首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Biotechnological production of mannitol and its applications   总被引:1,自引:0,他引:1  
Mannitol, a naturally occurring polyol (sugar alcohol), is widely used in the food, pharmaceutical, medical, and chemical industries. The production of mannitol by fermentation has become attractive because of the problems associated with its production chemically. A number of homo- and heterofermentative lactic acid bacteria (LAB), yeasts, and filamentous fungi are known to produce mannitol. In particular, several heterofermentative LAB are excellent producers of mannitol from fructose. These bacteria convert fructose to mannitol with 100% yields from a mixture of glucose and fructose (1:2). Glucose is converted to lactic acid and acetic acid, and fructose is converted to mannitol. The enzyme responsible for conversion of fructose to mannitol is NADPH- or NADH-dependent mannitol dehydrogenase (MDH). Fructose can also be converted to mannitol by using MDH in the presence of the cofactor NADPH or NADH. A two enzyme system can be used for cofactor regeneration with simultaneous conversion of two substrates into two products. Mannitol at 180 g l−1 can be crystallized out from the fermentation broth by cooling crystallization. This paper reviews progress to date in the production of mannitol by fermentation and using enzyme technology, downstream processing, and applications of mannitol.  相似文献   

2.
Cell retention culture of lactic acid bacterium Leuconostoc citreum was carried out in a fermentor equipped with an internal ceramic filtration system to co-produce biomass and metabolites. The filtration system was composed of porous ceramic filter module with pore size of 0.1 μm and total surface area of 330 cm2. High cell density cultivation of L. citreum was achieved within the fermentor, while extracellular metabolites such as mannitol and d-lactic acid were produced through the filter with high productivities. In batch culture of L. citreum using a medium containing 50 g/L of glucose and 100 g/L of fructose, the maximum optical density (OD) monitored at 660 nm was 13 with 65 g/L of mannitol and 38 g/L of lactic acid. In cell retention culture of L. citreum with dilution rate of 0.07 h−1, OD increased to 75, which was 6 times higher than that in batch culture. The concentrations of mannitol and lactic acid increased to 85 and 45 g/L, respectively, and were maintained throughout the cultivation to 105 h. By increasing dilution rate to 0.13 h−1, the productivities of mannitol and lactic acid increased to 8.5 and 4.2 g/L/h, respectively, which were 2.7 to 3 times higher than those in batch culture, suggesting that cell retention culture using internal filtration system is highly effective for co-production of useful cell biomass and various extracellular metabolites.  相似文献   

3.
High-density cultures of Pycnoporus cinnabarinus were tested with a view to optimisation of ferulic acid bioconversion into vanillin. The dry weight was increased fourfold by using glucose, fructose or a mixture of glucose and phospholipids as carbon source instead of maltose, the carbon source previously used. 5 mmol l−1 vanillin, i.e. 760 mg l−1, was produced over 15 days with glucose-phospholipid medium. In contrast, formation of vanillin was lower using glucose or fructose compared to the maltose control. A bioreactor (2 l) with a glucose-phospholipid medium gave a molar yield of vanillin of 61% (4 mmol l−1). An alternative strategy was to grow the fungus on a glucose or fructose medium for 3 days, then switch to maltose during the bioconversion phase: this method allowed 3.3 mmol l−1 vanillin to be obtained in 10 days. Many by-products such as methoxyhydroquinone and vanillyl alcohol were also produced. Received: 19 February 1999 / Received revision: 4 June 1999 / Accepted: 4 June 1999  相似文献   

4.
Kinetic study of mannitol production using cashew apple juice as substrate   总被引:1,自引:0,他引:1  
The use of agriculture excess as substrate in industrial fermentations became an interesting alternative to reduce production costs and to reduce negative environmental impact caused by the disposal of these products. In this work, a kinetic study of mannitol production using cashew apple juice as substrate was studied. The carbohydrates of cashew apple juice are glucose and fructose. Sucrose addition favored the yield of mannitol (85%) at the expense of lower productivity. The best results were obtained applying only cashew apple juice as substrate, containing 50 g L−1 of total reducing sugar (28 g L−1 of fructose), yielding 18 g L−1 of mannitol with 67% of fructose conversion into mannitol and productivity of 1.8 g L−1 h−1.  相似文献   

5.
A newly isolated sucrose-tolerant, lactic acid bacterium, Lactobacillus sp. strain FCP2, was grown on sugar-cane juice (125 g sucrose l−1, 8 g glucose l−1 and 6 g fructose l−1) for 5 days and produced 104 g lactic acid l−1 with 90% yield. A higher yield (96%) and productivity (2.8 g l−1 h−1) were obtained when strain FCP2 was cultured on 3% w/v (25 g sucrose l−1, 2 g glucose l−1 and 1 g fructose l−1) sugar-cane juice for 10 h. Various cheap nitrogen sources such as silk worm larvae, beer yeast autolysate and shrimp wastes were also used as a substitute to yeast extract.  相似文献   

6.
Instead of the conventional carbon sources used for propionic acid biosynthesis, the utilization of glycerol is considered here, since the metabolic pathway involved in the conversion of glycerol to propionic acid is redox-neutral and energetic. Three strains, Propionibacterium acidipropionici, Propionibacterium acnes and Clostridium propionicum were tested for their ability to convert glycerol to propionic acid during batch fermentation with initially 20 g/l glycerol. P. acidipropionici showed higher efficiency in terms of fermentation time and conversion yield than did the other strains. The fermentation profile of this bacterium consisted in propionic acid as the major product (0.844 mol/mol), and in minimal by-products: succinic (0.055 mol/mol), acetic (0.023 mol/mol) and formic (0.020 mol/mol) acids and n-propanol (0.036 mol/mol). The overall propionic acid productivity was 0.18 g l−1h−1. A comparative study with glucose and lactic acid as carbon sources showed both less diversity in end-product composition and a 17% and 13% lower propionic acid conversion yield respectively than with glycerol. Increasing the initial glycerol concentration resulted in an enhanced productivity up to 0.36 g l−1h−1 and in a maximal propionic acid concentration of 42 g/l, while a slight decrease of the conversion yield was noticed. Such a propionic acid production rate was similar or higher than the values obtained with lactic acid (0.35 g l−1h−1) or glucose (0.28 g l−1h−1). These results demonstrated that glycerol is a carbon source of interest for propionic acid production. Received: 15 July 1996 / Received revision: 11 November 1996 / Accepted: 11 November 1996  相似文献   

7.
We isolated and characterized a d-lactic acid-producing lactic acid bacterium (d-LAB), identified as Lactobacillus delbrueckii subsp. lactis QU 41. When compared to Lactobacillus coryniformis subsp. torquens JCM 1166 T and L. delbrueckii subsp. lactis JCM 1248 T, which are also known as d-LAB, the QU 41 strain exhibited a high thermotolerance and produced d-lactic acid at temperatures of 50 °C and higher. In order to optimize the culture conditions of the QU 41 strain, we examined the effects of pH control, temperature, neutralizing reagent, and initial glucose concentration on d-lactic acid production in batch cultures. It was found that the optimal production of 20.1 g/l d-lactic acid was acquired with high optical purity (>99.9% of d-lactic acid) in a pH 6.0-controlled batch culture, by adding ammonium hydroxide as a neutralizing reagent, at 43 °C in MRS medium containing 20 g/l glucose. As a result of product inhibition and low cell density, continuous cultures were investigated using a microfiltration membrane module to recycle flow-through cells in order to improve d-lactic acid productivity. At a dilution rate of 0.87 h−1, the high cell density continuous culture exhibited the highest d-lactic acid productivity of 18.0 g/l/h with a high yield (ca. 1.0 g/g consumed glucose) and a low residual glucose (<0.1 g/l) in comparison with systems published to date.  相似文献   

8.
During the process of producing cassava starch from Manihot esculenta roots, large amounts of cyanoglycosides were released, which rapidly decayed to CN following enzymatic hydrolysis. Depending on the varying cyanoglycoside content of the cassava varieties, the cyanide concentration in the wastewater was as high as 200 mg/l. To simulate anaerobic stabilization, a wastewater with a chemical oxygen demand (COD) of about 20 g/l was prepared from cassava roots and was fermented in a fixed-bed methanogenic reactor. The start-up phase for a 99% degradation of low concentrations of cyanide (10 mg/l) required about 6 months. After establishment of the biofilm, a cyanide concentration of up to 150 mg CN/l in the fresh wastewater was degraded during anaerobic treatment at a hydraulic retention time of 3 days. All nitrogen from the degraded cyanide was converted to organic nitrogen by the biomass of the effluent. The cyanide-degrading biocoenosis of the anaerobic reactor could tolerate shock concentrations of cyanide up to 240 mg CN/l for a short time. Up to 5 mmol/l NH4Cl (i.e. 70 mg N/l = 265 mg NH4Cl/l) in the fresh wastewater did not affect cyanide degradation. The bleaching agent sulphite, however, had a negative effect on COD and cyanide removal. For anaerobic treatment, the maximum COD space loading was 12 g l−1 day−1, equivalent to a hydraulic retention time of 1.8 days. The COD removal efficiency was around 90%. The maximum permanent cyanide space loading was 50 mg CN l−1 day−1, with tolerable shock loadings up to 75 mg CN l−1 day−1. Under steady-state conditions, the cyanide concentration of the effluent was lower than 0.5 mg/l. Received: 15 August 1997 / Received revision: 10 October 1997 / Accepted: 14 October 1997  相似文献   

9.
High-level production of D-mannitol with membrane cell-recycle bioreactor   总被引:2,自引:0,他引:2  
Ten heterofermentative lactic acid bacteria were compared in their ability to produce D-mannitol from D-fructose in a resting state. The best strain, Leuconostoc mesenteroides ATCC-9135, was examined in high cell density membrane cell-recycle cultures. High volumetric mannitol productivity (26.2 g l−1 h−1) and mannitol yield (97 mol%) were achieved. Using the same initial biomass, a stable high-level production of mannitol was maintained for 14 successive bioconversion batches. Applying response surface methodology, the temperature and pH were studied with respect to specific mannitol productivity and yield. Moreover, increasing the initial fructose concentration from 100 to 120 and 140 g l−1 resulted in decreased productivities due to both substrate and end-product inhibition of the key enzyme, mannitol dehydrogenase (MDH). Nitrogen gas flushing of the bioconversion media was unnecessary, since it did not change the essential process parameters. Journal of Industrial Microbiology & Biotechnology (2002) 29, 44–49 doi:10.1038/sj.jim.7000262 Received 12 November 2001/ Accepted in revised form 30 March 2002  相似文献   

10.
Adventitious roots of Echinacea purpurea were cultured in airlift bioreactors (20 l, 500 l balloon-type, bubble bioreactors and 1,000 l drum-type bubble bioreactor) using Murashige and Skoog (MS) medium with 2 mg indole butyric acid l−1 and 50 g sucrose l−1 for the production of chichoric acid, chlorogenic acid and caftaric acid. In the 20 l bioreactor (containing 14 l MS medium) a maximum yield of 11 g dry biomass l−1 was achieved after 60 days. However, the amount of total phenolics (57 mg g−1 DW), flavonoids (34 mg g−1 DW) and caffeic acid derivatives (38 mg g−1 DW) were highest after 50 days. Based on these studies, pilot-scale cultures were established and 3.6 kg and 5.1 kg dry biomass were achieved in the 500 l and 1,000 l bioreactors, respectively. The accumulation of 5 mg chlorogenic acid g−1 DW, 22 mg chichoric acid g−1 DW and 4 mg caftaric acids g−1 DW were achieved with adventitious roots grown in 1,000 l bioreactors.  相似文献   

11.
Tecoma stans is a tropical plant from the Americas. Antioxidant activity and both phenolic compound and flavonoid total content were determined for callus tissue of T. stans cultured in either a set photoperiod or in darkness. Callus lines from three explant types (hypocotyls, stem, and leaf) were established on B5 culture medium supplemented with 0.5 μM 2,4-D and 5.0 μM kinetin. While leaf-derived callus grew slower under a 16-h photoperiod (specific growth rate, μ = 0.179 d−1, t D = 3.9 d) than in darkness (μ = 0.236 d−1, t D = 2.9 d), it accumulated the highest amount (p < 0.05) of both phenolics (86.6 ± 0.01 mg gallic acid equivalents/g) and flavonoids (339.6 ± 0.06 mg catechin equivalents/g). Similarly, antioxidant activity was significantly higher (p < 0.05) when callus was cultured in period light than when grown in extended darkness. Antioxidant activity measured with a 2,20-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS)-based assay was 350.5 ± 15.8 mmol Trolox/g extract for callus cultured under a defined photoperiod compared to 129.1 ± 7.5 mmol Trolox/g extract from callus cultured in darkness. Content of phenolic compounds and flavonoids was in agreement with a better antioxidant power (EC50 = 450 μg extract/mg 1,1-diphenyl-2-picrylhydrazyl) and antiradical efficiency. Results of the present study show that calli of T. stans are a source of compounds with antioxidant activity that is favored by culture under a set photoperiod.  相似文献   

12.
Detailed kinetic and physiological characterisation of eight mannitol-producing lactic acid bacteria, Leuconostoc citreum ATCC 49370, L. mesenteroides subsp. cremoris ATCC19254, L. mesenteroides subsp. dextranicum ATCC 19255, L. ficulneum NRRL B-23447, L. fructosum NRRL B-2041, L. lactis ATCC 19256, Lactobacillus intermedius NRRL 3692 and Lb. reuteri DSM 20016, was performed using a carob-based culture medium, to evaluate their different metabolic capabilities. Cultures were thoroughly followed for 30 h to evaluate consumption of sugars, as well as production of biomass and metabolites. All strains produced mannitol at high yields (>0.70 g mannitol/g fructose) and volumetric productivities (>1.31 g/l h), and consumed fructose and glucose simultaneously, but fructose assimilation rate was always higher. The results obtained enable the studied strains to be divided mainly into two groups: one for which glucose assimilation rates were below 0.78 g/l h (strains ATCC 49370, ATCC 19256 and ATCC 19254) and the other for which they ranged between 1.41 and 1.89 g/l h (strains NRRL B-3692, NRRL B-2041, NRRL B-23447 and DSM 20016). These groups also exhibited different mannitol production rates and yields, being higher for the strains with faster glucose assimilation. Besides mannitol, all strains also produced lactic acid and acetic acid. The best performance was obtained for L. fructosum NRRL B-2041, with maximum volumetric productivity of 2.36 g/l h and the highest yield, stoichiometric conversion of fructose to mannitol.  相似文献   

13.
A recombinant d-lyxose isomerase from Providencia stuartii was immobilized on Duolite A568 beads which gave the highest conversion of d-fructose to d-mannose among the various immobilization beads evaluated. Maximum activities of both the free and immobilized enzymes for fructose isomerization were at pH 7.5 and 45°C in the presence of 1 mM Mn2+. Enzyme half-lives were 14 and 30 h at 35°C and 3.4 and 5.1 h at 45°C, respectively. The immobilized enzyme in 300 g fructose/l (replaced hourly), produced 75 g mannose/l at 35°C = 25% (w/w) yield with a productivity of 75 g mannose l−1 h−1 after 23 cycles.  相似文献   

14.
Malaysia is the world’s leading producer of palm oil products that contribute US$ 7.5 billion in export revenues. Like any other agro-based industries, it generates waste that could be utilized as a source of organic nutrients for microalgae culture. Present investigation delves upon Isochrysis sp. culture in POME modified medium and its utilization as a supplement to Nanochloropsis sp. in rotifer cultures. The culture conditions were optimized using a 1 L photobioreactor (Temp: 23°C, illumination: 180 ∼ 200 μmol photons m−2s−1, n = 6) and scaled up to 10 L outdoor system (Temp: 26–29°C, illumination: 50 ∼ 180 μmol photons m−2s−1, n = 3). Algal growth rate in photobioreactor (μ = 0.0363 h−1) was 55% higher compared to outdoor culture (μ = 0.0163 h−1), but biomass production was 1.3 times higher in outdoor culture (Outdoor = 91.7 mg m−2d−1; Photobioreactor = 69 mg m−2d−1). Outdoor culture produced 18% higher lipid; while total fatty acids (FA) was not significantly affected by the change in culture systems as both cultures yield almost similar concentrations of fatty acids per gram of sample (photobioreactor = 119.17 mg g−1; outdoor culture = 104.50 mg g−1); however, outdoor cultured Isochrysis sp. had 26% more polyunsaturated fatty acids (PUFAs). Rotifers cultured in Isochrysis sp./ Nanochloropsis sp. (1:1, v/v) mixture gave similar growth rate as 100% Nanochoropsis sp. culture (μ = 0.40 d−1), but had 45% higher counts of rotifers with eggs (t = 7, maximum). The Isochrysis sp. culture successfully lowered the nitrate (46%) and orthophosphate (83%) during outdoor culture.  相似文献   

15.
The wet organic fraction of household wastes was digested anaerobically at 37 °C and 55 °C. At both temperatures the volatile solids loading was increased from 1 g l−1 day−1 to 9.65 g l−1 day−1, by reducing the nominal hydraulic retention time from 93 days to 19 days. The volatile solids removal in the reactors at both temperatures for the same loading rates was in a similar range and was still 65% at 19 days hydraulic retention time. Although more biogas was produced in the thermophilic reactor, the energy conservation in methane was slightly lower, because of a lower methane content, compared to the biogas of the mesophilic reactor. The slightly lower amount of energy conserved in the methane of the thermophilic digester was presumably balanced by the hydrogen that escaped into the gas phase and thus was no longer available for methanogenesis. In the thermophilic process, 1.4 g/l ammonia was released, whereas in the mesophilic process only 1 g/l ammonia was generated, presumably from protein degradation. Inhibition studies of methane production and glucose fermentation revealed a K i (50%) of 3 g/l and 3.7 g/l ammonia (equivalent to 0.22 g/l and 0.28 g/l free NH3) at 37 °C and a K i (50%) of 3.5 g/l and 3.4 g/l ammonia (equivalent to 0.69 g/l and 0.68 g/l free NH3) at 55 °C. This indicated that the thermophilic flora tolerated at least twice as much of free NH3 than the mesophilic flora and, furthermore, that the thermophilic flora was able to degrade more protein. The apparent ammonia concentrations in the mesophilic and in the thermophilic biowaste reactor were low enough not to inhibit glucose fermentation and methane production of either process significantly, but may have been high enough to inhibit protein degradation. The data indicated either that the mesophilic and thermophilic protein degraders revealed a different sensitivity towards free ammonia or that the mesophilic population contained less versatile protein degraders, leaving more protein undegraded. Received: 26 March 1997 / Received revision: 13 May 1997 / Accepted: 19 May 1997  相似文献   

16.
In order to achieve high butanol production by Clostridium saccharoperbutylacetonicum N1-4, the effect of lactic acid on acetone–butanol–ethanol fermentation and several fed-batch cultures in which lactic acid is fed have been investigated. When a medium containing 20 g/l glucose was supplemented with 5 g/l of closely racemic lactic acid, both the concentration and yield of butanol increased; however, supplementation with more than 10 g/l lactic acid did not increase the butanol concentration. It was found that when fed a mixture of lactic acid and glucose, the final concentration of butanol produced by a fed-batch culture was greater than that produced by a batch culture. In addition, a pH-controlled fed-batch culture resulted in not only acceleration of lactic acid consumption but also a further increase in butanol production. Finally, we obtained 15.5 g/l butanol at a production rate of 1.76 g/l/h using a fed-batch culture with a pH-stat continuous lactic acid and glucose feeding method. To confirm whether lactic acid was converted to butanol by the N1-4 strain, we performed gas chromatography–mass spectroscopy (GC-MS) analysis of butanol produced by a batch culture during fermentation in a medium containing [1,2,3-13C3] lactic acid as the initial substrate. The results of the GC-MS analysis confirmed the bioconversion of lactic acid to butanol.  相似文献   

17.
The esterification reaction between stearic acid and lactic acid using Rhizomucor miehei lipase and porcine pancreas lipase was optimized for maximum esterification using response surface methodology. The formation of the ester was found to depend on three parameters namely enzyme/substrate ratio, lactic acid (stearic acid) concentration and incubation period. The maximum esterification predicted by theoretical equations for both lipases matched well with the observed experimental values. In the case of R. miehei lipase, stearoyl lactic acid ester formation was found to increase with incubation period and lactic acid (stearic acid) concentrations with maximum esterification of 26.9% at an enzyme/substrate (E/S) ratio of 125 g mol−1. In the case of porcine pancreas lipase, esterification showed a steady increase with increase in incubation period and lactic acid (stearic acid) concentration independent of the E/S ratios employed. In the case of PPL, a maximum esterification of 18.9% was observed at an E/S ratio of 25 g mol−1 at a lactic acid (stearic acid) concentration of 0.09 M after an incubation period of 72 h. Received: 12 February 1999 / Received revision: 31 May 1999 / Accepted: 4 June 1999  相似文献   

18.
It is possible to cultivate aerobic granular sludge at a low organic loading rate and organics-to-total nitrogen (COD/N) ratio in wastewater in the reactor with typical geometry (height/diameter = 2.1, superficial air velocity = 6 mm/s). The noted nitrification efficiency was very high (99%). At the highest applied ammonia load (0.3 ± 0.002 mg NH4+–N g total suspended solids (TSS)−1 day−1, COD/N = 1), the dominating oxidized form of nitrogen was nitrite. Despite a constant aeration in the reactor, denitrification occurred in the structure of granules. Applied molecular techniques allowed the changes in the ammonia-oxidizing bacteria (AOB) community in granular sludge to be tracked. The major factor influencing AOB number and species composition was ammonia load. At the ammonia load of 0.3 ± 0.002 mg NH4+–N g TSS−1 day−1, a highly diverse AOB community covering bacteria belonging to both the Nitrosospira and Nitrosomonas genera accounted for ca. 40% of the total bacteria in the biomass.  相似文献   

19.
Four cocoa-specific acetic acid bacterium (AAB) strains, namely, Acetobacter pasteurianus 386B, Acetobacter ghanensis LMG 23848T, Acetobacter fabarum LMG 24244T, and Acetobacter senegalensis 108B, were analyzed kinetically and metabolically during monoculture laboratory fermentations. A cocoa pulp simulation medium (CPSM) for AAB, containing ethanol, lactic acid, and mannitol, was used. All AAB strains differed in their ethanol and lactic acid oxidation kinetics, whereby only A. pasteurianus 386B performed a fast oxidation of ethanol and lactic acid into acetic acid and acetoin, respectively. Only A. pasteurianus 386B and A. ghanensis LMG 23848T oxidized mannitol into fructose. Coculture fermentations with A. pasteurianus 386B or A. ghanensis LMG 23848T and Lactobacillus fermentum 222 in CPSM for lactic acid bacteria (LAB) containing glucose, fructose, and citric acid revealed oxidation of lactic acid produced by the LAB strain into acetic acid and acetoin that was faster in the case of A. pasteurianus 386B. A triculture fermentation with Saccharomyces cerevisiae H5S5K23, L. fermentum 222, and A. pasteurianus 386B, using CPSM for LAB, showed oxidation of ethanol and lactic acid produced by the yeast and LAB strain, respectively, into acetic acid and acetoin. Hence, acetic acid and acetoin are the major end metabolites of cocoa bean fermentation. All data highlight that A. pasteurianus 386B displayed beneficial functional roles to be used as a starter culture, namely, a fast oxidation of ethanol and lactic acid, and that these metabolites play a key role as substrates for A. pasteurianus in its indispensable cross-feeding interactions with yeast and LAB during cocoa bean fermentation.  相似文献   

20.
The biodegradation potential of an innovative enclosed tubular biofilm photobioreactor inoculated with a Chlorella sorokiniana strain and an acclimated activated sludge consortium was evaluated under continuous illumination and increasing pretreated (centrifuged) swine slurry loading rates. This photobioreactor configuration provided simultaneous and efficient carbon, nitrogen, and phosphorous treatment in a single-stage process at sustained nitrogen and phosphorous removals efficiencies ranging from 94% to 100% and 70–90%, respectively. Maximum total organic carbon (TOC), NH4 +, and PO4 3− removal rates of 80 ± 5 g C mr −3 day−1, 89 ± 5 g N mr −3 day−1, and 13 ± 3 g P mr −3 day−1, respectively, were recorded at the highest swine slurry loadings (TOC of 1,247 ± 62 mg L−1, N–NH4 + of 656 ± 37 mg L−1, P–PO4 3+ of 117 ± 19 mg L−1, and 7 days of hydraulic retention time). The unusual substrates diffusional pathways established within the phototrophic biofilm (photosynthetic O2 and TOC/NH4 + diffusing from opposite sides of the biofilm) allowed both the occurrence of a simultaneous denitrification/nitrification process at the highest swine slurry loading rate and the protection of microalgae from any potential inhibitory effect mediated by the combination of high pH and high NH3 concentrations. In addition, this biofilm-based photobioreactor supported efficient biomass retention (>92% of the biomass generated during the pretreated swine slurry biodegradation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号