首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

High molecular weight glutenin subunits (HMW-GS) have been proved to be mostly correlated with the processing quality of common wheat (Triticum aestivum). But wheat cultivars have limited number of high quality HMW-GS. However, novel HMW-GS were found to be present in many wheat asymmetric somatic hybrid introgression lines of common wheat/Agropyron elongatum.  相似文献   

2.

Aim

In this study, the biological variation for improvement of the nutritive value of wheat straw by 12 Ceriporiopsis subvermispora, 10 Pleurotus eryngii and 10 Lentinula edodes strains was assessed. Screening of the best performing strains within each species was made based on the in vitro degradability of fungal‐treated wheat straw.

Methods and Results

Wheat straw was inoculated with each strain for 7 weeks of solid state fermentation. Weekly samples were evaluated for in vitro gas production (IVGP) in buffered rumen fluid for 72 h. Out of the 32 fungal strains studied, 17 strains showed a significantly higher (< 0·05) IVGP compared to the control after 7 weeks (227·7 ml g?1 OM). The three best Ceriporiopsis subvermispora strains showed a mean IVGP of 297·0 ml g?1 OM, while the three best P. eryngii and L. edodes strains showed a mean IVGP of 257·8 and 291·5 ml g?1 OM, respectively.

Conclusion

Ceriporiopsis subvermispora strains show an overall high potential to improve the ruminal degradability of wheat straw, followed by L. edodes and P. eryngii strains.

Significance and Impact of the Study

Large variation exists within and among different fungal species in the valorization of wheat straw, which offers opportunities to improve the fungal genotype by breeding.  相似文献   

3.

Background  

High-molecular-weight glutenin subunits (HMW-GSs) have been considered as most important seed storage proteins for wheat flour quality. 1Ay subunits are of great interest because they are always silent in common wheat. The presence of expressed 1Ay subunits in diploid and tetraploid wheat genotypes makes it possible to investigate molecular information of active 1Ay genes.  相似文献   

4.

Background  

Cadmium (Cd) concentrations in durum wheat (Triticum turgidum L. var durum) grain grown in North American prairie soils often exceed proposed international trade standards. To understand the physiological processes responsible for elevated Cd accumulation in shoots and grain, Cd uptake and translocation were studied in seedlings of a pair of near-isogenic durum wheat lines, high and low for Cd accumulation in grain.  相似文献   

5.

Background  

Whole genome duplication is a common evolutionary event in plants. Bread wheat (Triticum aestivum L.) is a good model to investigate the impact of paleo- and neoduplications on the organization and function of modern plant genomes.  相似文献   

6.
7.

Background  

Variability of the VRN1 promoter region of the unique collection of spring polyploid and wild diploid wheat species together with diploid goatgrasses (donor of B and D genomes of polyploid wheats) were investigated. Accessions of wild diploid (T. boeoticum, T. urartu) and tetraploid (T. araraticum, T. timopheevii) species were studied for the first time.  相似文献   

8.

Background  

The complexity of the wheat genome has resulted from waves of retrotransposable element insertions. Gene deletions and disruptions generated by the fast replacement of repetitive elements in wheat have resulted in disruption of colinearity at a micro (sub-megabase) level among the cereals. In view of genomic changes that are possible within a given time span, conservation of genes between species tends to imply an important functional or regional constraint that does not permit a change in genomic structure. The ctg1034 contig completed in this paper was initially studied because it was assigned to the Sr2 resistance locus region, but detailed mapping studies subsequently assigned it to the long arm of 3B and revealed its unusual features.  相似文献   

9.

Introduction  

Recombination is a key evolutionary factor enhancing diversity. However, the effect of recombination on diversity in inbreeding species is expected to be low. To estimate this effect, recombination and diversity patterns of Lr10 gene were studied in natural populations of the inbreeder species, wild emmer wheat (Triticum dicoccoides). Wild emmer wheat is the progenitor of most cultivated wheats and it harbors rich genetic resources for disease resistance. Lr10 is a leaf rust resistance gene encoding three domains: a coiled-coil, nucleotide-binding site, and leucine-rich repeat (CC-NBS-LRR).  相似文献   

10.

Background  

In wheat (Triticum aestivum L), the flag leaf has been thought of as the main source of assimilates for grain growth, whereas the peduncle has commonly been thought of as a transporting organ. The photosynthetic characteristics of the exposed peduncle have therefore been neglected. In this study, we investigated the anatomical traits of the exposed peduncle during wheat grain ontogenesis, and we compared the exposed peduncle to the flag leaf with respect to chloroplast ultrastructure, photosystem II (PSII) quantum yield, and phosphoenolpyruvate carboxylase (PEPCase; EC 4.1.1.31) activity.  相似文献   

11.

Background  

N-acylhomoserine lactone (AHL)-based quorum sensing (QS) systems have been described in many plant-associated Gram-negative bacteria to control certain beneficial phenotypic traits, such as production of biocontrol factors and plant growth promotion. However, the role of AHL-mediated signalling in the endophytic strains of plant-associated Serratia is still poorly understood. An endophytic Serratia sp. G3 with biocontrol potential and high levels of AHL signal production was isolated from the stems of wheat and the role of QS in this isolate was determined.  相似文献   

12.

Background  

Chromosome pairing, recombination and DNA repair are essential processes during meiosis in sexually reproducing organisms. Investigating the bread wheat (Triticum aestivum L.) Ph2 (Pairing homoeologous) locus has identified numerous candidate genes that may have a role in controlling such processes, including TaMSH7, a plant specific member of the DNA mismatch repair family.  相似文献   

13.

Background  

Fusarium head blight (FHB) is a disease of cereal crops, which has a severe impact on wheat and barley production worldwide. Apart from reducing the yield and impairing grain quality, FHB leads to contamination of grain with toxic secondary metabolites (mycotoxins), which pose a health risk to humans and livestock. The Fusarium species primarily involved in FHB are F. graminearum and F. culmorum. A key prerequisite for a reduction in the incidence of FHB is an understanding of its epidemiology.  相似文献   

14.

Background  

Cassava (Manihot esculenta Crantz), a starchy root crop grown in tropical and subtropical climates, is the sixth most important crop in the world after wheat, rice, maize, potato and barley. The repertoire of simple sequence repeat (SSR) markers for cassava is limited and warrants a need for a larger number of polymorphic SSRs for germplasm characterization and breeding applications.  相似文献   

15.

Background  

Costs of adaptation play an important role in host-parasite coevolution. For parasites, evolving the ability to circumvent host resistance may trade off with subsequent growth or transmission. Such costs of virulence (sensu plant pathology) limit the spread of all-infectious genotypes and thus facilitate the maintenance of genetic polymorphism in both host and parasite. We investigated costs of three virulence factors in Puccinia striiformis f.sp. tritici, a fungal pathogen of wheat (Triticum aestivum).  相似文献   

16.

Background  

The yellow colour of pasta products is one of the main criteria used by consumers to assess pasta quality. This character is due to the presence of carotenoid pigments in semolina. During pasta processing, oxidative degradation of carotenoid pigments occurs mainly due to lipoxygenase (LOX). In durum wheat (Triticum durum Desf.), two Lpx-1 genes have been identified on chromosome 4B, Lpx-B1.1 and Lpx-B1.2, and evidences have been reported that the deletion of Lpx-B1.1 is associated with a strong reduction in LOX activity in semolina. In the present study, we characterised the Lpx-B1 gene family identified in a durum wheat germplasm collection and related the distribution and expression of the Lpx-B1 genes and alleles to variations in LOX activity in the mature grains.  相似文献   

17.

Background  

Usually the reference genes used in gene expression analysis have been chosen for their known or suspected housekeeping roles, however the variation observed in most of them hinders their effective use. The assessed lack of validated reference genes emphasizes the importance of a systematic study for their identification. For selecting candidate reference genes we have developed a simple in silico method based on the data publicly available in the wheat databases Unigene and TIGR.  相似文献   

18.

Background  

By definition, amyloplasts are plastids specialized for starch production. However, a proteomic study of amyloplasts isolated from wheat (Triticum aestivum Butte 86) endosperm at 10 days after anthesis (DPA) detected enzymes from many other metabolic and biosynthetic pathways. To better understand the role of amyloplasts in food production, the data from that study were evaluated in detail and an amyloplast metabolic map was outlined.  相似文献   

19.

Background  

Wheat (Triticum aestivum L.) O-methyltransferase (TaOMT2) catalyzes the sequential methylation of the flavone, tricetin, to its 3'-methyl- (selgin), 3',5'-dimethyl- (tricin) and 3',4',5'-trimethyl ether derivatives. Tricin, a potential multifunctional nutraceutical, is the major enzyme reaction product. These successive methylations raised the question as to whether they take place in one, or different active sites. We constructed a 3-D model of this protein using the crystal structure of the highly homologous Medicago sativa caffeic acid/5-hydroxyferulic acid O-methyltransferase (MsCOMT) as a template with the aim of proposing a mechanism for multiple methyl transfer reactions in wheat.  相似文献   

20.

Background  

The Protein Disulfide Isomerase (PDI) gene family encodes several PDI and PDI-like proteins containing thioredoxin domains and controlling diversified metabolic functions, including disulfide bond formation and isomerisation during protein folding. Genomic, cDNA and promoter sequences of the three homoeologous wheat genes encoding the "typical" PDI had been cloned and characterized in a previous work. The purpose of present research was the cloning and characterization of the complete set of genes encoding PDI and PDI like proteins in bread wheat (Triticum aestivum cv Chinese Spring) and the comparison of their sequence, structure and expression with homologous genes from other plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号