首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W L Peticolas 《Biochimie》1975,57(4):417-428
The Raman spectra of biological macromolecules arise from molecular vibrations of either the backbone chains or the side chains. The frequencies of the Raman bands lie in a region between 200 cm-1 and 3000 cm-1. From certain frequencies of the vibrations of the backbone chains one can determine the conformation or secondary structure of a macromolecule. Thus for polypeptides and proteins the frequencies of the Amide I and Amide III vibrations allow one to determine the averge conformation of their backbone chain. In polynucleotides and nucleic acids, the frequency of the phosphate diester stretch of the phosphate furanose chain varies between 814 cm-1 for A conformation and 790 cm-1 for B conformation. Raman spectra of the bases in nucleic acids can be used to determine base stacking and hydrogen bonding interactions. Thus Raman spectroscopy is an important tool for determining the conformation structure of proteins and nucleic acids.  相似文献   

2.
In the IR spectra, the coupling of vibrations leads to band splitting and/or bands shifting in opposite directions which provides information on the mutual orientation of groupings. From such band shifts in the range 1800 to 1500 cm-1 one can draw conclusions on the double helix formation of polynucleotides. These band shifts are caused either by vibrational coupling of stretching vibrations within pairs of base residues or by coupling of stretching vibrations with the bending (scissor) vibration of the -NH2 groups; the latter is indicated by band shifts after deuterium substitution within the amino groups. Couplings of phosphate and 1 ibose vibrations in the range 1300 to 1000 cm-1 provide information on the secondary structure of the backbone. In order to obtain information of the structure of the RNA backbone, the IR spectra of poly(ribonucleotides) were studied in neutral media in which they were single-stranded. The shift due to coupling of the band of the 2'OD bending vibration and that of the antisymmetric stretching vibration of the ether group of the ribose residue proves that ribose residues of the backbone are cross-linked via hydrogen bonds. These are formed between the 2'OD or 2'OH groups, respectively, and the O atoms of the ether group of the neighboring ribose residues. This is the reason for the difference between DNA and RNA as regards the 2'OH group. The structure formation caused by these hydrogen bonds results in a stiffening of the RNA backbone. The tendency to form these hydrogen bonds increases in the order poly (U), poly(C), poly (A). This order of secondary structure stabilization is due to an interplay between the influences of (1) the 2'OH hydrogen bonds and (2) the base residues' stacking. Furthermore, the coupling of the antisymmetric stretching vibration of the greater than PO2- groups with a vibration involving the 2'OH group can result in a doublet structure of the band at about 1240 cm-1 if cations with strong fields are present. This probably shows that these cations can turn the greater than PO2-groups-which are usually turned outward at the backbone, as shown by construction of molecular models- towards the basic residues. Thus they cause stiff monohelices which are right-handed screws.  相似文献   

3.
A Desbois  M Lutz  R Banerjee 《Biochemistry》1979,18(8):1510-1518
The low-frequency regions (150--700 cm-1) of resonance Raman (RR) spectra of various complexes of oxidized and reduced horse heart myoglobin were examined by use of 441.6-nm excitation. In this frequency range, RR spectra show 10 bands common to all myoglobin derivatives (numbered here for convenience from I to X). Relative intensities of bands IV, V, and X constitute good indicators of the doming state of the heme and, consequently, of the spin state of the iron atom. An additional band is present for several complexes (fluorometmyoglobin, hydroxymetmyoglobin, azidometmyoglobin, and oxymyoglobin). Isotopic substitutions on the exogenous ligands and of the iron atom (56Fe leads to 54Fe) allow us to assign these additional lines to the stretching vibrations of the Fe-sixth ligand bond. Similarly, bands II are assigned to stretching vibrations of the Fe-N-(pyrrole) bonds. An assignment of bands VI to stretching vibrations of the Fe-Nepsilon(proximal histidine) bonds is also proposed. Mechanisms for the resonance enhancement of the main low-frequency bands are discussed on the basis of the excitation profiles and of the dispersion curves for depolarization ratios obtained for fluorometmyoglobin and hydroxymetmyoglobin.  相似文献   

4.
The infrared spectra of three different 25-mer parallel-stranded DNAs (ps-DNA) have been studied. We have used ps-DNAs containing either exclusively dA x dT base pairs or substitution with four dG x dC base pairs and have them compared with their antiparallel-stranded (aps) reference duplexes in a conventional B-DNA conformation. Significant differences have been found in the region of the thymine C = O stretching vibrations. The parallel-stranded duplexes showed characteristic marker bands for the C2 = O2 and C4 = O4 carbonyl stretching vibrations of thymine at 1685 cm-1 and 1668 cm-1, respectively, as compared to values of 1696 cm-1 and 1663 cm-1 for the antiparallel-stranded reference duplexes. The results confirm previous studies indicating that the secondary structure in parallel-stranded DNA is established by reversed Watson--Crick base pairing of dA x dT with hydrogen bonds between N6H...O2 and N1...HN3. The duplex structure of the ps-DNA is much more sensitive to dehydration than that of the aps-DNA. Interaction with three drugs known to bind in the minor groove of aps-DNA--netropsin, distamycin A and Hoechst 33258--induces shifts of the C = O stretching vibrations of ps-DNA even at low ratio of drug per DNA base pair. These results suggest a conformational change of the ps-DNA to optimize the DNA-drug interaction. As demonstrated by excimer fluorescence of strands labeled with pyrene at the 5'-end, the drugs induce dissociation of the ps-DNA duplex with subsequent formation of imperfectly matched aps-DNA to allow the more favorable drug binding to aps-DNA. Similarly, attempts to form a triple helix of the type d(T)n.d(A)n.d(T)n with ps-DNA failed and resulted in the dissociation of the ps-DNA duplex and reformation of a triple helix based upon an aps-DNA duplex core d(T)10.d(A)10.  相似文献   

5.
Raman spectra, in the frequency region of the protein vibrations, of intact single muscle fibers of the giant barnacle are presented. Strong bands at 1521 and 1156 cm-1 in the spectra are attributed to resonance-enhanced Raman bands of membrane-bound beta-carotene. Many bands of the myofibrillar proteins are also observed, and at least three spectral features confirm that these proteins adopt a predominantly alpha-helical structure: (1) the amide I band at 1648 cm-1, (2) the weak scattering in the amide III region, and (3) a strong skeletal C-C stretching band at 939 cm-1. Deuterated fibers have also been examined in order to find the exact shape of the amide III band. The presence in the fibers of paramyosin, which is only found in catch muscles, is also apparent from the spectra.  相似文献   

6.
The X-ray crystal and molecular structure of 3,N4-ethenocytidine (comes from Cyd) has been solved and refined on counter data to R = 0.038. A detailed discussion of the base electronic structure, molecular conformation and intermolecular interactions is the starting point for a comparative analysis of the series: Cyd, epsilon Cyd, Cyd . HCll and epsilon Cyd . HCl. Protonation changes the base electronic structure and results in a completely different molecular conformation and intermolecular interactions. Etheno-bridging does not alter the molecular conformation but it also changes the intermolecular interactions.  相似文献   

7.
He—Ne激光诱变白细胞DNA的拉曼光谱研究   总被引:5,自引:0,他引:5  
报道了He—Ne激光对白细胞DNA诱变的拉曼光谱研究。He—Ne激光辐射前,白细胞DNA主链振动区域出现二条强的A,C构型特征线812cm-1和872cm-1,以及弱的B型语线1092cm-1。辐射后,A型特征线812cm-1消失,代之是与B型结构有关的二条强的语线800cm-1和1090cm-1。试验结果表明,He—Ne激光可诱变DNA构型(AM-B型)。在碱基振动区域,辐射前其拉曼谱出现强而宽的C=0伸长振动谱线1680cm-1,这是与酮基结构有关的谱线,辐射后该谱线强度大大减弱。实验结果提示,He一Ne激光有可能使碱基发生互变异构。  相似文献   

8.
Resonance Raman spectroscopy has been used to investigate the allosteric control mechanism for O2 binding in a cobalt-substituted dimeric insect hemoglobin (CTT II), which exhibits a large Bohr effect due to a pH-induced transition between two ligand affinity states. Substitution of cobalt for iron in CTT II does not modify the Bohr effect, but permits the resonance enhancement (hence the detection) of Raman lines corresponding to the vibrations of the axial ligand-cobalt bonds. Using 16O2/18O2 isotope substitution the O-O and Co-O2 stretching and the Co-O-O bending mode have been assigned to the two affinity states of this hemoglobin: v (O-O) changes from 1152 cm-1 (pH 5.5; t conformation) to about 1125 cm-1 (pH 9.5, r conformation), v (Co-O2) from 512 cm-1 (pH 5.5) to 537 cm-1 (pH 9.5) and delta (Co-O-O) from 378 cm-1 (pH 5.5) to 390 cm-1 (pH 9.5). The Co-N epsilon (His) stretching mode has also been detected changing from 313 cm-1 (pH 5.5) to 307 cm-1 (pH 9.5). For the first time, reciprocal behaviour between the Co-N epsilon and Co-O2 bonds and between the Co-O2 and the O-O bonds in an allosteric hemoglobin are demonstrated. Furthermore, the pH sensitivity of a vinyl bending mode in the range of 411-415 cm-1 has been investigated and shown also to reflect the t in equilibrium with r conformation transition.  相似文献   

9.
The 1H, 13C, 15N NMR spectra of cytidine /Cyd/, ethenocytidine /epsilon Cyd/ and their hydrochlorides /Cyd X HC1/ and /epsilon Cyd X HC1/ have been analysed to compare structural differences observed in solution with those existing in the crystalline state. The effects of ethenobridging and protonation of the hertero-aromatic base on the intramolecular stereochemistry, intermolecular interactions and electronic structure of the whole molecule are discussed on the basis of the NMR studies in DMSO solutions. Particular interest is devoted to the discussion of the conformation of the ribose ring, the presence of the intramolecular C-5'-0...H-6-C hydrogen bond, unambiguous assignment of the site of protonation, the mechanism of the 5C-H deuterium exchange in Cyd X HC1, and the intermolecular interactions in solution.  相似文献   

10.
Resonance Raman spectra of native bovine liver ferri-catalase have been obtained in the 200-1800 cm-1 region. Excitation at a series of wavelengths ranging from 406.7 to 514.5 nm has been used and gives rise to distinct sets of resonance Raman bands. Excitation within the Soret and Q-bands of the heme group produces the expected set of polarized and nonpolarized porphyrin modes, respectively. The frequencies of the porphyrin skeletal stretching bands in the 1450-1700 cm-1 region indicate that catalase contains only five-coordinate, high-spin heme groups. In addition to the porphyrin modes, bovine liver catalase exhibits bands near 1612 and 1520 cm-1 that are attributable to ring vibrations of the proximal tyrosinate that are enhanced via resonance with a proximal tyrosinate----Fe(III) change transfer transition centered near 490 nm. Similar bands have been observed in mutant hemoglobins that have tyrosinate axial ligands and in other Fe(III)-tyrosinate proteins. No resonance Raman bands have been observed that can be attributed to degraded hemes. The spectra are relatively insensitive to pH over the range of 5-10, and the same spectra are observed for catalase samples that do and do not contain tightly bound NADPH. Resonance Raman spectra of the fluoride complex exhibit porphyrin skeletal stretching modes that show it to be six coordinate, high spin, while the cyanide complex is six coordinate, low spin. Both the azide and thiocyanate complexes, however, are spin-state mixtures with the high-spin form predominant.  相似文献   

11.
Band splitting and/or bands shifting in opposite directions due to coupling of vibrations of neighboring groups observed in the infrared spectra of tRNAPhe and 23 S RNA give information on the secondary structure. The base pairing, dependent on temperature, is investigated, discussing coupling effects with the base residues' vibrations in the region 1700-1500 cm-1. The secondary structure of the backbone is studied, discussing coupling effects with vibrations in the region 1300-1000 cm-1. The 2'OH groups are cross-linked with the O atoms of the neighboring ribose residues via hydrogen bonds. Probably the greater than PO-2 groups are turned inward at the backbone, i.e. towards the base residues. The base pairs as well as the secondary structure of the backbone melt with increasing temperature and with dialysis against distilled water. The comparison of the Mg2+ and the K+ salts of the tRNAPhe shows that the changes of base pairing due to Mg2+ are small. At the backbone, however, Mg2+ favor somewhat more the discussed secondary structure than K+ does. All Mg2+ effects on secondary structure are, however, too small to explain the considerable increase in melting temperature due to Mg2+. Thus it is supposed that the rise in the melting temperature due to Mg2+ is not caused by a change in secondary but in the tertiary structure of tRNAPhe. Furthermore, the influence of Mg2+ on the secondary structure of 23 S RNA is studied. The following results are obtained: (1) The double helical regions become more compact and probably increase due to the influence of Mg2+. (2) At the backbone, Mg2+ induces strong hydrogen bonding between the 2'OH groups and the ether O atoms of neighboring ribose residues. Probably they turn the greater than PO-2 groups toward the base residues, i.e., inward at the backbone. Schulte, Morrison and Garrett found that a critical level of Mg2+ is required for binding certain proteins to rRNA (Biochemistry (1974) 13, 1032). Thus the observed conformation is probably necessary for binding these proteins.  相似文献   

12.
IR study of base stacking interactions.   总被引:1,自引:1,他引:0       下载免费PDF全文
For D2O solutions of 1,3-dimethyluracil, cytidine, caffeine, inosine and 2'-deoxyadenosine the concentration dependence of IR spectra (1800-1400 cm-1) have been found which reflects stacking association of these compounds. A method is proposed to use this data to obtain thermodynamic parameters of association and the molecular spectra in the monomer and associated forms. The homoassociation constant for 1,3-dimethyluracil was estimated as k=0.65. Stacking is shown to change radically the spectra, inducing a high-frequency shift of carbonyl vibrations and a decrease in the intensity of skeletal stretching vibration bands. This allows one to distinguish between the stacking interactions and hydrogen bonding. A conclusion is made about the considerable contribution of stacking interactions into the change of IR spectra of DNA and other polynucleotides following conformational transitions.  相似文献   

13.
Co(II) derivatives of Cu,Zn-superoxide dismutase having cobalt substituted for the copper (Co,Zn-superoxide dismutase and Co,Co-superoxide dismutase) were studied by optical and EPR spectroscopy. EPR and electronic absorption spectra of Co,Zn-superoxide dismutase are sensitive to solvent perturbation, and in particular to the presence of phosphate. This behaviour suggests that cobalt in Co,Zn-superoxide dismutase is open to solvent access, at variance with the Co(II) of the Cu,Co-superoxide dismutase, which is substituted for the Zn. Phosphate binding as monitored by optical titration is dependent on pH with an apparent pKa = 8.2. The absorption spectrum of Co,Zn-superoxide dismutase in water has three weak bands in the visible region (epsilon = 75 M-1 X cm-1 at 456 nm; epsilon = 90 M-1 X cm-1 at 520 nm; epsilon = 70 M-1 X cm-1 at 600 nm) and three bands in the near infrared region, at 790 nm (epsilon = 18 M-1 X cm-1), 916 nm (epsilon = 27 M-1 X cm-1) and 1045 nm (epsilon = 25 M-1 X cm-1). This spectrum is indicative of five-coordinate geometry. In the presence of phosphate, three bands are still present in the visible region but they have higher intensity (epsilon = 225 M-1 X cm-1 at 544 nm; epsilon = 315 M-1 X cm-1 at 575 nm; epsilon = 330 M-1 X cm-1 at 603 nm), whilst the lowest wavelength band in the near infrared region is at much lower energy, 1060 nm (epsilon = 44 M-1 X cm-1). The latter property suggests a tetrahedral coordination around the Co(II) centre. Addition of 1 equivalent of CN- gives rise to a stable Co(II) low-spin intermediate, which is characterized by an EPR spectrum with a highly rhombic line shape. Formation of this CN- complex was found to require more cyanide equivalents in the case of the phosphate adduct, suggesting that binding of phosphate may inhibit binding of other anions. Titration of the Co,Co-derivative with CN- provided evidence for magnetic interaction between the two metal centres. These results substantiate the contention that Co(II) can replace the copper of Cu,Zn-superoxide dismutase in a way that reproduces the properties of the native copper-binding site.  相似文献   

14.
Resonance Raman (RR) spectra were obtained in H2O or D2O solution for the purple intermediates of D-amino acid oxidase (DAO) with isotopically labeled substrates, i.e., [1-13C]-, [2-13C]-, [3-13C]-, [15N]-, and [3,3,3-D3]alanine; [carboxyl-13C]- and [15N]proline. RR spectra were also measured for the intermediates of DAO reconstituted with isotopically labeled FAD's, i.e., [4a-13C]-, [4,10a-13C2]-, [2-13C]-, [5-15N]-, and [1,3-15N2]FAD in D2O. The isotopic shift of the 1692 cm-1 band upon [15N]- or [2-13C]-substitution of alanine indicates that the band is due to the C = N stretching mode of an imino acid derived from D-alanine, i.e., alpha-iminopropionate. The 1658 cm-1 band with D-proline was also assigned to the C = N stretching mode of an imino acid derived from D-proline, i.e., delta 1-pyrrolidine-2-carboxylate, since the band shifts to 1633 cm-1 upon [15N]-substitution and its stretching frequency is generally found in this frequency region. Since the band shifts to low frequency in D2O, the imino acid should have a protonated imino group such as the C = N+1H form. The intense band at 1363 cm-1 with D-alanine was assigned to a mixing of the CO2- symmetric stretching and CH3 symmetric deformation modes in alpha-iminopropionate, based on the isotope effects. The 1359 cm-1 band with D-proline has probably contributions of CO2- symmetric stretching and CH2 wagging, considering the isotope effects with [carboxyl-13C]proline. The 1359 cm-1 band with D-proline was split into 1371 cm-1 and 1334 cm-1 bands in D2O. As this splitting of the 1359 cm-1 band with D-proline in D2O can not be interpreted only by the replacement of the C = N+1-H proton by deuterium, the carboxylate of the imino acid probably interacts with the enzyme through some proton(s) exchangeable by deuterium(s) in D2O. The bands around 1605 cm-1 which shift upon [4a-13C]- and [4,10a-13C2]-labeling of FAD are derived from a fully reduced flavin, because the isotopic shifts of the band are very different from those of the bands of oxidized or semiquinoid flavin observed near 1605 cm-1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Noguchi T  Kurreck J  Inoue Y  Renger G 《Biochemistry》1999,38(15):4846-4852
FTIR difference spectra due to light-induced formation were measured in control PS II membrane fragments and in samples where the magnetic interaction with the non-heme iron center in its high-spin Fe2+ state is eliminated by three different methods, i.e., extraction of the non-heme iron center, treatment with cyanide, and incubation at high pH (pH = 11). The results obtained reveal that (i) the most pronounced band at 1479 cm-1 reflecting the C../--O stretching mode of in the semiquinone anion radical remains invariant to "iron depletion" while it shifts by 4 and 2 cm-1 to lower frequencies upon cyanide and high pH treatments, respectively, (ii) peaks observed in the 2600-3000 cm-1 region which arise from Fermi resonance of harmonics and combinations of the imidazole ring modes with the hydrogen-bonding NH stretching vibrations are not affected upon iron depletion but are lost in cyanide and high pH-treated samples, and (iii) all three treatments give rise to some similar changes in the amide I bands of the protein backbones and in imidazole ring modes of the coupled histidine. These results show that the hydrogen-bonding interaction of is virtually unaffected upon non-heme iron depletion; in particular, the strong hydrogen bond between QA and a histidine side chain (most likely His 215 of the D2 subunit) is not changed. In marked contrast, drastic changes take place in the hydrogen bonding between QA and His upon CN- and high pH treatments. The straightforward interpretation is that the hydrogen bond is lost upon these treatments. Despite the striking difference in the effect of hydrogen-bonding interaction, all three treatments lead to similar structural pertubations on the protein conformational changes due to formation and ring vibrations of the coupled histidine side chain. On the basis of the data presented in the study, it is inferred that, concerning the hydrogen bond interaction, the microenvironment of is close to the native state when a suitable iron depletion is performed. Accordingly, the previously reported conclusion on the hydrogen-bonding pattern of in PS II [MacMillan, F., Lendzian, F., Renger, G., and Lubitz, W. (1995) Biochemistry 34, 8144-8156] studied by using iron-depleted preparations most likely reflects the situation in an intact PS II.  相似文献   

16.
Peng Y  Wu P  Siesler HW 《Biomacromolecules》2003,4(4):1041-1044
In the present contribution, two-dimensional ATR-FTIR spectroscopy was used to study the diffusion of water in poly(epsilon-caprolactone) (PCL). In the spectral region of the nu(OH) stretching vibration of water, four absorption bands (3635, 3560, 3411, and 3220 cm(-1)) can be identified. The higher wavenumber band pair at 3635 and 3560 cm(-1) is assigned to the antisymmetric and symmetric OH stretching vibrations, respectively, of water which is partially hydrogen-bonded to the carbonyl groups of PCL, whereas the lower frequency band pair at 3411 (antisymmetric) and 3220 cm(-1) (symmetric) is attributed to the OH stretching vibrations of bulk water which is fully hydrogen-bonded to other water molecules. From the asynchronous map of a 2D correlation analysis of spectra recorded during the diffusion of water into PCL, it was concluded that during the diffusion process the water molecules first penetrate into the free volume (microvoids) of the PCL matrix or are molecularly dispersed in the polymer matrix and then form hydrogen bonds with the C=O groups of the polymer.  相似文献   

17.
Resonance Raman analysis of the Pr and Pfr forms of phytochrome   总被引:4,自引:0,他引:4  
S P Fodor  J C Lagarias  R A Mathies 《Biochemistry》1990,29(50):11141-11146
Resonance Raman vibrational spectra of the Pr and Pfr forms of oat phytochrome have been obtained at room temperature. When Pr is converted to Pfr, new bands appear in the C = C and C = N stretching region at 1622, 1599, and 1552 cm-1, indicating that a major structural change of the chromophore has occurred. The Pr to Pfr conversion results in an 11 cm-1 lowering of the N-H rocking band from 1323 to 1312 cm-1. Normal mode calculations correlate this frequency drop with a Z----E isomerization about the C15 = C16 bond. A line at 803 cm-1 in Pr is replaced by an unusually intense mode at 814 cm-1 in Pfr. Calculations on model tetrapyrrole chromophores suggest that these low-wavenumber modes are hydrogen out-of-plane (HOOP) wagging vibrations of the bridging C15 methine hydrogen and that both the intensity and frequency of the C15 HOOP mode are sensitive to the geometry around the C14-C15 and C15 = C16 bonds. The large intensity of the 814-cm-1 mode in Pfr indicates that the chromophore is highly distorted from planarity around the C15 methine bridge. If the Pr----Pfr conversion does involve a C15 = C16 Z----E isomerization, then the intensity of the C15 HOOP mode in Pfr argues that the chromophore has an E,anti conformation. On the basis of a comparison with the vibrational calculations, the low frequency (803 cm-1) and the reduced intensity of the C15 HOOP mode in Pr suggest that the chromophore in Pr adopts the C15-Z,syn conformation.  相似文献   

18.
Resonance Raman (RR) spectra of the complex of anionic semiquinoid D-amino acid oxidase (DAO) with picolinate in H2O and D2O were observed in the 300-1,750 cm-1 region. RR spectra were also measured for the complex of the semiquinoid enzyme reconstituted with isotopically labeled FAD's, i.e., [4a-13C]-, [4,10a-13C2]-, [2-13C]-, [5-15N]-, and [1,3-15N2]-FAD. On the basis of the isotope effects, tentative assignments of the observed bands of the anionic semiquinoid flavin were made. The spectra differ from those of oxidized, neutral semiquinoid, and anionic reduced flavins previously reported. The 1,602 cm-1 band was not shifted for any FAD labeled in ring II and/or ring III and was assigned to a ring I mode. The 1,516 cm-1 band underwent an isotopic shift upon [4a-13C]- or [4,10a-13C2]-labeling. The band was assigned to the mode containing C(4a)-C(10a) stretching. The 1,331 and 1,292 cm-1 bands shifted upon [4a-13C]- or [5-15N]-labeling and were assigned to the modes containing C(4a)-N(5) stretching. The 1,217 and 1,188 cm-1 bands were assigned to the skeletal vibrations of ring III coupled with the N(3)-H bending mode. The RR spectrum of the complex of anionic semiquinoid DAO with alpha-iminopropionate or N-methyl-alpha-iminopropionate was essentially identical with that of the complex with picolinate.  相似文献   

19.
Time-resolved vibrational spectra are used to elucidate the structural changes in the retinal chromophore within the K-590 intermediate that precedes the formation of the L-550 intermediate in the room-temperature (RT) bacteriorhodopsin (BR) photocycle. Measured by picosecond time-resolved coherent anti-Stokes Raman scattering (PTR/CARS), these vibrational data are recorded within the 750 cm-1 to 1720 cm-1 spectral region and with time delays of 50-260 ns after the RT/BR photocycle is optically initiated by pulsed (< 3 ps, 1.75 nJ) excitation. Although K-590 remains structurally unchanged throughout the 50-ps to 1-ns time interval, distinct structural changes do appear over the 1-ns to 260-ns period. Specifically, comparisons of the 50-ps PTR/CARS spectra with those recorded with time delays of 1 ns to 260 ns reveal 1) three types of changes in the hydrogen-out-of-plane (HOOP) region: the appearance of a strong, new feature at 984 cm-1; intensity decreases for the bands at 957 cm-1, 952 cm-1, and 939 cm-1; and small changes intensity and/or frequency of bands at 855 cm-1 and 805 cm-1; and 2) two types of changes in the C-C stretching region: the intensity increase in the band at 1196 cm-1 and small intensity changes and/or frequency shifts for bands at 1300 cm-1 and 1362 cm-1. No changes are observed in the C = C stretching region, and no bands assignable to the Schiff base stretching mode (C = NH+) mode are found in any of the PTR/CARS spectra assignable to K-590. These PTR/CARS data are used, together with vibrational mode assignments derived from previous work, to characterize the retinal structural changes in K-590 as it evolves from its 3.5-ps formation (ps/K-590) through the nanosecond time regime (ns/K-590) that precedes the formation of L-550. The PTR/CARS data suggest that changes in the torsional modes near the C14-C15 = N bonds are directly associated with the appearance of ns/K-590, and perhaps with the KL intermediate proposed in earlier studies. These vibrational data can be primarily interpreted in terms of the degree of twisting of the C14-C15 retinal bond. Such twisting may be accompanied by changes in the adjacent protein. Other smaller, but nonetheless clear, spectral changes indicate that alterations along the retinal polyene chain also occur. The changes in the retinal structure are preliminary to the deprotonation of the Schiff base nitrogen during the formation of M-412. The time constant for the ps/ns K-590 transformation is estimated from the amplitude change of four vibrational bands in the HOOP region to be 40-70 ns.  相似文献   

20.
7,7,8,8-Tetracyanoquinodimethane (TCNQ) was incorporated in fully hydrated liposomes of the following pyrene-containing as well as non-labelled phospholipids: 1-palmitoyl-2-[10-(pyren-1-yl)decanoyl]-sn-glycero-3-phosphatid ylc holine (PPDPC), 1-palmitoyl-2-[10-(pyren-1-yl)decanoyl]-sn-glycero-3-phosphatidyl- rac'- glycerol (rac'-PPDPG), 1-palmitoyl-2-[10-(pyren-1-yl)decanoyl]-sn-glycero-3-phosphatidyl- sn-3'- glycerol (3'-PPDPG), 1-[10-(pyren-1-yl)decanoyl]-2-palmitoyl-sn-glycero-3-phosphatidyl- sn-3'- glycerol (3'-PDPPG), 1-[10-pyren-1-yl)decanoyl]-2-palmitoyl-sn-glycero-3-phosphatidyl-s n-1'- glycerol (1'-PDPPG), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidyl-rac'-glycerol (rac'-DPPG). Lyophilized charge-transfer (CT) complexes of TCNQ with phospholipids were examined by Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS). Due to the spectral changes observed in the vibrational bands originating from the CH2 and C = O stretching vibrations, and the bands associated with the polar headgroup of the phospholipids it is evident that TCNQ has only a minor perturbing effect on the hydrocarbon chains. However, the molecular interaction between TCNQ and phospholipids is seen in the polar headgroup region. The donated electrons are most likely located on the oxygens of the phosphate group in the polar head. As judged from the present infrared data interactions of TCNQ with phosphatidylcholines (PC) and phosphatidylglycerols (PG) differ. For PG the complex formation produces a second strong C = O stretching band at approx. 1710 cm-1 in addition to the band at approx. 1735 cm-1 indicating a specific molecular interaction in the interfacial region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号