the ventral nerve mass curve outward and are joined to one another anteriorly and posteriorly. They are connected by 12 commissures, forming a ladder-like system. A single median nerve runs along the midventral axis. In addition to the circumesophageal connectives, 11 peripheral nerves arise from each main cord. The first innervates the anterior body region. The others form five groups of two nerves each, the first and thicker nerve of which is the parapodial nerve, innervating the parapodium and two corresponding cirri. Except for those in the most posterior group, the second nerves innervate the lateral organs and the body periphery. Serotonergic perikarya are arranged in six more or less distinct clusters, the first lying in front of and the other five between the main nerve cords. The distribution pattern of the FMRFamidergic perikarya is less clear and the somata lie between and outside the cords. One pair of dorsolateral longitudinal nerves was visualized by tubulin staining. Peripheral nerves and the commissures, in particular, demonstrate a segmental organization of the nervous system of M. cirriferum. Furthermore, their arrangement indicates that the body consists of six segments, the first of which is identifiable only by the first pair of peripheral nerves, the first two commissures, and the anteriormost ventral ganglion. The nervous system M. cirriferum thus exhibits several structures also found in the basic plan of the polychaete nervous system.  相似文献   

12.
Enchytraeus fragmentosus (Enchytraeidae) and Stylaria lacustris (Naididae) are small terrestrial and limnetic oligochaetes that exclusively or seasonally reproduce by fragmentation and regeneration, respectively. We traced the neuronal development and differentiation during regeneration in order to gain information on the basic organization and evolution of the oligochaete nervous system. Subsequent to artificial amputation, the nervous systems have been stained with antibodies directed against acetylated alpha-tubulin. The staining was analyzed by indirect fluorescence in combination with confocal laser scanning microscopy. Both species show unique oligochaete neuronal regeneration patterns: (i) numerous fibers branch off from segmental nerves near the wound site and innervate the blastema; and (ii) the ventral cord is partly reestablished before the circumesophageal connectives develop. In the investigated 'Oligochaeta' the outgrowing fibers of the ventral nerve cord are soon bundled into at least two distinct connective pairs, which prolong into dorsal and ventral roots next to the mouth. Subsequent complete fusion of the doubled roots forms simple connectives. Thus, dorsal roots are not a unique feature for 'Polychaeta'. They occur as a transient structure in 'Oligochaeta' and might be part of the neuronal ground pattern of Annelida. The initially tetra or even pentaneuronal ventral nerve cord also differentiates into an unineuronal one by fusion.  相似文献   

13.
Recent interpretations of developmental gene expression patterns propose that the last common metazoan ancestor was segmented, although most animal phyla show no obvious signs of segmentation. Developmental studies of non-model system trochozoan taxa may shed light on this hypothesis by assessing possible cryptic segmentation patterns. In this paper, we present the first immunocytochemical data on the ontogeny of the nervous system and the musculature in the sipunculan Phascolion strombus. Myogenesis of the first anlagen of the body wall ring muscles occurs synchronously and not subsequently from anterior to posterior as in segmented spiralian taxa (i.e. annelids). The number of ring muscles remains constant during the initial stages of body axis elongation. In the anterior-posteriorly elongated larva, newly formed ring muscles originate along the entire body axis between existing myocytes, indicating that repeated muscle bands do not form from a posterior growth zone. During neurogenesis, the Phascolion larva expresses a non-metameric, paired, ventral nerve cord that fuses in the mid-body region in the late-stage elongated larva. Contrary to other trochozoans, Phascolion lacks any larval serotonergic structures. However, two to three FMRFamide-positive cells are found in the apical organ. In addition, late larvae show commissure-like neurones interconnecting the two ventral nerve cords, while early juveniles exhibit a third, medially placed FMRFamidergic ventral nerve. Although we did not find any indications for cryptic segmentation, certain neuro-developmental traits in Phascolion resemble the conditions found in polychaetes (including echiurans) and myzostomids and support a close relationship of Sipuncula and Annelida.  相似文献   

14.
The use of immunofluorescence with affinity-purified antibodies enabled cytological localization of nerve growth factor-like material in the rat. Immunoreactivity was observed along various nerve tracts of the foetal rat brain and spinal cord at day 15 of gestation. Longitudinal pathways in ventral and dorsal spinal cord, ventral lower brain stem, posterior commissure, retroflex fascicle and in the olfactory bulb were all positive. A weaker and more widely spread immunostaining was visible in many areas in the central nervous system. Cranial nerves were strongly immunoreactive. Neuronal perikarya in the retina and the olfactory mucosa as well as filae olfactoriae and the olfactory nerve all the way to the olfactory bulb were also positive. In sensory ganglia and peripheral nerves most immunoreactivity was confined to supporting tissues, probably including Schwann cells. In irides, the pattern of immunoreactivity was similar to that of the sensory and autonomic innervation. More intensively fluorescent material was found in regrowing nerve fibres in iris transplants. Our histochemical results suggest that nerve growth factor and/or a related protein is present in large amounts along nerve pathways in supportive tissues of the peripheral nervous system as well as in the central nervous system during early development.  相似文献   

15.
Musculature and nervous system of Gnathostomula peregrina (Gnathostomulida, Scleroperalia) were reconstructed from whole animals by immunohistochemistry and confocal laser scanning microscopy. The F-actin muscular subset, stained with FITC-labeled phalloidin, consists of: (1) eleven pairs (four ventral, one ventrolateral, one dorsolateral, five dorsal) of longitudinal muscles; (2) two types of diagonal muscles (thin fibers throughout the body, and slightly thicker fibers of which seven pairs occur ventrally and two pairs dorsally); (3) evenly spaced thin circular fibers that gird the posterior half of the body, continuing less prominently into the anterior half; and (4) a complex pharyngeal and genital musculature. Dorsoventral muscles are absent. The organization of the FMRFamidergic nervous system shows: (1) a central nervous system with a frontal ganglion and one pair of longitudinal nerves ending in a terminal commissure, and one median ventral nerve; (2) eight to ten unipolar perikarya above, and up to ten bipolar perikarya in front of the brain; (3) a total of five (one unpaired, two paired) longitudinal nerves of the peripheral nervous system with two to four accompanying perikarya; and (4) a buccal ganglion of the stomatogastric nervous system with six to eight perikarya above the pharyngeal bulbus. Our results reveal the musculature and nervous system of Gnathostomula to be more complex than hitherto reported.  相似文献   

16.
The nervous system of Phocanema decipiens was examined with both the formaldeyhyde-induced and the glyoxylic acid fluorescence histochemical techniques. Green catecholaminergic structures were observed in 4 cephalic papillary nerves, 2 fibres with varicosities in the nerve ring as well as the ventral nerve cord and a pair of lateral nerves.The papillary nerves, extending from the nerve ring to the lips region, have cell bodies which are located anterior or adjacent to the nerve ring. Cell bodies of the lateral nerves are found within the lateral cord tissue posterior to the nerve ring. Each of these neurons has 3 processes—one joins with the nerve ring, the other merges with the ventral nerve cord and the third ends abruptly within the lateral cord.  相似文献   

17.
The Aeolosomatidae are very small limnetic or terrestrial annelids of apparently simple organisation and uncertain phylogenetic position. They have been placed either at the base of the Clitellata, as a highly derived taxon within the Clitellata closely related to the Naididae, or as their sister group within the „Polychaeta”. A combined immunohistochemical (cLSM) and ultrastructural investigation of the central nervous system and the sense organs in Aeolosoma hemprichi was undertaken to look for characters which might support one of these theories. The position of the brain within the prostomium and the organisation of the ventral nerve cord, with its intraepithelial paired longitudinal nerves lying far apart from each other and the presence of a median longitudinal nerve, are atypical for the Clitellata and clearly differ from the situation found in Naididae. Moreover, the circumoesophageal connectives are bifurcated and enter the brain as dorsal and ventral roots; this arrangement is unknown in Clitellata, in which these connectives are unbranched. An ultrastructural analysis of the ciliated pits located laterally in the furrow between prostomium and peristomium in A. hemprichi and other Aeolosomatidae show that they are in fact nuchal organs. Such presumed chemosensory organs are typical of „Polychaeta” and absent in all Clitellata. Two pairs of ciliary sense organs are present in the prostomium in front of the brain of A. hemprichi. Although similarly organised sensory structures occur in many species of the Clitellata, they differ in position and certain ultrastructural features and are known from other Annelida as well. These results clearly support the exclusion of the Aeolosomatidae from the Clitellata and do not provide any evidence for a sister-group relationship between these two taxa. Accepted: 8 February 2000  相似文献   

18.
Summary The complex catecholaminergic (CA) nervous system of the polychaete Ophryotrocha puerilis is documented using glyoxylic acid induced fluorescence (GIF) and immunohistochemistry. CA-neurons are found both in the central and peripheral nervous system. In the brain, about 50 CA-neurons are present in the perikaryal layer together with numerous CA fibres. Two pairs of CA perikarya are characteristic for each ganglion of the ventral nerve cord. CA-neurites in the ventral nerve cord are mainly arranged in 4 strands paralleling the longitudinal axis of the worm. Fluorescent neurons with receptive ciliary structures are present in body appendages (antennae, palps, urites, parapodial cirri), in the body-wall, and within the oesophageal wall. Furthermore, a subepidermal nerve net of free CA nerve endings has been found. After incubation of specimens with dopamine prior to the development of GIF more fluorescent perikarya could be observed; the fluorescence was also intensified. Pre-incubation with reserpine reduced the intensity of GIF. Results of high pressure liquid chromatography and immunostaining with a polyclonal antibody against a dopamine-glutaraldehyde-complex suggest that dopamine is the major CA transmitter. It is thought that dopaminergic neurons together with ciliary receptive structures act as mechano- and/or chemoreceptors.  相似文献   

19.
Sipuncula is a clade of unsegmented marine worms that are currently placed among the basal radiation of conspicuously segmented Annelida. Their new location provides a unique opportunity to reinvestigate the evolution and development of segmented body plans. Neural segmentation is clearly evident during ganglionic ventral nerve cord (VNC) formation across Sedentaria and Errantia, which includes the majority of annelids. However, recent studies show that some annelid taxa outside of Sedentaria and Errantia have a medullary cord, without ganglia, as adults. Importantly, neural development in these taxa is understudied and interpretation can vary widely. For example, reports in sipunculans range from no evidence of segmentation to vestigial segmentation as inferred from a few pairs of serially repeated neuronal cell bodies along the VNC. We investigated patterns of pan-neuronal, neuronal subtype, and axonal markers using immunohistochemistry and whole mount in situ hybridization (WMISH) during neural development in an indirect-developing sipunculan, Themiste lageniformis. Confocal imaging revealed two clusters of 5HT+ neurons, two pairs of FMRF+ neurons, and Tubulin+ peripheral neurites that appear to be serially positioned along the VNC, similar to other sipunculans, to other annelids, and to spiralian taxa outside of Annelida. WMISH of a synaptotagmin1 ortholog in T. lageniformis (Tl-syt1) showed expression throughout the centralized nervous system (CNS), including the VNC where it appears to correlate with mature 5HT+ and FMRF+ neurons. An ortholog of elav1 (Tl-elav1) showed expression in differentiated neurons of the CNS with continuous expression in the VNC, supporting evidence of a medullary cord, and refuting evidence of ontogenetic segmentation during formation of the nervous system. Thus, we conclude that sipunculans do not exhibit any signs of morphological segmentation during development.  相似文献   

20.
Summary In an immunohistochemical study of the ventral nerve cord of L. decemlineata, five distinct neuron categories were distinguished: 1) Two paired segmental twin interneurons occur in each ganglion or neuromere; their axons distribute processes over almost the entire nerve cord and run to the cerebral ganglion complex. In contrast, other axons are distributed locally. 2) Four large frontal neurosecretory neurons occur in the suboesophageal ganglion (SOG), two of which have axons that run into the mandibular nerves to form a neurohemal plexus on the surface of cerebral nerves. 3) A pair of large caudal neurons occur in the terminal ganglion and innervate the hindgut. 4) Local miniature interneurons occur in the SOG. 5) Terminal neurons are present in the last abdominal ganglion. Segmental twin interneurons appear to be grouped into 3 functional units spanning several ganglia. Their axons run to specific projection areas, which separate the functional units, and which mark the externally visible separation of condensed ganglion complexes. A possible role of the most caudal functional unit might be the synaptic control of caudal neurons innervating the hindgut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号