首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anderson S 《Oecologia》1990,83(2):277-280
Summary I examined the germination characteristics of weed and outcrop populations of Crepis tectorum to test the hypothesis that the presumably more ephemeral weed habitat favors the highest levels of seed dormancy. The winter annual habit characterizing most plants of this species was reflected in a rapid germination of seeds sown in late summer. A slightly higher fraction of surface-sown seeds of weed plants delayed germination. Buried seeds of weed plants also survived better than seeds produced by plants in most outcrop populations, supporting the idea that weediness favors seed dormancy and a persistent seed bank. However, the differences in seed dormancy between the two ecotypes were small and not entirely consistent. Furthermore, high levels of seed dormancy were induced during burial in the outcrop group, suggesting that there is a potential for a dormant seed population in this habitat as well. Demographic data from one of the outcrop populations verified the presence of a large between-year seed bank. Possible environmental factors favoring seed dormancy in outcrop populations are discussed. The unusually large seeds of weedy Crepis contrasts with the relatively small difference in seed dormancy between the two ecotypes.  相似文献   

2.

Background and aims

Seed dormancy enhances fitness by preventing seeds from germinating when the probability of seedling survival and recruitment is low. The onset of physical dormancy is sensitive to humidity during ripening; however, the implications of this mechanism for seed bank dynamics have not been quantified. This study proposes a model that describes how humidity-regulated dormancy onset may control the accumulation of a dormant seed bank, and seed experiments are conducted to calibrate the model for an Australian Fabaceae, Acacia saligna. The model is used to investigate the impact of climate on seed dormancy and to forecast the ecological implications of human-induced climate change.

Methods

The relationship between relative humidity and dormancy onset was quantified under laboratory conditions by exposing freshly matured non-dormant seeds to constant humidity levels for fixed durations. The model was field-calibrated by measuring the response of seeds exposed to naturally fluctuating humidity. The model was applied to 3-hourly records of humidity spanning the period 1972–2007 in order to estimate both temporal variability in dormancy and spatial variability attributable to climatic differences among populations. Climate change models were used to project future changes in dormancy onset.

Key Results

A sigmoidal relationship exists between dormancy and humidity under both laboratory and field conditions. Seeds ripened under field conditions became dormant following very short exposure to low humidity (<20 %). Prolonged exposure at higher humidity did not increase dormancy significantly. It is predicted that populations growing in a temperate climate produce 33–55 % fewer dormant seeds than those in a Mediterranean climate; however, dormancy in temperate populations is predicted to increase as a result of climate change.

Conclusions

Humidity-regulated dormancy onset may explain observed variation in physical dormancy. The model offers a systematic approach to modelling this variation in population studies. Forecast changes in climate have the potential to alter the seed bank dynamics of species with physical dormancy regulated by this mechanism, with implications for their capacity to delay germination and exploit windows for recruitment.  相似文献   

3.
The establishment and maintenance mechanisms of pioneer communities were investigated in ruderal habitats under two disturbance regimes, frequent and infrequent cutting sites. In the infrequent cutting sites, large perennials dominated through the year and inhibited the invasion of annuals, and the perennial community succeeded to forest stage if the cutting was stopped. In the frequent cutting sites, therophytic communities of winter and summer annuals alternated by season. Fresh seeds of both winter and summer annuals are dormant, but they have different germination times and thus can share the same sites in different seasons. Wind-dispersed biennials and large perennials have nondormant seeds and easily invade the sites; however, they are unable to mature to reproductive phase due to recurrent cuttings. The therophytic species, which can complete their life-cycle in a period between cuttings, accumulate seeds in the soils and are maintained by these buried seeds (seed bank annuals) during recurrent disturbances. The seed bank is compensation for the dispersal inefficiency of seed bank annuals. After abandonment of the frequent cutting sites, the buried seeds of seed bank annuals germinate and become the first-year pioneers. Thus, seed bank annuals are not invasive colonizers but are the remnants of the ruderal weed communities before abandonment.  相似文献   

4.
The seed germination behaviour of Primula veris and Trollius europaeus , both perennial, polycarpic grassland plants was compared The species have similar-sized seeds that are dormant at dispersal Seeds buried in soil and exhumed at regular intervals showed that for both species, primary seed dormancy was overcome by cold-stratification Hence, their germination in the field should occur in spring, following dispersal, or later Seeds of P veris became dormant again in the late spring/early summer, and dormancy was broken again in the second winter Seeds of T europaeus did not exhibit such changes in dormancy
Seeds of P veris did not germinate in darkness This suggests that P veris can accumulate a persistent seed bank because buried seeds are prevented from germinating Trollius europaeus , on the other hand, germinated equally well in darkness and in light which suggests that seeds might germinate even when they are too deep in the soil for seedlings to emerge Two lines of evidence confirm this difference in seed bank behaviour (1) Primula veris was detected in the persistent seed bank of a grassland site, whereas T europaeus was not (n) After 16 months burial, 85% of the P veris seeds but only 8% of the T europaeus seeds remained viable  相似文献   

5.
BACKGROUND AND AIMS: Although a claim has been made that dormancy cycling occurs in seeds of Ipomoea lacunosa (Convolvulaceae) with physical dormancy, this would seem to be impossible since the water gap cannot be closed again after it opens (dormancy break). On the other hand, changes in sensitivity (sensitive <--> non-sensitive) to dormancy-breaking factors have been reported in seeds of Fabaceae with physical dormancy. The primary aim of the present study was to determine if sensitivity cycling also occurs in physically dormant seeds of I. lacunosa. METHODS: Treatments simulating conditions in the natural habitat of I. lacunosa were used to break seed dormancy. Storage of seeds at temperatures simulating those in spring, summer, autumn and winter were tested for their effect on sensitivity change. Seeds made non-dormant were stored dry in different temperature regimes to test for dormancy cycling. In addition, seeds collected on different dates (i.e. matured under different climatic conditions) were used to test for maternal effects on sensitivity to dormancy-breaking factors. KEY RESULTS: Sensitivity was induced by storing seeds under wet conditions and reversed by storing them under dry conditions at low (< or = 5 degrees C) or high (> or = 30 degrees C) temperatures, demonstrating that seeds of I. lacunosa can cycle between sensitive and insensitive states. Sensitive seeds required > or = 2 h at 35 degrees C on moist sand for release of dormancy. However, there is no evidence to support dormancy cycling per se. Conceptual models are proposed for sensitivity cycling and germination phenology of I. lacunosa in the field. CONCLUSIONS: Seasonal germination behaviour of physically dormant I. lacunosa seeds can be explained by sensitivity cycling but not by dormancy cycling per se. Convolvulaceae is only the second of 16 families known to contain species with physical dormancy for which sensitivity cycling has been demonstrated.  相似文献   

6.
Abstract Seed germination is dependent on the interaction between the dormancy state of a seed and the presence of favourable environmental conditions. Thus, the spectacular pulse of seedling recruitment in many Australian vegetation communities following disturbances such as fire can be attributed to changes in microsite conditions and/or the dormancy‐breaking effect of the disturbance on accumulated seed banks. Grevillea rivularis is a threatened species endemic to the area immediately above Carrington Falls in the NSW Southern Highlands. Most of the population is confined to the riparian vegetation zone in woodland and heath, and is therefore subject to periodic disturbance from fire and flood. For this species, a pulse of seedling recruitment has been recorded after fire, flood and mechanical soil disturbance. The aims of this study were to examine the density and vertical distribution of the soil‐stored seed bank and to investigate the role of heat and scarification as cues for germination of fresh and soil‐stored seed. There was a large seed bank under the canopies of established individuals (194 ± 73 seeds m?2) and most seeds were found in the 0–2 cm and leaf‐litter layers of the soil profile. The germination response of soil‐stored and fresh seed was examined using a hierarchical series of laboratory experiments. Seeds of G. rivularis showed marked dormancy polymorphism. Thirty‐six percent of soil‐stored seed germinated without treatment, whereas no untreated fresh seeds germinated. Scarification or heating caused significant germination of dormant soil‐stored seed, but only scarification resulted in germination of dormant fresh seeds. These results highlight important differences in the dormancy state of soil‐stored and fresh seed. Thus, being a riparian species in a fire‐prone environment, the dormancy mechanisms in seeds of G. rivularis suit this species to disturbance by both fire and flood.  相似文献   

7.
8.
We explore the effects of temporal variation in multiple demographic rates on the joint evolution of delayed reproduction and seed dormancy using integral projection models (IPMs). To do this, we extend the standard IPM to include a discrete state variable representing the number of seeds in the seed bank, density-dependent recruitment, and temporal variation in demography. Parameter estimates for Carlina vulgaris and Carduus nutans are obtained from long-term studies. Carlina is relatively long lived and has a short-lived seed bank, whereas most Carduus plants flower in their first year and the seed bank is long lived. Using the evolutionarily stable strategy (ESS) approach, we predict the observed flowering and germination strategies. There is excellent agreement between the predictions and the field observations. The effects of temporal variation on the joint ESS are partitioned into components arising from nonlinear averaging (systematic changes in the mean resulting from the interaction between variability and nonlinearity) and nonequilibrium dynamics (fluctuations in fitness caused by temporal variation). This shows that temporal variation can have substantial effects on the observed flowering and germination strategies and that covariance between demographic processes is important. We extend the models to include spatial population structure and assess the robustness of the results from the nonspatial models.  相似文献   

9.
Abstract Lesquerella stonensis (Brassicaceae) is an obligate winter annual endemic to a small portion of Rutherford County in the Central Basin of Tennessee, where it grows in disturbed habitats. This species forms a persistent seed bank, and seeds remain viable in the soil for at least 6 years. Seeds are dormant at maturity in May and are dispersed as soon as they ripen. Some of the seeds produced in the current year, as well as some of those in the persistent seed bank, afterripen during late spring and summer; others do not afterripen and thus remain dormant. Seeds require actual or simulated spring/summer temperatures to come out of dormancy. Germination occurs in September and October. Fully afterripened seeds germinate over a wide range of thermoperiods (15/6–35/20°C) and to a much higher percentage in light (14 h photoperiod) than in darkness. The optimum daily thermoperiod for germination was 30/15°C. Nondormant seeds that do not germinate in autumn are induced back into dormancy (secondary dormancy) by low temperatures (e.g., 5°C) during winter, and those that are dormant do not afterripen; thus seeds cannot germinate in spring. These seed dormancy/ germination characteristics of L. stonensis do not differ from those reported for some geographically widespread, weedy species of winter annuals and thus do not help account for the narrow endemism of this species.  相似文献   

10.
Aims Seed dormancy and the soil seed bank are crucial to plant regeneration strategy, especially in semiarid ecosystems with unpredictable precipitation. The aim of this study was to investigate how seed dormancy is controlled by environmental factors and how it is correlated with the soil seed bank and regeneration of the perennial legume Oxytropis racemosa, a dominant perennial herb in Mu Us Sandland of semiarid China.Methods Germination and imbibition experiments on fresh intact and scarified seeds of O. racemosa were used to identify physical dormancy (PY) in seeds of this species. Soil seed bank dynamics, timing of seedling emergence and the fate of buried seeds in the natural habitat were investigated.Important findings PY was broken by mechanical scarification or wet heat/ice water cycles but not solely by dry heat or wet heat treatment. The soil seed bank exhibited seasonal changes in the number of seeds, which was highest in September and lowest in July. Seeds buried at different sand depths gradually lost dormancy; 20–42% of the seeds remained dormant after 20 months of burial. Dormancy break occurs gradually throughout the year. Our results indicate that O. racemosa exhibits hardcoatedness heterogeneity that spreads germination of a seed cohort between seasons and years in the semiarid environment, where the amount of precipitation during the growing season is highly variable.  相似文献   

11.
BACKGROUND AND AIMS: Pathogen-seed interactions may involve a race for seed resources, so that seeds that germinate more quickly, mobilizing reserves, will be more likely to escape seed death than slow-germinating seeds. This race-for-survival hypothesis was tested for the North American seed pathogen Pyrenophora semeniperda on seeds of the annual grass Bromus tectorum, an invasive plant in North America. In this species, the seed germination rate varies as a function of dormancy status; dormant seeds germinate slowly if at all, whereas non-dormant seeds germinate quickly. METHODS: Three experimental approaches were utilized: (a) artificial inoculations of mature seeds that varied in primary dormancy status and wounding treatment; (b) naturally inoculated undispersed seeds that varied in primary dormancy status; and (c) naturally inoculated seeds from the carry-over seed bank that varied in degree of secondary dormancy, habitat of origin and seed age. KEY RESULTS: In all three approaches, seeds that germinated slowly were usually killed by the pathogen, whereas seeds that germinated quickly frequently escaped. Pyrenophora semeniperda reduced B. tectorum seed banks. Populations in drier habitats sustained 50 times more seed mortality than a population in a mesic habitat. Older carry-over seeds experienced 30 % more mortality than younger seeds. CONCLUSIONS: Given the dramatic levels of seed death and the ability of this pathogen to reduce seed carry-over, it is intriguing to consider whether P. semeniperda could be used to control B. tectorum through direct reduction of its seed bank.  相似文献   

12.
Grappin P  Bouinot D  Sotta B  Miginiac E  Jullien M 《Planta》2000,210(2):279-285
The physiological characteristics of seed dormancy in Nicotiana plumbaginifolia Viv. are described. The level of seed dormancy is defined by the delay in seed germination (i.e the time required prior to germination) under favourable environmental conditions. A wild-type line shows a clear primary dormancy, which is suppressed by afterripening, whereas an abscisic acid (ABA)-deficient mutant shows a non-dormant phenotype. We have investigated the role of ABA and gibberellic acid (GA3) in the control of dormancy maintenance or breakage during imbibition in suitable conditions. It was found that fluridone, a carotenoid biosynthesis inhibitor, is almost as efficient as GA3 in breaking dormancy. Dry dormant seeds contained more ABA than dry afterripened seeds and, during early imbibition, there was an accumulation of ABA in dormant seeds, but not in afterripened seeds. In addition, fluridone and exogenous GA3 inhibited the accumulation of ABA in imbibed dormant seeds. This reveals an important role for ABA synthesis in dormancy maintenance in imbibed seeds. Received: 31 December 1998 / Accepted: 9 July 1999  相似文献   

13.
Annual plants in unpredictable environments maintain dormant seeds to avoid extinction. Here, we present results for four desert annual species suggesting that germination rates are variable even in the absence of abiotic cues. Namely, seeds produced in a copious year had lower germination rates than seeds produced in drought years. Inspired by our data, we have extended previous bet-hedging models by including a structured seed bank. With density-dependence, the ESS (environmental stable strategy) involved a negative relationship between seed yield and subsequent germination probability. We suggest that heterogeneous germination rates are selected for by competition among seedlings after years with high seed production. In summary, our findings are suggestive of an intriguingly simple and effective mechanism that may allow annual plants to partly predict their future success.  相似文献   

14.
The germination ecology of Sideritis serrata was investigated in order to improve ex‐situ propagation techniques and management of their habitat. Specifically, we analysed: (i) influence of temperature, light conditions and seed age on germination patterns; (ii) phenology of germination; (iii) germinative response of buried seeds to seasonal temperature changes; (iv) temperature requirements for induction and breaking of secondary dormancy; (v) ability to form persistent soil seed banks; and (vi) seed bank dynamics. Freshly matured seeds showed conditional physiological dormancy, germinating at low and cool temperatures but not at high ones (28/14 and 32/18 °C). Germination ability increased with time of dry storage, suggesting the existence of non‐deep physiological dormancy. Under unheated shade‐house conditions, germination was concentrated in the first autumn. S. serrata seeds buried and exposed to natural seasonal temperature variations in the shade‐house, exhibited an annual conditional dormancy/non‐dormancy cycle, coming out of conditional dormancy in summer and re‐entering it in winter. Non‐dormant seeds were clearly induced into dormancy when stratified at 5 or 15/4 °C for 8 weeks. Dormant seeds, stratified at 28/14 or 32/18 °C for 16 weeks, became non‐dormant if they were subsequently incubated over a temperature range from 15/4 to 32/18 °C. S. serrata is able to form small persistent soil seed banks. The maximum seed life span in the soil was 4 years, decreasing with burial depth. This is the second report of an annual conditional dormancy/non‐dormancy cycle in seeds of shrub species.  相似文献   

15.
How much seed remains in the soil after a fire?   总被引:2,自引:0,他引:2  
Soil seed banks that persist after a fire are important in fire-prone habitats as they minimise the risk of decline or local extinction in plants, should the fire-free interval be less than the primary juvenile periods of the species. In two common woody plant genera (Acacia and Grevillea) in southeastern Australia, we examined the size and location of the residual seed bank after fire across areas of varying seedling densities at three locations in comparison to the distribution of seeds in the soil at an unburnt site. We found viable dormant seeds remaining in the soil after fire (evidence of residual soil seed bank). A significantly lower proportion of seeds remained in the top 5 cm of soil than at 5–10 cm or 10–15 cm soil depths, independent of seedling density or plant genus. This was due to greater germination, and possibly some seed mortality, near the soil surface. Reduced germination below 5 cm was probably due to the reduced efficacy of the fire cues that break seed dormancy, a declining ability of seeds to emerge successfully from such depths, and the lower abundance of seeds in the soil at such depths. The magnitude of the residual seed bank was similar across 0–5, 5–10 and 10–15 cm soil depths in Acacia suaveolens. For two Grevillea species, most residual seeds were at 0–5 and 5–10 cm. The residual soil seed bank in the top 10 cm of soil after fire varied across sites with estimates of 0, 19 and 27% in G. speciosa and 23, 35, and 55% in A. suaveolens. At two sites, both species had similar residual seed bank sizes, while at a third, there were large differences between the species (0–55%). The observed patterns imply that the fire-related cues that break seed dormancy generally declined with soil depth. For Acacia, seed dormancy is broken by heat shock, a fire-cue that declines with soil depth. Some 250 species (approx 15% of the fire-prone flora) in the region are thought to have dormancy broken by heat shock. For Grevillea, where seed dormancy is broken by the interaction of smoke and heat shock, at two sites, we suggest three possibilities: (i) the smoke cue declined with soil depth; (ii) both heat and smoke are obligatory for breaking seed dormancy; or (iii) the cues may be independent and additive and below the zone of soil heating, only a proportion of available seeds had dormancy broken by smoke alone. At a third site (no residual seed bank detected) the smoke cue was predicted not to have declined with soil depth. Up to 900 species (just under half the fire-prone flora) in the study region are thought to have seed dormancy broken by the interaction of heat and smoke during the passage of a fire.  相似文献   

16.
In an unpredictably changing environment, phenotypic variability may evolve as a “bet-hedging” strategy. We examine here two models for evolutionarily stable phenotype distributions resulting from stabilizing selection with a randomly fluctuating optimum. Both models include overlapping generations, either survival of adults or a dormant propagule pool. In the first model (mixed-strategies model) we assume that individuals can produce offspring with a distribution of phenotypes, in which case, the evolutionarily stable population always consists of a single genotype. We show that there is a unique evolutionarily stable strategy (ESS) distribution that does not depend on the amount of generational overlap, and that the ESS distribution generically is discrete rather than continuous; that is, there are distinct classes of offspring rather than a continuous distribution of offspring phenotypes. If the probability of extreme fluctuations in the optimum is sufficiently small, then the ESS distribution is monomorphic: a single type fitted to the mean environment. At higher levels of variability, the ESS distribution is polymorphic, and we find stability conditions for dimorphic distributions. For an exponential or similarly broad-tailed distribution of the optimum phenotype, the ESS consists of an infinite number of distinct phenotypes. In the second model we assume that an individual produces offspring with a single, genetically determined phenotype (pure-strategies model). The ESS population then contains multiple genotypes when the environmental variance is sufficiently high. However the phenotype distributions are similar to those in the mixed-strategies model: discrete, with an increasing number of distinct phenotypes as the environmental variance increases.  相似文献   

17.
Heretofore, no study has determined how germination of ingested seeds is affected by the kind (class) of dormancy nor by seed dormancy x seed size interaction. Thus, we aimed to determine the effects of seed size, kind of dormancy and their interaction on germination of defecated seeds using a meta-analysis. We collected data for 366 plant species in 97 plant families from 76 publications. In general, gut passage significantly increased germination percentage of defecated seeds by 5% compared with that of control seeds. Germination percentages of non-dormant, physiologically dormant, and morphologically/morphophysiologically dormant seeds (all water-permeable) significantly decreased after gut passage by 40, 18, and 14%, respectively, compared with control seeds (non-gut-passed). Changes in germination percentage of seeds with physical dormancy (water-impermeable) were positive, and gut passage increased germination by 69% compared with control seeds. Germination of small seeds decreased 8% after gut passage, whereas germination of both medium and large seeds increased by 18%. However, changes in germination percentage differed between categories of seed size in each class of dormancy. In physically dormant seeds, germination of all seed sizes improved after gut passage, and the magnitude of increase was higher for large than for medium and small seeds. Thus, gut passage increased germination of medium-size water-permeable seeds (physiologically dormant and morphologically/morphophysiologically dormant) more than it did for large and small seeds. However, gut-passage decreased or did not change the germination percentage of non-dormant seeds. Seed size and kind of dormancy should be included in studies on the effect of gut passage on germination.  相似文献   

18.

Background and Aims

Parkinsonia aculeata (Caesalpinaceae) is a perennial legume with seeds that have hard-seeded (physical) dormancy and are potentially very long-lived. Seed dormancy is a characteristic that can both help maximize the probability of seedling establishment and spread the risk of recruitment failure across years (bet-hedging). In this study, dormancy-release patterns are described across the diverse environments in which this species occurs in order to test whether wet heat (incubation under wet, warm-to-hot, conditions) alone can explain those patterns, and in order to determine the likely ecological role of physical dormancy across this species distribution.

Methods

A seed burial trial was conducted across the full environmental distribution of P. aculeata in Australia (arid to wet-dry tropics, uplands to wetlands, soil surface to 10 cm deep).

Key Results

Wet heat explained the pattern of dormancy release across all environments. Most seeds stored in the laboratory remained dormant throughout the trial (at least 84 %). Dormancy release was quickest for seeds buried during the wet season at relatively high rainfall, upland sites (only 3 % of seeds remained dormant after 35 d). The longest-lived seeds were in wetlands (9 % remained dormant after almost 4 years) and on the soil surface (57 % after 2 years). There was no consistent correlation between increased aridity and rate of dormancy release.

Conclusions

The results suggest that physical dormancy in P. aculeata is a mechanism for maximizing seedling establishment rather than a bet-hedging strategy. However, seed persistence can occur in environmental refuges where dormancy-release cues are weak and conditions for germination and establishment are poor (e.g. under dense vegetation or in more arid micro-environments) or unsuitable (e.g. when seeds are inundated or on the soil surface). Risks of recruitment failure in suboptimal environments could therefore be reduced by inter-year fluctuations in microclimate or seed movement.Key words: Bet-hedging, dormancy-release mechanisms, environmental refuges, legume, Parkinsonia aculeata, physical dormancy, seed bank persistence, seed burial depth, seed dormancy, tropical wetlands, wet heat, variable environment  相似文献   

19.
In fire-prone communities such as fynbos, many species rely on regeneration from seed banks in the soil. Persistent seed banks are particularly important for species with life spans shorter than the average fire cycle, in order to counter local extinction. Persistent seed banks also give potential for restoring ecosystems following disturbances such as alien plant invasion. This study investigated the seed persistence patterns of 25 perennial species, representing several growth forms and life histories, during a three-year burial. Long-term persistence (i.e., seed bank half-life exceeding two years) was found in the hard-seeded Fabaceae and Pelargonium, and the nut-fruited Proteaceae. In this group, germinability was low and dormancy increased further following burial, resulting in a highly viable, dormant seed bank after three-year's burial. A second group with potentially long-term persistent seeds includes four taxa (Pseudopentameris, Passerina, Elegia and Restio) that either have low germinability or develop secondary dormancy following burial. Dormancy in the latter group was partially countered by exposure to smoke-seed primer. Of the small-seeded species, only two Erica species with high initial dormancy had long-term persistent seed banks. The other species mostly displayed high initial germinability and short-term persistent seed banks (i.e., seed bank half-life less than two years). This group included taxa with short to medium life-spans (Syncarpha, Roella) that were expected to have long-term persistent seeds in order to buffer against local extinction following average to long fire-return intervals. We hypothesize that light may play a role in overcoming secondary dormancy in those species, and could have resulted in an underestimate for seed persistence in this study. Alternatively, those short to medium life-span species persist via inter-fire recruitment in gaps or long-distance dispersal (of the smallest seed). No correlations were found between seed persistence and seed mass or variance in seed dimensions. Nor was a correlation found between seed persistence and phenol concentration. In fynbos, seed burial of larger seeds by ants and rodents are major processes that operate in conjunction with passive burial of small seeds. Selection for persistence can be expected to operate across all seed sizes and shapes in fire-prone communities.  相似文献   

20.
The pattern of accumulation of genetic variation over time in seed banks is poorly understood. We examined the genetic structure of the aerial seed bank of Banksia hookeriana within a single 15-year-old population in fire-prone southwestern Australia, and compared genetic variation between adults and each year of a 9-year-old seed bank using amplified fragment length polymorphism (AFLP). B. hookeriana is well suited to the study of seed bank dynamics due to the canopy storage of its seeds, and because each annual crop can be identified. A total of 304 seeds from nine crop years and five maternal plants were genotyped, along with 113 plants from the adult population. Genetic variation, as assessed by the proportion of polymorphic markers (P(p)) and Shannon's index (I), increased slightly within the seed bank over time, while gene diversity (H(j)), did not change. P(p), I, and H(j) all indicated that genetic variation within the seed bank quickly approached the maximal level detected. Analysis of molecular variance revealed that less than 4% of variation could be accounted for by variation among seeds produced in different years, whereas there was greater differentiation among maternal plants (12.7%), and among individual seeds produced by different maternal plants (83.4%). With increasing population age, offspring generated each year were slightly more outbred, as indicated by an increase in the mean number of nonmaternal markers per offspring. There were no significant differences for H(j) or I between adults and the seed bank. Viability of seeds decreased with age, such that the viability of 9-year-old seeds was half that of 2-year-old seeds. These results suggest that variable fire frequencies have only limited potential to influence the amount of genetic variation stored within the seed bank of B. hookeriana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号