首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strong environmental gradients can affect the genetic structure of plant populations, but little is known as to whether closely related species respond similarly or idiosyncratically to ecogeographic variation. We analysed the extent to which gradients in temperature and rainfall shape the genetic structure of four Stipa species in four bioclimatic regions in Jordan. Genetic diversity, differentiation and structure of Stipa species were investigated using amplified fragment length polymorphism (AFLP) molecular markers. For each of the four study species, we sampled 120 individuals from ten populations situated in distinct bioclimatic regions and assessed the degree of genetic diversity and genetic differentiation within and among populations. The widespread ruderals Stipa capensis and S. parviflora had higher genetic diversity than the geographically restricted semi‐desert species Sarabica and S. lagascae. In three of the four species, genetic diversity strongly decreased with precipitation, while genetic diversity increased with temperature in S. capensis. Most genetic diversity resided among populations in the semi‐desert species (ΦST = 0.572/0.595 in S. arabica/lagascae) but within populations in the ruderal species (ΦST = 0.355/0.387 S. capensis/parviflora). Principal coordinate analysis ( PCoA) and STRUCTURE analysis showed that Stipa populations of all species clustered ecogeographically. A genome scan revealed that divergent selection at particular AFLP loci contributed to genetic differentiation. Irrespective of their different life histories, Stipa species responded similarly to the bioclimatic gradient in Jordan. We conclude that, in addition to predominant random processes, steep climatic gradients might shape the genetic structure of plant populations.  相似文献   

2.
Ex situ cultivation in botanic gardens could be one possibility to preserve plant species diversity and genetic variation. However, old ex situ populations are often sparsely documented. We were able to retrieve three different ex situ populations and their source in situ populations of the endangered plant species Silene otites after 20–36 years of isolation. Furthermore, three additional wild populations were included in the analysis. Population genetic diversity and differentiation were analysed using AFLP markers. Genetic variation in the ex situ populations was lower than the variation found in the in situ populations. Strong differentiation (FST = 0.21–0.36) between corresponding in situ and ex situ populations was observed. Bayesian clustering approach also showed a distinct genetic separation between in situ and ex situ populations. The high genetic differentiation and loss of genetic diversity during spatial and temporal isolation in the ex situ populations can be attributable to small population sizes and unconscious selection during cultivation. Therefore, adequate sampling prior to ex situ cultivation and large effective population sizes are important to preserve genetic diversity. Near‐natural cultivation allowing for generation overlap and interspecific competition without artificial selection is recommended as being best for the maintenance of the genetic constitution. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, ??, ??–??.  相似文献   

3.
Li Q  He T  Xu Z 《Biochemical genetics》2005,43(7-8):387-406
The majority of research in genetic diversity yields recommendations rather than actual conservation achievements. We assessed the efficacy of actual in situ and ex situ efforts to conserve Parashorea chinensis (Dipterocarpaceae) against the background of the geographic pattern of genetic variation of this species. Samples from seven natural populations, including three in a nature reserve, and one ex situ conservation population were studied. Across the natural populations, 47.8% of RAPD loci were polymorphic; only 20.8% on average varied at the population level. Mean population genetic diversity was 0.787 within natural populations and 1.410 for the whole species. Significant genetic differentiation among regions and isolation by distance were present on larger scales (among regions). AMOVA revealed that the majority of the among-population variation occurred among regions rather than among populations within regions. Regression analysis, Mantel test, principal coordinates analysis, and cluster analysis consistently demonstrated increasing genetic isolation with increasing geographic distance. Genetic differentiation within the region was quite low compared to that among regions. Multilocus spatial autocorrelation analysis of these three populations revealed random distribution of genetic variation in two populations, but genetic clustering was detected in the third population. The ex situ conserved population contained a medium level of genetic variation compared with the seven natural populations; it contained 77.1% of the total genetic variation of this species and 91% of the moderate to high frequency RAPD fragments (f > 0.05). Exclusive bands were detected in natural populations, but none were found in the ex situ conserved population. The populations protected in the nature reserve contained most of the genetic variation of the whole species, with 81.4% of the total genetic variation and 95.7% of the fragments with moderate to high frequency (f > 0.05) of this species conserved. The results show that the ex situ conserved population does not contain enough genetic variation to meet the need of release in the future, and that more extensive ex situ sampling in natural populations TY, NP, HK, and MG is needed. The in situ conserved population contains representative genetic variation to maintain long-term survival and evolutionary processes of P. chinensis.  相似文献   

4.
Genetic diversity may play an important role in allowing individual species to resist climate change, by permitting evolutionary responses. Our understanding of the potential for such responses to climate change remains limited, and very few experimental tests have been carried out within intact ecosystems. Here, we use amplified fragment length polymorphism (AFLP) data to assess genetic divergence and test for signatures of evolutionary change driven by long‐term simulated climate change applied to natural grassland at Buxton Climate Change Impacts Laboratory (BCCIL). Experimental climate treatments were applied to grassland plots for 15 years using a replicated and spatially blocked design and included warming, drought and precipitation treatments. We detected significant genetic differentiation between climate change treatments and control plots in two coexisting perennial plant study species (Festuca ovina and Plantago lanceolata). Outlier analyses revealed a consistent signature of selection associated with experimental climate treatments at individual AFLP loci in P. lanceolata, but not in F. ovina. Average background differentiation at putatively neutral AFLP loci was close to zero, and genomewide genetic structure was associated neither with species abundance changes (demography) nor with plant community‐level responses to long‐term climate treatments. Our results demonstrate genetic divergence in response to a suite of climatic environments in reproductively mature populations of two perennial plant species and are consistent with an evolutionary response to climatic selection in P. lanceolata. These genetic changes have occurred in parallel with impacts on plant community structure and may have contributed to the persistence of individual species through 15 years of simulated climate change at BCCIL.  相似文献   

5.
Parrotia subaequalis (Hamamelidaceae) is a Tertiary relic species endemic in eastern China. We used inter‐simple sequence repeat (ISSR) markers to access genetic diversity and population genetic structure in natural five populations of P. subaequalis. The levels of genetic diversity were higher at species level (= 0.2031) but lower at population level (= 0.1096). The higher genetic diversity at species levels might be attributed to the accumulation of distinctive genotypes which adapted to the different habitats after Quaternary glaciations. Meanwhile, founder effects on the early stage, and subsequent bottleneck of population regeneration due to its biological characteristics, environmental features, and human activities, seemed to explain the low population levels of genetic diversity. The hierarchical AMOVA revealed high levels (42.60%) of among‐population genetic differentiation, which was in congruence with the high levels of Nei's genetic differentiation index (GST = 0.4629) and limited gene flow (Nm = 0.5801) among the studied populations. Mantel test showed a significant isolation‐by‐distance, indicating that geographic isolation has a significant effect on genetic structure in this species. Unweighted pair‐group method with arithmetic average clustering, PCoA, and Bayesian analyses uniformly recovered groups that matched the geographical distribution of this species. In particular, our results suggest that Yangtze River has served as a natural barrier to gene flow between populations occurred on both riversides. Concerning the management of P. subaequalis, the high genetic differentiation among populations indicates that preserving all five natural populations in situ and collecting enough individuals from these populations for ex situ conservation are necessary.  相似文献   

6.
Western white pine (Pinus monticola) is an economically and ecologically important species in western North America that has declined in prominence over the past several decades, mainly due to the introduction of Cronartium ribicola (cause of white pine blister rust) and reduced opportunities for regeneration. Amplified fragment length polymorphism (AFLP) markers were used to assess the genetic diversity and structure among populations at 15 sites (e.g., provenances) across the native range of western white pine. The level of genetic diversity was different among 15 populations tested using 66 polymorphic AFLP loci. Nei’s gene diversity (H E) at the population level ranged from 0.187 to 0.316. Genetic differentiation (G ST) indicated that 20.1% of detected genetic variation was explained by differences among populations. In general, populations below 45oN latitude exhibited a higher level of genetic diversity than higher latitude populations. Genetic distance analysis revealed two major clades between northern and southern populations, but other well-supported relationships are also apparent within each of the two clades. The complex relationships among populations are likely derived from multiple factors including migration, adaptation, and multiple glacial refugia, especially in higher latitudes. Genetic diversity and structure revealed by this study will aid recognition and selection of western white pine populations for species management and conservation programs, especially in consideration of current and future climate changes.  相似文献   

7.
Assessing patterns of genetic variation in rare endangered species is critical for developing both in situ and ex situ conservation strategies. Pinus dabeshanensis Cheng et Law is an endangered species endemic to the Dabieshan Mountains of eastern China. To obtain fundamental information of genetic diversity, population history, effective population size, and gene flow in this species, we explored patterns of genetic variation of natural populations, in addition to an ex situ conserved population, using expressed sequence tag-simple sequence repeats (EST-SSR) markers. Our results revealed moderate levels of genetic diversity (e.g., HE = 0.458 vs. HE = 0.423) and a low level of genetic differentiation (FST = 0.028) among natural and conserved populations relative to other conifers. Both contemporary and historical migration rates among populations were high. Bayesian coalescent-based analyses suggested that 3 populations underwent reductions in population size ca. 10,000 yr ago, and that two populations may have experienced recent genetic bottlenecks under the TPM. Bayesian clustering revealed that individuals from the ex situ population were largely assigned to the ‘red’ cluster. Additionally, our results identified private alleles in the natural populations but not in the ex situ population, suggesting that the ex situ conserved population insufficiently represents the genetic diversity present in the species. Past decline in population size is likely to be due to Holocene climate change. Based on the genetic information obtained for P. dabeshanensis, we propose some suggestions for the conservation and efficient management of this endangered species.  相似文献   

8.
Corsica and Sardinia represent major hotspots of plant diversity in the Mediterranean area and are priority regions for conservation due to their high number of endemic plant species. However, information supporting human decision‐making on the conservation of these species is still scarce, especially at the genetic level. In this work, the first assessment is reported of the species‐wide spatial genetic structure and diversity of Ferula arrigonii Bocchieri, a Corso‐Sardinian endemic located in a few coastal sites and on small islands. Nine populations covering the entire natural range of the species were investigated by means of AFLP (amplified fragment length polymorphism) markers. Results indicate that this species is characterised by high levels of genetic polymorphism (92% polymorphic fragments) and of genetic diversity (Hw = 0.317) and by relatively low differentiation among populations (Fst = 0.057). PCoA, Bayesian analysis and neighbour‐joining clustering were also employed to investigate the genetic structure of this species. Three genetically distinct groups were detected, although with considerable overlap between populations.  相似文献   

9.
The Puerto Rican Boa (Chilabothrus inornatus) was placed on the US Endangered Species List in 1970. Progress has been made since to clarify the recovery status of this species, though the design of a new recovery plan must include information regarding genetic variation within and among populations of this species. While measures of genetic diversity in wild populations of this species are finally becoming available, relative genetic diversity represented in ex situ populations is unknown, which hampers efforts to develop an ex situ species management plan. Here, we provide an analysis of genetic diversity in US public and private collections (zoos and breeders) using mitochondrial sequence data and five highly polymorphic nuclear microsatellite loci. We analyzed 50 boas from the US ex situ population and determined overall genetic diversity and relatedness among these individuals. We then compared these data to mitochondrial and microsatellite data obtained from 176 individuals from wild populations across the native range of the species. We found little inbreeding and a large amount of retained genetic diversity in the US ex situ population of C. inornatus relative to wild populations. Genetic diversity in the ex situ population is similar to that found in wild populations. Ours is only the second explicit attempt to characterize genetic diversity at the molecular level in ex situ populations of boid snakes. We anticipate that these results will inform current breeding strategies as well as offer additional information that will facilitate the continuation of ex situ conservation breeding or management in boas.  相似文献   

10.
Myricaria laxiflora is restricted to the riverbanks of the Yangtze River valley and will be completely lost owing to the construction of the Three Gorges Dam. Genetic diversity and structure of nine natural and one ex situ populations were investigated using amplified fragment length polymorphisms (AFLPs). A moderate level of gene diversity was found in natural populations, while the ex situ population had the highest. The F statistics calculated by different approaches consistently revealed a high genetic differentiation among natural populations, contributing >45% of the total gene diversity. The Bayesian-based analysis differentiated nine independent populations in accordance with the sites sampled. Estimates of gene flow by F(ST) and coalescent-based simulation analysis indicated a restricted recurrent gene exchange among populations (Nm = 0.290-0.401), whereas genetic distance-based clustering and coalescent-based assignment analyses revealed significant genetic isolation among populations. The migration pattern in M. laxiflora is best explained by a classical metapopulation model, but with a unique unidirectional direction underlined by hydrochoric force that drove dispersal of seeds and propagules from upstream toward downstream populations. Previous efforts in preserving genomic integrity in ex situ conservation were evaluated, and the results provide valuable information to formulate conservation guidelines for successfully reintroducing M. laxiflora to the wild.  相似文献   

11.
Distinguishing natural versus anthropogenic dispersal of organisms is essential for determining the native range of a species and implementing an effective conservation strategy. For cryptogenic species with limited historical records, molecular data can help to identify introductions. Nematostella vectensis is a small, burrowing estuarine sea anemone found in tidally restricted salt marsh pools. This species’ current distribution extends over three coast lines: (i) the Atlantic coast of North America from Nova Scotia to Georgia, (ii) the Pacific coast of North America from Washington to central California, and (iii) the southeast coast of England. The 1996 IUCN Red List designates N. vectensis as “vulnerable” in England. Amplified fragment length polymorphism (AFLP) fingerprinting of 516 individuals from 24 N. vectensis populations throughout its range and mtDNA sequencing of a subsample of these individuals strongly suggest that anthropogenic dispersal has played a significant role in its current distribution. Certain western Atlantic populations of N. vectensis exhibit greater genetic similarity to Pacific populations or English populations than to other western Atlantic populations. At the same time, F-statistics showing high degrees of genetic differentiation between geographically proximate populations support a low likelihood for natural dispersal between salt marshes. Furthermore, the western Atlantic harbors greater genetic diversity than either England or the eastern Pacific. Collectively, these data clearly imply that N. vectensis is native to the Atlantic coast of North America and that populations along the Pacific coast and in England are cases of successful introduction.  相似文献   

12.
利用AFLP分子标记探讨蜡梅种质资源的遗传多样性   总被引:2,自引:1,他引:2  
赵冰  张启翔 《生态学报》2007,27(11):4452-4459
利用AFLP分子标记技术,对中国蜡梅种质资源7个野生种群的遗传多样性进行了研究。利用筛选出的3对引物,共扩增出253条谱带,其中218条多态带,多态位点占86.17% ;种群间的基因分化系数为0.2906,说明蜡梅基因多样性主要存在于种群内;种群总的Nei s基因多样性指数为0.2933,Shannon信息多态性指数为0.4487,蜡梅总的遗传多样性水平较高。蜡梅不同种群遗传多样性水平差异较大,种群多态位点百分率在65.44% ~87.16%之间,Nei s基因多样性指数为0.1653 ~0.4012,Shannon信息多态性指数为0.3132 ~0.5603。神农架种群(SN)和保康种群(BK)的遗传多样性水平较高。用NTSYS2.01版软件对样品进行UPGMA聚类分析,结果7个种群并没有按地理距离进行聚类。最后提出要对各蜡梅野生群体采取相应的迁地和就地保护措施。  相似文献   

13.
Aim To assess the effects of altitude and historic and recent forest fragmentation on the genetic diversity and structure of the wind‐pollinated tropical tree line species Polylepis incana. Location One of the highest mountain forest regions of the world, located in the Eastern Cordillera of the Ecuadorian Andes. Methods We compared genetic diversity and structure of adult trees with those of seedlings (n= 118 in both cases) in nine forest stands spanning an altitudinal gradient from 3500 to 4100 m a.s.l. using amplified fragment length polymorphisms (AFLPs). Genetic diversity was calculated as percentage of polymorphic bands (P) and Nei's expected heterozygosity (He); genetic differentiation was assessed using analysis of molecular variance, ΦST statistics and Bayesian cluster analysis. Results Estimates of genetic diversity at the population level were significantly lower in seedlings than in adults. Genetic diversity (He‐value) was, in both cases, negatively correlated to altitude and positively correlated to population size in the seedlings. Genetic differentiation of the seedlings was approximately as high (φST= 0.298) as that of the adults (φST= 0.307), and geographical differentiation was clearly reflected in both AFLP profiles, with mountain ridges acting as barriers to gene flow. Main conclusions Our study provides evidence of a historic upslope migration of P. incana in central Ecuador. In addition, it highlights the detrimental effects of unexpectedly strong genetic isolation, both recent and historical, particularly for our wind‐pollinated species where the distance between forest stands was less than 25 km. We therefore additionally propose that in habitats with pronounced high‐mountain landscape structures, gene flow may be hampered to such an extent that species have a more pronounced sensitivity to habitat fragmentation, even among populations of wind‐pollinated trees.  相似文献   

14.
Due to societal changes and altered demands for firewood, the traditional forest management of coppicing has been largely abandoned. As a result, many forest herbs that are specifically adapted to regular opening of the canopy, have suffered significant declines in abundance, and the remaining populations of these species often tend to be small and isolated. Reduced population sizes and pronounced spatial isolation may cause loss of within-population genetic diversity and increased between-population differentiation through random genetic drift and inbreeding. In this study, we investigated genetic diversity and genetic structure of 15 populations of the food-deceptive orchid Orchis mascula using AFLP markers. Within-population genetic diversity significantly increased with increasing population size, indicating genetic impoverishment in small populations. Genetic differentiation, on the other hand, was rather low (ΦST = 0.083) and there was no significant relationship between genetic and geographic distances, suggesting substantial gene flow within the study area. However, strong differences in levels of within-population diversity and among-population differentiation were found for populations located in forests that have been regularly coppiced and populations found in forests that were neglected for more than 50 years and that were totally overgrown by shrubs. Our data thus indicate that a lack of coppicing leads to decreased genetic diversity and increased differentiation in this orchid species, most likely as a result of genetic drift following demographic bottlenecks. From a conservation point of view, this study combined with previous results on the demography of O. mascula in relation to forest management illustrates the importance of coppicing in maintaining viable populations of forest herbs in the long-term.  相似文献   

15.
Genetic diversity was described in 17 cedar populations covering the geographical range of the four species of the genus Cedrus. The study was conducted using amplified fragment length polymorphism (AFLP) on haploid tissues (megagametophytes). Eleven selective AFLP primer pairs generated a total of 107 polymorphic amplification products. Correspondence and genetic distance analyses indicated that Cedrus deodara constitutes a separate gene pool from the Mediterranean cedars. Within Mediterranean cedars, we distinguished two groups: the first one is made of Cedrus atlantica, while the second one is made of Cedrus libani and Cedrus brevifolia, these latter two species being genetically similar despite important divergence previously observed for morphological and physiological traits. The lowest intrapopulation variability was found in the two C. deodara populations analyzed. Surprisingly, C. brevifolia, the endemic taxon from the island of Cyprus that is found in small and fragmented populations, showed one of the highest levels of diversity. This unexpected pattern of diversity and differentiation observed for C. brevifolia suggests a recent divergence rather than a relictual, declining population. Patterns of diversity within- and among-populations were used to test divergence and fragmentation hypotheses and to draw conclusions for the conservation of Cedrus gene pools.  相似文献   

16.
The goals of this study were to characterize the genetic structure of 6 populations of Etheostoma moorei (Yellowcheek Darter), endemic to the Little Red River watershed of central Arkansas, to estimate the levels of gene flow within isolated streams, and to compare AFLP genetic diversity and distance data to our previously published allozyme data. The Yellowcheek Darter is a candidate species for listing under the Endangered Species Act. This darter is found in previously connected headwater streams presently isolated and partially inundated downstream by Greers Ferry Reservoir. AFLP data for the Yellowcheek Darter was concordant with previous work utilizing allozymes (rs = 0.682; p < 0.01), yet genetic differences among populations were greater in magnitude. Genetic diversity (polymorphism = 92.7; heterozygosity = 0.496) is higher for the Yellowcheek Darter than would be expected for a species in decline, and greater for AFLP versus allozyme data. Genetic structuring among streams was also more evident using AFLP data. Gene flow levels are indicative of a metapopulation structure within streams (FST = 0.003 − 0.010), with genetic structuring indicating distinct populations among streams.  相似文献   

17.
Sonneratia paracaseolaris, is a critically endangered mangrove species in China. Using inter-simple sequence repeats (ISSR) markers, we compared the genetic variation of introduced populations with that of natural populations to check whether the genetic diversity has been conserved. At the species level, genetic diversity was relatively high (P = 81.37%, He = 0.2241, and SI = 0.3501). Genetic variation in introduced populations (P = 75.78%, He = 0.2291, and SI = 0.3500) was more than that in natural populations (P = 70.81%, He = 0.1903, and SI = 0.2980). Based on Nei's GST value, more genetic differentiation among natural populations was detected (GST = 0.3591). Our data show that the genetic diversity of S. paracaseolaris was conserved in introduced populations to some extent, however, owing to the small natural populations and the threats they encountered, more plants should be planted to enlarge and restore the populations.  相似文献   

18.
Amplified fragment length polymorphism (AFLP) markers were used to estimate the genetic diversity of seven wild populations of Sinopodophyllum hexandrum (Royle) Ying from the Tibetan region of Sichuan Province, China. Six primer combinations generated a total of 428 discernible DNA fragments, of which 111 were polymorphic. The percentage of polymorphic bands (PPB) was 25.93 at the species level, and PPB within population ranged from 4.91 to 12.38%. Genetic diversity (H E) within populations varied from 0.01 to 0.04, averaging 0.05 at the species level. As revealed by the results of AMOVA analysis, 58.8% of the genetic differentiation occurred between populations, and 41.2% within populations. The genetic differentiation was, perhaps, due to the limited gene flow (N m=0.43) of the species. The correlation coefficient (r) between genetic and geographical distance using Mantel's test for all populations was 0.698 (P=0.014). The UPGMA cluster analysis revealed a similar result in that the genetic distances among the populations show, to a certain extent, a spatial pattern corresponding to their geographic locations. On the basis of the genetic and ecological information, we propose some appropriate strategies for conserving the endangered S. hexandrum in this region.  相似文献   

19.
Genetic diversity is important for species' fitness and evolutionary processes but our knowledge on how it varies across a species' distribution range is limited. The abundant centre hypothesis (ACH) predicts that populations become smaller and more isolated towards the geographic range periphery – a pattern that in turn should be associated with decreasing genetic diversity and increasing genetic differentiation. We tested this hypothesis in Adonis vernalis, a dry grassland plant with an extensive Eurasian distribution. Its life‐history traits and distribution characteristics suggest a low genetic diversity that decreases and a high genetic differentiation that increases towards the range edge. We analysed AFLP fingerprints in 28 populations along a 4698‐km transect from the geographic range core in Russia to the western range periphery in Central and Western Europe. Contrary to our expectation, our analysis revealed high genetic diversity (range of proportion of polymorphic bands = 56–81%, He = 0.168–0.238) and low genetic differentiation across populations (ΦST = 0.18). However, in congruence with the genetic predictions of the ACH, genetic diversity decreased and genetic differentiation increased towards the range periphery. Spanish populations were genetically distinct, suggesting a divergent post‐glacial history in this region. The high genetic diversity and low genetic differentiation in the remaining Avernalis populations is surprising given the species' life‐history traits and points to the possibility that the species has been widely distributed in the studied region or that it has migrated from a diverse source in an East–West direction, in the past.  相似文献   

20.
Dalmatian pyrethrum (Tanacetum cinerariifolium Trevir. /Sch./ Bip.) is an outcrossing, perennial insecticidal plant, restricted to the eastern Adriatic coast (Mediterranean). Amplified fragment-length polymorphisms (AFLP) were used to investigate the genetic diversity and structure within and among 20 natural plant populations. The highest level of gene diversity, the number of private alleles and the frequency down-weighted marker values (DW) were found in northern Adriatic populations and gradually decreased towards the southern boundary of the species range. Genetic impoverishment of these southern populations is most likely the result of human-related activities. An analysis of molecular variance (AMOVA) indicated that most of the genetic diversity was attributed to differences among individuals within populations (85.78%), which are expected due to the outcrossing nature of the species. A Bayesian analysis of the population structure identified two dominant genetic clusters. A spatial analysis of the genetic diversity indicated that 5.6% of the genetic differentiation resulted from isolation by distance (IBD), while 12.3% of the genetic differentiation among populations followed the pattern of isolation by environmental distance (IBED). Knowledge of the genetic diversity patterns of the natural populations and the mechanism behind these patterns is required for the exploitation and possible conservation management of this endemic and economically important species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号