首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophage recognition of ICAM-3 on apoptotic leukocytes.   总被引:1,自引:0,他引:1  
Cells undergoing apoptosis are cleared rapidly by phagocytes, thus preventing tissue damage caused by loss of plasma membrane integrity. In this study, we show that the surface of leukocytes is altered during apoptosis such that the first Ig-like domain of ICAM-3 (CD50) can participate in the recognition and phagocytosis of the apoptotic cells by macrophages. Macrophage recognition of apoptotic cell-associated ICAM-3 was demonstrated both on leukocytes and, following transfection of exogenous ICAM-3, on nonleukocytes. The change in ICAM-3 was a consistent consequence of apoptosis triggered by various stimuli, suggesting that it occurs as part of a final common pathway of apoptosis. Alteration of ICAM-3 on apoptotic cells permitting recognition by macrophages resulted in a switch in ICAM-3-binding preference from the prototypic ICAM-3 counterreceptor, LFA-1, to an alternative macrophage receptor. Using mAbs to block macrophage/apoptotic cell interactions, we were unable to obtain evidence that either the alternative ICAM-3 counterreceptor alpha d beta 2 or the apoptotic cell receptor alpha v beta 3 was involved in the recognition of ICAM-3. By contrast, mAb blockade of macrophage CD14 inhibited ICAM-3-dependent recognition of apoptotic cells. These results show that ICAM-3 can function as a phagocytic marker of apoptotic leukocytes on which it acquires altered macrophage receptor-binding activity.  相似文献   

2.
Macrophage polarization contributes to a number of human pathologies. This is exemplified for tumor-associated macrophages (TAMs), which display a polarized M2 phenotype, closely associated with promotion of angiogenesis and suppression of innate immune responses. We present evidence that induction of apoptosis in tumor cells and subsequent recognition of apoptotic debris by macrophages participates in the macrophage phenotype shift. During coculture of human primary macrophages with human breast cancer carcinoma cells (MCF-7) the latter ones were killed, while macrophages acquired an alternatively activated phenotype. This was characterized by decreased tumor necrosis factor (TNF)-alpha and interleukin (IL) 12-p70 production, but increased formation of IL-8 and -10. Alternative macrophage activation required tumor cell death because a coculture with apoptosis-resistant colon carcinoma cells (RKO) or Bcl-2-overexpressing MCF-7 cells failed to induce phenotype alterations. Interestingly, phenotype alterations were achieved with conditioned media from apoptotic tumor cells, arguing for a soluble factor. Knockdown of sphingosine kinase (Sphk) 2, but not Sphk1, to attenuate S1P formation in MCF-7 cells, restored classical macrophage responses during coculture. Furthermore, macrophage polarization achieved by tumor cell apoptosis or substitution of authentic S1P suppressed nuclear factor (NF)-kappaB signaling. These findings suggest that tumor cell apoptosis-derived S1P contributes to macrophage polarization.  相似文献   

3.
One of the key features associated with programmed cell death in many tissues is the phagocytosis of apoptotic bodies by macrophages. Removal of apoptotic cells occurs before their lysis, indicating that these cells, during the development of apoptosis, express specific surface changes recognized by macrophages. We have compared the mechanisms by which four different macrophage populations recognize apoptotic cells. Murine macrophages elicited into the peritoneal cavity with either of two different phlogistic agents were able to phagocytose apoptotic cells. This phagocytosis was inhibited by phosphatidylserine (PS), regardless of the species (human or murine) or type (lymphocyte or neutrophil) of the apoptotic cell. In contrast, the murine bone marrow macrophage, like the human monocyte-derived macrophage, utilized the vitronectin receptor, an alpha v beta 3 integrin, for the removal of apoptotic cells, regardless of their species or type. That human macrophages are capable, under some circumstances, of recognizing PS on apoptotic cells was suggested by the observation that PS liposomes inhibited phagocytosis by phorbol ester-treated THP-1 cells. These results suggest that the mechanism by which apoptotic cells are recognized and phagocytosed by macrophages is determined by the subpopulation of macrophages studied.  相似文献   

4.
The proper elimination of unwanted or aberrant cells through apoptosis and subsequent phagocytosis (apoptotic cell clearance) is crucial for normal development in all metazoan organisms. Apoptotic cell clearance is a highly dynamic process intimately associated with cell death; unengulfed apoptotic cells are barely seen in vivo under normal conditions. In order to understand the different steps of apoptotic cell clearance and to compare ''professional'' phagocytes - macrophages and dendritic cells to ''non-professional'' - tissue-resident neighboring cells, in vivo live imaging of the process is extremely valuable. Here we describe a protocol for studying apoptotic cell clearance in live Drosophila embryos. To follow the dynamics of different steps in phagocytosis we use specific markers for apoptotic cells and phagocytes. In addition, we can monitor two phagocyte systems in parallel: ''professional'' macrophages and ''semi-professional'' glia in the developing central nervous system (CNS). The method described here employs the Drosophila embryo as an excellent model for real time studies of apoptotic cell clearance.  相似文献   

5.
6.
Immunosuppression via cell-cell contact with apoptotic cells is a well studied immunological phenomenon. Although the original studies of immune repression used primary cells, which undergo spontaneous cell death or apoptosis in response to irradiation, more recent studies have relied on chemotherapeutic agents to induce apoptosis in cell lines. In this work, we demonstrate that Jurkat cells induced to die with actinomycin D suppressed inflammatory cytokine production by macrophages, whereas cells treated with etoposide did not. This immune repression mediated by actinomycin D-treated cells did not require phagocytosis or cell-cell contact and thus occurs through a different mechanism from that seen with primary apoptotic neutrophils. Moreover, cells induced to die with etoposide and then treated for a short time with actinomycin D also suppressed macrophage responses, indicating that suppression was mediated by actinomycin D independent of the mechanism of cell death. Finally, phagocytosis of actinomycin D-treated cells caused apoptosis in macrophages, and suppression could be blocked by inhibition of caspase activity in the target macrophage. Together, these data indicate that apoptotic cells act as "Trojan horses," delivering actinomycin D to engulfing macrophages. Suppression of cytokine production by macrophages is therefore due to exposure to actinomycin D from apoptotic cells and is not the result of cell-receptor interactions. These data suggest that drug-induced death may not be an appropriate surrogate for the immunosuppressive activity of apoptotic cells. Furthermore, these effects of cytotoxic drugs on infiltrating immune phagocytes may have clinical ramifications for their use as antitumor therapies.  相似文献   

7.
Apoptosis is associated with the externalization of phosphatidylserine (PS) in the plasma membrane and subsequent recognition of PS by specific macrophage receptors. Selective oxidation of PS precedes its externalization/recognition and is essential for the PS-dependent engulfment of apoptotic cells. Because etoposide is a potent and selective lipid antioxidant that does not block thiol oxidation, we hypothesized that it may affect PS externalization/recognition without affecting other features of the apoptotic program. We demonstrate herein that etoposide induced apoptosis in HL-60 cells without the concomitant peroxidation of PS and other phospholipids. HL-60 cells also failed to externalize PS in response to etoposide treatment. In contrast, oxidant (H2O2)-induced apoptosis was accompanied by PS externalization and oxidation of different phospholipids, including PS. Etoposide potentiated H2O2-induced apoptosis but completely blocked H2O2-induced PS oxidation. Etoposide also inhibited PS externalization as well as phagocytosis of apoptotic cells by J774A.1 macrophages. Integration of exogenous PS or a mixture of PS with oxidized PS in etoposide-treated HL-60 cells reconstituted the recognition of these cells by macrophages. The current data demonstrate that lipid antioxidants, capable of preventing PS peroxidation, can block PS externalization and phagocytosis of apoptotic cells by macrophages and hence dissociate PS-dependent signaling from the final common pathway for apoptosis.  相似文献   

8.
Differentiated macrophages are the resident tissue phagocytes and sentinel cells of the innate immune response. The phenotype of mature tissue macrophages represents the composite of environmental and differentiation-dependent imprinting. Phorbol-12-myristate-13-acetate (PMA) and 1,25-dihydroxyvitamin D3 (VD3) are stimuli commonly used to induce macrophage differentiation in monocytic cell lines but the extent of differentiation in comparison to primary tissue macrophages is unclear. We have compared the phenotype of the promonocytic THP-1 cell line after various protocols of differentiation utilising VD3 and PMA in comparison to primary human monocytes or monocyte-derived macrophages (MDM). Both stimuli induced changes in cell morphology indicative of differentiation but neither showed differentiation comparable to MDM. In contrast, PMA treatment followed by 5 days resting in culture without PMA (PMAr) increased cytoplasmic to nuclear ratio, increased mitochondrial and lysosomal numbers and altered differentiation-dependent cell surface markers in a pattern similar to MDM. Moreover, PMAr cells showed relative resistance to apoptotic stimuli and maintained levels of the differentiation-dependent anti-apoptotic protein Mcl-1 similar to MDM. PMAr cells retained a high phagocytic capacity for latex beads, and expressed a cytokine profile that resembled MDM in response to TLR ligands, in particular with marked TLR2 responses. Moreover, both MDM and PMAr retained marked plasticity to stimulus-directed polarization. These findings suggest a modified PMA differentiation protocol can enhance macrophage differentiation of THP-1 cells and identify increased numbers of mitochondria and lysosomes, resistance to apoptosis and the potency of TLR2 responses as important discriminators of the level of macrophage differentiation for transformed cells.  相似文献   

9.
Induction of apoptosis has been associated with a variety of exposures which result in inflammatory and fibrotic lung disorders. Macrophages are key regulatory cells in the lung; however, the role of apoptotic macrophages in those pulmonary disorders is not well characterized. In the present investigation, apoptotic macrophages were instilled into the lungs of rats to study directly the pulmonary responses to apoptotic cells. The effects of apoptotic macrophages on lung inflammation and fibrosis, as well as associated protein expression of TNF-alpha, TGF-beta, and matrix metalloproteinases (MMPs) were examined. Induction of macrophage apoptosis was carried out in vitro using a variety of known apoptosis inducers. Intratracheal administration of apoptotic macrophages (5 x 10(6) cells/rat) into the lung of rats caused an increase in pulmonary infiltration of macrophages and lung cell apoptosis 4 weeks after the treatment as indicated by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. In contrast, pulmonary instillation of saline or normal control macrophages had no effect. Histological analysis of lung sections showed collagen deposition and fibrotic lesions after apoptotic cell treatment but not in control groups. Immunohistochemical studies revealed increased expression of TNF-alpha, TGF-beta, MMP2, and MMP9 in the treatment group 4 weeks after the treatment. These results suggest a role for macrophage apoptosis in the initiation of these lung disorders. This study provides direct evidence that apoptotic macrophages can induce lung inflammation and fibrosis and that this induction may be associated with increased expression of TNF-alpha, TGF-beta, MMP2, and MMP9. Published 2002 Wiley-Liss, Inc.  相似文献   

10.
Programmed cell death (apoptosis) functions as a mechanism to eliminate unwanted or irreparably damaged cells ultimately leading to their orderly phagocytosis in the absence of calamitous inflammatory responses. Recent studies have demonstrated that the generation of free radical intermediates and subsequent oxidative stress are implicated as part of the apoptotic execution process. Oxidative stress may simply be an unavoidable yet trivial byproduct of the apoptotic machinery; alternatively, intermediates or products of oxidative stress may act as essential signals for the execution of the apoptotic program. This review is focused on the specific role of oxidative stress in apoptotic signaling, which is realized via phosphatidylserine-dependent pathways leading to recognition of apoptotic cells and their effective clearance. In particular, the mechanisms involved in selective phosphatidylserine oxidation in the plasma membrane during apoptosis and its association with disturbances of phospholipid asymmetry leading to phosphatidylserine externalization and recognition by macrophage receptors are at the center of our discussion. The putative importance of this oxidative phosphatidylserine signaling in lung physiology and disease are also discussed.  相似文献   

11.
Uncontrolled apoptosis has been associated with several pulmonary disorders; however, the molecular mechanism underlying this process and the fate of apoptotic cells in vivo are unclear. Here we show that direct administration of apoptotic cells to the lungs of rats caused pulmonary inflammation and fibrosis, as indicated by emigration of inflammatory cells to the air spaces, TNF-alpha immunoreactivity, and connective tissue accumulation, indicating a direct relationship between apoptotic cells and the observed lung pathologies. To determine how the lungs process the accumulated apoptotic cells, normal or apoptotic cells from autologous donor rats were labeled with fluorescent nanobeads and intratracheally instilled into the lungs of rats. Probe distribution and lung cell apoptosis were determined at various times over a 28-day period by confocal fluorescence microscopy and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, respectively. Labeled apoptotic cells were cleared by lung macrophages within 1 wk after the treatment. However, the total number of apoptotic cells in the lung remained high at 28 days posttreatment. The results indicate a continuous induction of secondary apoptosis by apoptotic cell instillation, which may contribute to the observed lung pathology. Analysis of lung cell apoptosis by caspase assays showed an elevation of caspase-8 but not caspase-9 in the treatment group at 28 days posttreatment, indicating involvement of the death receptor-mediated pathway in the apoptotic process. Together, our results demonstrate a direct effect of apoptotic cell accumulation on inflammatory and fibrotic pulmonary responses and the continuous induction of lung cell apoptosis by apoptotic cell instillation.  相似文献   

12.
Kurant E  Axelrod S  Leaman D  Gaul U 《Cell》2008,133(3):498-509
The removal of apoptotic cells by phagocytic neighbors is essential for metazoan development but remains poorly characterized. Here we report the discovery of a Drosophila phagocytosis receptor, Six-microns-under (SIMU), which is expressed in highly phagocytic cell types during development and required for efficient apoptotic cell clearance by glia in the nervous system and by macrophages elsewhere. SIMU is part of a conserved family of proteins that includes CED-1 and Draper (DRPR). Phenotypic analysis reveals that simu acts upstream of drpr in the same pathway and affects the recognition and engulfment of apoptotic cells, while drpr affects their subsequent degradation. SIMU strongly binds to apoptotic cells, presumably through its EMILIN-like domain, but requires no membrane anchoring, suggesting that it can function as a bridging molecule. Our study introduces an important factor in tissue-resident apoptotic clearance and underscores the prominent role of glia as "semiprofessional" phagocytes in the nervous system.  相似文献   

13.
14.
Burkitt's lymphoma (BL) is typified by frequent tumor cell apoptosis and significant macrophage infiltration. Since BL cells have an inherent tendency to undergo apoptosis at a high rate, we reasoned that macrophages in BL are functionally enhanced in at least two activities that have implications for tumor pathogenesis: 1) engulfment of apoptotic cells, an anti-inflammatory process known to suppress immune responses, and 2) production of BL cell survival factors that limit the extent of tumor cell apoptosis. In this study, we show that the microenvironment of BL is rich in the pleiotropic cytokine IL-10, which can be produced by both tumor cells and macrophages, and that IL-10-activated human macrophages have enhanced capacity to engulf apoptotic cells in vitro. This was found to be dependent on the macrophage tethering receptor of apoptotic cells, CD14. Furthermore, IL-10-activated macrophages were found to produce markedly higher levels of the B cell survival factor, B cell-activating factor of the TNF family/B lymphocyte stimulator (BAFF/BLyS) than macrophages matured in the absence of IL-10. Coculture of macrophages with BL cells further enhanced BAFF secretion. Significantly, we show that enhancement of BL cell survival by IL-10-activated macrophages is mediated by a BAFF-dependent component and that BAFF is produced at high levels by tumor-associated macrophages in situ. These results indicate that macrophages, regulated by IL-10, have the potential to promote BL pathogenesis, first, through suppression of antitumor immunity following enhanced engulfment of apoptotic tumor cells and, second, through increased production of tumor cell growth/survival factors.  相似文献   

15.
Macrophage polarization to an anti-inflammatory phenotype upon contact with apoptotic cells is a contributing hallmark to immune suppression during the late phase of sepsis. Although the peroxisome proliferator-activated receptor γ (PPARγ) supports this macrophage phenotype switch, it remains elusive how apoptotic cells activate PPARγ. Assuming that a molecule causing PPARγ activation in macrophages originates in the cell membrane of apoptotic cells we analyzed lipid rafts from apoptotic, necrotic, and living human Jurkat T cells which showed the presence of 5-lipoxygenase (5-LO) in lipid rafts of apoptotic cells only. Incubating macrophages with lipid rafts of apoptotic, but not necrotic or living cells, induced PPAR responsive element (PPRE)-driven mRuby reporter gene expression in RAW 264.7 macrophages stably transduced with a 4xPPRE containing vector. Experiments with lipid rafts of apoptotic murine EL4 T cells revealed similar results. To verify the involvement of 5-LO in activating PPARγ in macrophages, Jurkat T cells were incubated with the 5-LO inhibitor MK-866 prior to induction of apoptosis, which failed to induce mRuby expression. Similar results were obtained with lipid rafts of apoptotic EL4 T cells preexposed to the 5-LO inhibitors zileuton and CJ-13610. Interestingly, Jurkat T cells overexpressing 5-LO failed to activate PPARγ in macrophages, while their 5-LO overexpressing apoptotic counterparts did. Our results suggest that during apoptosis 5-LO gets associated with lipid rafts and synthesizes ligands that in turn stimulate PPARγ in macrophages.  相似文献   

16.
Macrophages and polymorphonuclear cells (PMNs) rapidly respond to microbial and immune inflammatory stimuli and die during these responses. We have shown earlier that many macrophage and PMN functions are compromised in x-linked immunodeficient (Xid) mice with functional deficiency in Bruton’s tyrosine kinase (Btk). We now report that Btk-deficient macrophages show enhanced susceptibility to apoptotic death on exposure to the microbial and immune inflammatory signals bacterial lipopolysaccharide (LPS) and interferon-gamma (IFNγ) in vitro. In vivo in mixed bone marrow (BM) chimeras Btk deficiency leads primarily to loss of peripheral macrophage numbers without affecting BM development, suggesting a role of inflammation-induced apoptosis in regulating macrophage life span. Surprisingly, Btk deficiency does not affect macrophage apoptosis induced by DNA damage or CD95 engagement. Reactive nitrogen and oxygen species also do not contribute to inflammation-induced apoptosis, but apoptotic process involves loss of mitochondrial potential, shows increased activation of caspase 9 and enhanced loss of Bcl-xL. The lack of pro-survival signaling through the Btk-phosphotidylinositol 3-kinase-Akt pathway, and persistent MEK signaling, lead to enhanced death in Btk-deficient macrophages only downstream of inflammatory triggers. These data underline the complex role of Btk in the regulation of macrophage survival and function.  相似文献   

17.
Efficient execution of apoptotic cell death followed by efficient clearance mediated by professional macrophages is a key mechanism in maintaining tissue homeostasis. Removal of apoptotic cells usually involves three central elements: 1) attraction of phagocytes via soluble "find me" signals, 2) recognition and phagocytosis via cell surface-presenting "eat me" signals, and 3) suppression or initiation of inflammatory responses depending on additional innate immune stimuli. Suppression of inflammation involves both direct inhibition of proinflammatory cytokine production and release of anti-inflammatory factors, which all contribute to the resolution of inflammation. In the current study, using wild-type and adenosine A(2A) receptor (A2AR) null mice, we investigated whether A2ARs, known to mediate anti-inflammatory signals in macrophages, participate in the apoptotic cell-mediated immunosuppression. We found that macrophages engulfing apoptotic cells release adenosine in sufficient amount to trigger A2ARs, and simultaneously increase the expression of A2ARs, as a result of possible activation of liver X receptor and peroxisome proliferators activated receptor δ. In macrophages engulfing apoptotic cells, stimulation of A2ARs suppresses the NO-dependent formation of neutrophil migration factors, such as macrophage inflammatory protein-2, using the adenylate cyclase/protein kinase A pathway. As a result, loss of A2ARs results in elevated chemoattractant secretion. This was evident as pronounced neutrophil migration upon exposure of macrophages to apoptotic cells in an in vivo peritonitis model. Altogether, our data indicate that adenosine is one of the soluble mediators released by macrophages that mediate engulfment-dependent apoptotic cell suppression of inflammation.  相似文献   

18.
Macrophage-derived secretory leukocyte protease inhibitor (SLPI) can be induced locally as well as systemically in response to microbial products such as LPS and lipotechoic acid. It is not known whether phagocytosis of apoptotic cells, an essential function of macrophages, can regulate expression and secretion of SLPI. In this study, we report that exposure of peritoneal macrophages of BALB/c mice or murine macrophage cell lines RAW264.7 and J774.1 to apoptotic target cells induced an elevation in SLPI secretion. Secreted SLPI retained its antichymotrypsin activity. SLPI expression in thymuses from BALB/c mice that had been injected with anti-CD3 Ab to induce apoptosis of thymocytes was also elevated both at the mRNA and protein levels. Colchicine, a microtubular inhibitor, blocked the internalization of apoptotic cells by macrophages but not SLPI secretion, suggesting that surface recognition of apoptotic cells is sufficient for the induction of SLPI. Exposure of RAW264.7 cells to apoptotic CTLL-2 cells induced both SLPI and TNF-alpha, and addition of IFN-gamma inhibited SLPI but augmented TNF-alpha production. Transfection of either the secreted or a nonsecreted form of SLPI into RAW264.7 cells led to suppression of TNF-alpha production in response to apoptotic cells. Thus, macrophages secrete an increased amount of SLPI when encountering apoptotic cells, which may help to attenuate potential inflammation during clearance of these cells.  相似文献   

19.
According to recent research on mice, less on human material, cells responsible for clearing apoptotic cells away during development are, besides non-professional phagocytes, also tissue-fixed macrophages. The aim of our work was the determination of macrophage role in the phagocytosis of apoptotic bodies in neogenous zone of human metanephros. Histologicaly normal kidneys were collected from embryos and fetuses ranging from the 8th-28th week of IUD. These tissues were routinely processed. In the first step we detected CD68+ cells by means of standard indirect three-step immunohistochemical method having used MAb NCL-CD68-KP1 (macrophage marker) to find out whether such cells are actually present. In the second step tissue sections were labelled by double-staining principle (TUNEL technique for the detection of apoptosis and above mentioned macrophage marker) to judge co-localization of these two items. The slides were observed by using immersion objective and the amount of apoptotic cells was expressed in percents. CD68+ macrophages appeared dispersely as single cells or small groups in all the ages studied. According to our results, CD68+ macrophages phagocytose 37-75% of apoptotic cells present in neogenous zone and the number of engulfed apoptotic cells increases in the 12th week of the IUD, i.e. in the early fetal period and later it merely fluctuates.  相似文献   

20.
The infection of sea bass (Dicentrarchus labrax L.) by intraperitoneal (i.p.) injection of the agent of fish pasteurellosis Photobacterium damselae subsp. piscicida resulted in the apoptosis of peritoneal neutrophils and macrophages. All the eight virulent and none of the two non-virulent strains tested exhibited apoptogenic activity. A secreted bacterial protein(s) is a likely candidate as the factor(s) responsible for this activity, since no apoptosis was induced by i.p. injected UV-killed virulent strains and the virulent culture supernatants exhibited a thermo-labile apoptogenic activity identical to that of live bacteria. The apoptotic process was characterized by the occurrence of DNA fragmentation detected by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) staining and DNA electrophoresis, and of typical ultrastructural alterations namely cell shrinkage, chromatin condensation, nuclear fragmentation and production of blebs with shedding of apoptotic bodies. In the apoptotic process induced by lethal doses of virulent bacteria or culture supernatants both peritoneal macrophages and neutrophils were extensively affected, the majority of these cells being apoptotic and reaching values around 10(7)per peritoneal cavity for each cell type at 24h post-injection. Moreover, the number of non-apoptotic macrophages was always below the initial number in the resting peritoneal cavity. Since macrophages are key cells in the elimination of both bacteria and apoptotic moribund cells and apoptotic bodies, the induction by Ph. damselae subsp. piscicida of simultaneous macrophage and neutrophil apoptosis results, on the one hand, in the destruction of the two phagocytic cell types involved in the restriction of multiplication of the bacteria and, on the other hand, in the uncontrolled progression of the apoptotic process towards secondary necrosis and eventual lysis of high numbers of moribund neutrophils and of neutrophilic apoptotic bodies, with the consequent extensive release of their highly cytotoxic components. Abundant apoptotic cells were also seen in sections of head-kidney from fish dying from experimental pasteurellosis. In contrast, no apoptosis was seen in vitro after the treatment with virulent culture supernatants of sea bass head-kidney macrophage cultures or after the treatment ex vivo of peritoneal exudate leukocytes with virulent bacteria or culture supernatants. The apoptotic process described here appears as a novel and very powerful microbial pathogenic strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号