首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Cell-to-cell communication (also referred to as quorum sensing) based on N-acyl-homoserine lactones (AHLs) is a widespread response to environmental change in Gram-negative bacteria. AHLs seem to be highly variable, both in terms of the acyl chain length and in the chemical structure of the radicals. Another quorum sensing pathway, the autoinducer-2-based system, is present both in Gram-positive and Gram-negative bacteria. In this study the presence of signal molecules belonging to both quorum sensing signalling pathways was analysed in the marine symbiotic species Vibrio scophthalmi.  相似文献   

2.

Background  

The infection and virulence functions of diverse plant and animal pathogens that possess quorum sensing systems are regulated by N-acylhomoserine lactones (AHLs) acting as signal molecules. AHL-acylase is a quorum quenching enzyme and degrades AHLs by removing the fatty acid side chain from the homoserine lactone ring of AHLs. This blocks AHL accumulation and pathogenic phenotypes in quorum sensing bacteria.  相似文献   

3.

Background  

Aeromonas spp. have been regarded as "emerging pathogens". Aeromonads possess multifactorial virulence and the production of many of these virulence determinants is associated with high cell density, a phenomenon that might be regulated by quorum sensing. However, only two species of the genus are reported to possess the luxRI quorum sensing gene homologs. The purpose of this study was to investigate if the luxRI homologs are universally present in the Aeromonas strains collected from various culture collections, clinical laboratories and field studies.  相似文献   

4.

Background  

Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice bacterial blight disease. Xoo produces a range of virulence factors, including EPS, extracellular enzyme, iron-chelating siderophores, and type III-secretion dependent effectors, which are collectively essential for virulence. Genetic and genomics evidence suggest that Xoo might use the diffusible signal factor (DSF) type quorum sensing (QS) system to regulate the virulence factor production. However, little is known about the chemical structure of the DSF-like signal(s) produced by Xoo and the factors influencing the signal production.  相似文献   

5.

Background  

Cell to cell signaling systems in Gram-negative bacteria rely on small diffusible molecules such as the N-acylhomoserine lactones (AHL). These compounds are involved in the production of antibiotics, exoenzymes, virulence factors and biofilm formation. They belong to the class of furanone derivatives which are frequently found in nature as pheromones, flavor compounds or secondary metabolites. To obtain more information on the relation between molecular structure and quorum sensing, we tested a variety of natural and chemically synthesized furanones for their ability to interfere with the quorum sensing mechanism using a quantitative bioassay with Chromobacterium violaceum CV026 for antagonistic and agonistic action. We were looking at the following questions:  相似文献   

6.

Background  

Only a small number of Pseudomonas putida strains possess the typical N-acyl homoserine lactone quorum sensing system (AHL QS) that consists of a modular LuxR family protein and its cognate LuxI homolog that produces the AHL signal. Moreover, AHL QS systems in P. putida strains are diverse in the type of AHLs they produce and the phenotypes that they regulate.  相似文献   

7.

Background  

Campylobacter jejunicontains a homologue of theluxSgene shown to be responsible for the production of the signalling molecule autoinducer-2 (AI-2) inVibrio harveyiandVibrio cholerae. The aim of this study was to determine whether AI-2 acted as a diffusible quorum sensing signal controllingC. jejunigene expression when it is produced at high levels during mid exponential growth phase.  相似文献   

8.

Background  

Quorum sensing is a term describing a bacterial communication system mediated by the production and recognition of small signaling molecules. The LuxS enzyme, catalyzing the synthesis of AI-2, is conserved in a wide diversity of bacteria. AI-2 has therefore been suggested as an interspecies quorum sensing signal. To investigate the role of endogenous AI-2 in protein expression of the Gram-negative pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), we performed a 2D-DIGE proteomics experiment comparing total protein extract of wildtype S. Typhimurium with that of a luxS mutant, unable to produce AI-2.  相似文献   

9.

Background  

N-acylhomoserine lactone (AHL)-based quorum sensing (QS) systems have been described in many plant-associated Gram-negative bacteria to control certain beneficial phenotypic traits, such as production of biocontrol factors and plant growth promotion. However, the role of AHL-mediated signalling in the endophytic strains of plant-associated Serratia is still poorly understood. An endophytic Serratia sp. G3 with biocontrol potential and high levels of AHL signal production was isolated from the stems of wheat and the role of QS in this isolate was determined.  相似文献   

10.

Background  

Quorum sensing is a form of cell-to-cell communication that allows bacteria to control a wide range of physiological processes in a population density-dependent manner. Production of peptide antibiotics is one of the processes regulated by quorum sensing in several species of Gram-positive bacteria, including strains of Carnobacterium maltaromaticum. This bacterium and its peptide antibiotics are of interest due to their potential applications in food preservation. The molecular bases of the quorum sensing phenomenon controlling peptide antibiotic production in C. maltaromaticum remain poorly understood. The present study was aimed at gaining a deeper insight into the molecular mechanism involved in quorum sensing-mediated regulation of peptide antibiotic (bacteriocin) production by C. maltaromaticum. We report the functional analyses of the CS (autoinducer)-CbnK (histidine protein kinase)-CbnR (response regulator) three-component regulatory system and the three regulated promoters involved in peptide antibiotic production in C. maltaromaticum LV17B.  相似文献   

11.
12.

Background  

Cell-to-cell communication (quorum sensing (QS)) co-ordinates bacterial behaviour at a population level. Consequently the behaviour of a natural multi-species community is likely to depend at least in part on co-existing QS and quorum quenching (QQ) activities. Here we sought to discover novel N -acylhomoserine lactone (AHL)-dependent QS and QQ strains by investigating a bacterial community associated with the rhizosphere of ginger (Zingiber officinale) growing in the Malaysian rainforest.  相似文献   

13.

Background  

The Burkholderia cenocepacia CepIR quorum sensing system has been shown to positively and negatively regulate genes involved in siderophore production, protease expression, motility, biofilm formation and virulence. In this study, two approaches were used to identify genes regulated by the CepIR quorum sensing system. Transposon mutagenesis was used to create lacZ promoter fusions in a cepI mutant that were screened for differential expression in the presence of N-acylhomoserine lactones. A bioinformatics approach was used to screen the B. cenocepacia J2315 genome for CepR binding site motifs.  相似文献   

14.
15.

Background  

The autoinducer-2 (AI-2) group of signalling molecules are produced by both Gram positive and Gram negative bacteria as the by-product of a metabolic transformation carried out by the LuxS enzyme. They are the only non species-specific quorum sensing compounds presently known in bacteria. The luxS gene coding for the AI-2 synthase enzyme was found in many important pathogens. Here, we surveyed its occurrence in a collection of 165 marine isolates belonging to abundant marine phyla using conserved degenerated PCR primers and sequencing of selected positive bands to determine if the presence of the luxS gene is phylogenetically conserved or dependent on the habitat.  相似文献   

16.

Background  

Secondary metabolism in Serratia sp. ATCC 39006 (Serratia 39006) is controlled via a complex network of regulators, including a LuxIR-type (SmaIR) quorum sensing (QS) system. Here we investigate the molecular mechanism by which phosphate limitation controls biosynthesis of two antibiotic secondary metabolites, prodigiosin and carbapenem, in Serratia 39006.  相似文献   

17.

Background  

LuxS may function as a metabolic enzyme or as the synthase of a quorum sensing signalling molecule, auto-inducer-2 (AI-2); hence, the mechanism underlying phenotypic changes upon luxS inactivation is not always clear. In Helicobacter pylori, we have recently shown that, rather than functioning in recycling methionine as in most bacteria, LuxS (along with newly-characterised MccA and MccB), synthesises cysteine via reverse transsulphuration. In this study, we investigated whether and how LuxS controls motility of H. pylori, specifically if it has its effects via luxS-required cysteine metabolism or via AI-2 synthesis only.  相似文献   

18.

Background  

To date, only few compounds targeting the AI-2 based quorum sensing (QS) system are known. In the present study, we screened cinnamaldehyde and substituted cinnamaldehydes for their ability to interfere with AI-2 based QS. The mechanism of QS inhibition was elucidated by measuring the effect on bioluminescence in several Vibrio harveyi mutants. We also studied in vitro the ability of these compounds to interfere with biofilm formation, stress response and virulence of Vibrio spp. The compounds were also evaluated in an in vivo assay measuring the reduction of Vibrio harveyi virulence towards Artemia shrimp.  相似文献   

19.

Background

Quorum sensing is a term that describes an environmental sensing system that allows bacteria to monitor their own population density which contributes significantly to the size and development of the biofilm. Many gram negative bacteria use N-acyl-homoserine lactones as quorum sensing signal molecules. In this study, we sought to find out if the biofilm formation among clinical isolates of Acinetobacter spp. is under the control of autoinducing quorum sensing molecules.

Methodology/Principal Findings

Biofilm formation among clinical isolates of Acinetobacter spp. was assessed and the production of signal molecules were detected with Chromobacterium violaceum CV026 biosensor system. Characterisation of autoinducers was carried out by mass spectrometric analysis. We have also reported the identification of an autoinducer synthase gene, abaΙ among the isolates that produce quorum sensing signal molecules and have reported that the mutation in the abaI gene influences their biofilm forming capabilities. Using a microtitre-plate assay it was shown that 60% of the 50 Acinetobacter spp. isolates significantly formed biofilms. Further detection with the biosensor strain showed that some of these isolates produced long chain signal molecules. Mass spectrometric analysis revealed that five of these isolates produced N-decanoyl homoserine lactone and two isolates produced acyl-homoserine lactone with a chain length equal to C12. The abaΙ gene was identified and a tetracycline mutant of the abaΙ gene was created and the inhibition in biofilm formation in the mutant was shown.

Conclusions/Significance

These data are of great significance as the signal molecules aid in biofilm formation which in turn confer various properties of pathogenicity to the clinical isolates including drug resistance. The use of quorum sensing signal blockers to attenuate bacterial pathogenicity is therefore highly attractive, particularly with respect to the emergence of multi antibiotic resistant bacteria.  相似文献   

20.
Quorum sensing, a group behaviour coordinated by a diffusible pheromone signal and a cognate receptor, is typical of bacteria that form symbioses with plants and animals. LuxIR‐type N‐acyl L‐homoserine (AHL) quorum sensing is common in Gram‐negative Proteobacteria, and many members of this group have additional quorum‐sensing networks. The bioluminescent symbiont Vibrio fischeri encodes two AHL signal synthases: AinS and LuxI. AinS‐dependent quorum sensing converges with LuxI‐dependent quorum sensing at the LuxR regulatory element. Both AinS‐ and LuxI‐mediated signalling are required for efficient and persistent colonization of the squid host, Euprymna scolopes. The basis of the mutualism is symbiont bioluminescence, which is regulated by both LuxI‐ and AinS‐dependent quorum sensing, and is essential for maintaining a colonization of the host. Here, we used chemical and genetic approaches to probe the dynamics of LuxI‐ and AinS‐mediated regulation of bioluminescence during symbiosis. We demonstrate that both native AHLs and non‐native AHL analogues can be used to non‐invasively and specifically modulate induction of symbiotic bioluminescence via LuxI‐dependent quorum sensing. Our data suggest that the first day of colonization, during which symbiont bioluminescence is induced by LuxIR, is a critical period that determines the stability of the V. fischeri population once symbiosis is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号