首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The core protein of glypican-1, a glycosylphosphatidylinositol-linked heparan sulfate proteoglycan, can bind Cu(II) or Zn(II) ions and undergo S-nitrosylation in the presence of nitric oxide. Cu(II)-to-Cu(I)-reduction supports extensive and permanent nitrosothiol formation, whereas Zn(II) ions appear to support a more limited, possibly transient one. Ascorbate induces release of nitric oxide, which catalyzes deaminative degradation of the heparan sulfate chains on the same core protein. Although free Zn(II) ions support a more limited degradation, Cu(II) ions support a more extensive self-pruning process. Here, we have investigated processing of glypican-1 in rat C6 glioma cells and the possible participation of the copper-containing glycosylphosphatidylinositol-linked splice variant of ceruloplasmin in nitrosothiol formation. Confocal microscopy demonstrated colocalization of glypican-1 and ceruloplasmin in endosomal compartments. Ascorbate induced extensive, Zn(II)-supported heparan sulfate degradation, which could be demonstrated using a specific zinc probe. RNA interference silencing of ceruloplasmin expression reduced the extent of Zn(II)-supported degradation. In cell-free experiments, the presence of free Zn(II) ions prevented free Cu(II) ion from binding to glypican-1 and precluded extensive heparan sulfate autodegradation. However, in the presence of Cu(II)-loaded ceruloplasmin, heparan sulfate in Zn(II)-loaded glypican-1 underwent extensive, ascorbate-induced degradation. We propose that the Cu(II)-to-Cu(I)-reduction that is required for S-nitrosylation of glypican-1 can take place on ceruloplasmin and thereby ensure extensive glypican-1 processing in the presence of free Zn(II) ions.  相似文献   

2.
Copper-dependent co-internalization of the prion protein and glypican-1   总被引:1,自引:0,他引:1  
Heparan sulfate chains have been found to be associated with amyloid deposits in a number of diseases including transmissible spongiform encephalopathies. Diverse lines of evidence have linked proteoglycans and their glycosaminoglycan chains, and especially heparan sulfate, to the metabolism of the prion protein isoforms. Glypicans are a family of glycosylphosphatidylinositol-anchored, heparan sulfate-containing, cell-associated proteoglycans. Cysteines in glypican-1 can become nitrosylated by endogenously produced nitric oxide. When glypican-1 is exposed to a reducing agent, such as ascorbate, nitric oxide is released and autocatalyses deaminative cleavage of heparan sulfate chains. These processes take place while glypican-1 recycles via a non-classical, caveolin-associated pathway. We have previously demonstrated that prion protein provides the Cu2+ ions required to nitrosylate thiol groups in the core protein of glypican-1. By using confocal immunofluorescence microscopy and immunomagnetic techniques, we now show that copper induces co-internalization of prion protein and glypican-1 from the cell surface to perinuclear compartments. We find that prion protein is controlling both the internalization of glypican-1 and its nitric oxide-dependent autoprocessing. Silencing glypican-1 expression has no effect on copper-stimulated prion protein endocytosis, but in cells expressing a prion protein construct lacking the copper binding domain internalization of glypican-1 is much reduced and autoprocessing is abrogated. We also demonstrate that heparan sulfate chains of glypican-1 are poorly degraded in prion null fibroblasts. The addition of either Cu2+ ions, nitric oxide donors, ascorbate or ectopic expression of prion protein restores heparan sulfate degradation. These results indicate that the interaction between glypican-1 and Cu2+-loaded prion protein is required both for co-internalization and glypican-1 self-pruning.  相似文献   

3.
Copper are generally bound to proteins, e.g. the prion and the amyloid beta proteins. We have previously shown that copper ions are required to nitrosylate thiol groups in the core protein of glypican-1, a heparan sulfate-substituted proteoglycan. When S-nitrosylated glypican-1 is then exposed to an appropriate reducing agent, such as ascorbate, nitric oxide is released and autocatalyzes deaminative cleavage of the glypican-1 heparan sulfate side chains at sites where the glucosamines are N-unsubstituted. These processes take place in a stepwise manner, whereas glypican-1 recycles via a caveolin-1-associated pathway where copper ions could be provided by the prion protein. Here we show, by using both biochemical and microscopic techniques, that (a) the glypican-1 core protein binds copper(II) ions, reduces them to copper(I) when the thiols are nitrosylated and reoxidizes copper(I) to copper(II) when ascorbate releases nitric oxide; (b) maximally S-nitrosylated glypican-1 can cleave its own heparan sulfate chains at all available sites in a nitroxyl ion-dependent reaction; (c) free zinc(II) ions, which are redox inert, also support autocleavage of glypican-1 heparan sulfate, probably via transnitrosation, whereas they inhibit copper(II)-supported degradation; and (d) copper(II)-loaded but not zinc(II)-loaded prion protein or amyloid beta peptide support heparan sulfate degradation. As glypican-1 in prion null cells is poorly S-nitrosylated and as ectopic expression of cellular prion protein restores S-nitrosylation of glypican-1 in these cells, we propose that one function of the cellular prion protein is to deliver copper(II) for the S-nitrosylation of recycling glypican-1.  相似文献   

4.
Cell surface heparan sulfate proteoglycans facilitate uptake of growth-promoting polyamines (Belting, M., Borsig, L., Fuster, M. M., Brown, J. R., Persson, L., Fransson, L.-A., and Esko, J. D. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 371-376). Increased polyamine uptake correlates with an increased number of positively charged N-unsubstituted glucosamine units in the otherwise polyanionic heparan sulfate chains of glypican-1. During intracellular recycling of glypican-1, there is an NO-dependent deaminative cleavage of heparan sulfate at these glucosamine units, which would eliminate the positive charges (Ding, K., Sandgren, S., Mani, K., Belting, M., and Fransson, L.-A. (2001) J. Biol. Chem. 276, 46779-46791). Here, using both biochemical and microscopic techniques, we have identified and isolated S-nitrosylated forms of glypican-1 as well as slightly charged glypican-1 glycoforms containing heparan sulfate chains rich in N-unsubstituted glucosamines. These glycoforms were converted to highly charged species upon treatment of cells with 1 mm l-ascorbate, which releases NO from nitrosothiols, resulting in deaminative cleavage of heparan sulfate at the N-unsubstituted glucosamines. S-Nitrosylation and subsequent deaminative cleavage were abrogated by inhibition of a Cu(2+)/Cu(+) redox cycle. Under cell-free conditions, purified S-nitrosylated glypican-1 was able to autocleave its heparan sulfate chains when NO release was triggered by l-ascorbate. The heparan sulfate fragments generated in cells during this autocatalytic process contained terminal anhydromannose residues. We conclude that the core protein of glypican-1 can slowly accumulate NO as nitrosothiols, whereas Cu(2+) is reduced to Cu(+). Subsequent release of NO results in efficient deaminative cleavage of the heparan sulfate chains attached to the same core protein, whereas Cu(+) is oxidized to Cu(2+).  相似文献   

5.
The monoclonal antibody 10E4, which recognizes an epitope supposed to contain N-unsubstituted glucosamine, is commonly used to trace heparan sulfate proteoglycans. It has not been fully clarified if the N-unsubstituted glucosamine is required for antibody recognition and if all heparan sulfates carry this epitope. Here we show that the epitope can contain N-unsubstituted glucosamine and that nitric oxide-generated deaminative cleavage at this residue in vivo can destroy the epitope. Studies using flow cytometry and confocal immunofluorescence microscopy of both normal and transformed cells indicated that the 10E4 epitope was partially inaccessible in the heparan sulfate chains attached to glypican-1. The 10E4 antibody recognized mainly heparan sulfate degradation products that colocalized with acidic endosomes. These sites were greatly depleted of 10E4-positive heparan sulfate on suramin inhibition of heparanase. Instead, there was increased colocalization between 10E4-positive heparan sulfate and glypican-1. When both S-nitrosylation of Gpc-1 and heparanase were inhibited, detectable 10E4 epitope colocalized entirely with glypican-1. In nitric oxide-depleted cells, there was both an increased signal from 10E4 and increased colocalization with glypican-1. In suramin-treated cells, the 10E4 epitope was destroyed by ascorbate-released nitric oxide with concomitant formation of anhydromannose-containing heparan sulfate oligosaccharides. Immunoisolation of radiolabeled 10E4-positive material from unperturbed cells yielded very little glypican-1 when compared with specifically immunoisolated glypican-1 and total proteoglycan and degradation products. The 10E4 immunoisolates were either other heparan sulfate proteoglycans or heparan sulfate degradation products.  相似文献   

6.
The key protein in Alzheimer's disease, the amyloid precursor protein (APP), is a ubiquitously expressed copper-binding glycoprotein that gives rise to the Abeta amyloid peptide. Whereas overexpression of APP results in significantly reduced brain copper levels in three different lines of transgenic mice, knock-out animals revealed increased copper levels. A provoked rise in peripheral levels of copper reduced concentrations of soluble amyloid peptides and resulted in fewer pathogenic Abeta plaques. Contradictory evidence has been provided by the efficacy of copper chelation treatment with the drug clioquinol. Using a yeast model system, we show that adding clioquinol to the yeast culture medium drastically increased the intracellular copper concentration but there was no significant effect observed on zinc levels. This finding suggests that clioquinol can act therapeutically by changing the distribution of copper or facilitating copper uptake rather than by decreasing copper levels. The overexpression of the human APP or APLP2 extracellular domains but not the extracellular domain of APLP1 decreased intracellular copper levels. The expression of a mutant APP deficient for copper binding increased intracellular copper levels several-fold. These data uncover a novel biological function for APP and APLP2 in copper efflux and provide a new conceptual framework for the formerly diverging theories of copper supplementation and chelation in the treatment of Alzheimer's disease.  相似文献   

7.
Glypican-1 is a glycosylphosphatidylinositol anchored cell surface S-nitrosylated heparan sulfate proteoglycan that is processed by nitric oxide dependent degradation of its side chains. Cell surface-bound glypican-1 becomes internalized and recycles via endosomes, where the heparan sulphate chains undergo nitric oxide and copper dependent autocleavage at N-unsubstituted glucosamines, back to the Golgi. It is not known if the S-nitrosylation occurs during biosynthesis or recycling of the protein. Here we have generated a recombinant human glypican-1 lacking the glycosylphosphatidylinositol-anchor. We find that this protein is directly secreted into the culture medium both as core protein and proteoglycan form and is not subjected to internalization and further modifications during recycling. By using SDS-PAGE, Western blotting and radiolabeling experiments we show that the glypican-1 can be S-nitrosylated. We have measured the level of S-nitrosylation in the glypican-1 core protein by biotin switch assay and find that the core protein can be S-nitrosylated in the presence of copper II ions and NO donor. Furthermore the glypican-1 proteoglycan produced in the presence of polyamine synthesis inhibitor, α-difluoromethylornithine, was endogenously S-nitrosylated and release of nitric oxide induced deaminative autocleavage of the HS side chains of glypican-1. We also show that the N-unsubstituted glucosamine residues are formed during biosynthesis of glypican-1 and that the content increased upon inhibition of polyamine synthesis. It cannot be excluded that endogenous glypican-1 can become further S-nitrosylated during recycling.  相似文献   

8.
Anhydromannose (anMan)-containing heparan sulfate (HS) derived from the proteoglycan glypican-1 is generated in endosomes by an endogenously or ascorbate-induced S-nitrosothiol-catalyzed reaction. Processing of the amyloid precursor protein (APP) and APP-like protein 2 (APLP2) by β- and γ-secretases into amyloid β (Aβ) and Aβ-like peptides also takes place in these compartments. Moreover, anMan-containing HS suppresses the formation of toxic Aβ assemblies in vitro. We showed by using deconvolution immunofluorescence microscopy with an anMan-specific monoclonal antibody as well as 35S labeling experiments that expression of APP/APLP2 is required for ascorbate-induced transport of HS from endosomes to the nucleus. Nuclear translocation was observed in wild-type mouse embryonic fibroblasts (WT MEFs), Tg2576 MEFs, and N2a neuroblastoma cells but not in APP−/− and APLP2−/− MEFs. Transfection of APP−/− cells with a vector encoding APP restored nuclear import of anMan-containing HS. In WT MEFs and N2a neuroblastoma cells exposed to β- or γ-secretase inhibitors, nuclear translocation was greatly impeded, suggesting involvement of APP/APLP2 degradation products. In Tg2576 MEFs, the β-inhibitor blocked transport, but the γ-inhibitor did not. During chase in ascorbate-free medium, anMan-containing HS disappeared from the nuclei of WT MEFs. Confocal immunofluorescence microscopy showed that they appeared in acidic, LC3-positive vesicles in keeping with an autophagosomal location. There was increased accumulation of anMan-containing HS in nuclei and cytosolic vesicles upon treatment with chloroquine, indicating that HS was degraded in lysosomes. Manipulations of APP expression and processing may have deleterious effects upon HS function in the nucleus.  相似文献   

9.
The S-nitrosylated proteoglycan glypican-1 recycles via endosomes where its heparan sulfate chains are degraded into anhydromannose-containing saccharides by NO-catalyzed deaminative cleavage. Because heparan sulfate chains can be associated with intracellular protein aggregates, glypican-1 autoprocessing may be involved in the clearance of misfolded recycling proteins. Here we have arrested and then reactivated NO-catalyzed cleavage in the absence or presence of proteasome inhibitors and analyzed the products present in endosomes or co-precipitating with proteasomes using metabolic radiolabeling and immunomagnet isolation as well as by confocal immunofluorescence microscopy. Upon reactivation of deaminative cleavage in T24 carcinoma cells, [(35)S]sulfate-labeled degradation products appeared in Rab7-positive vesicles and co-precipitated with a 20 S proteasome subunit. Simultaneous inhibition of proteasome activity resulted in a sustained accumulation of degradation products. We also demonstrated that the anhydromannose-containing heparan sulfate degradation products are detected by a hydrazide-based method that also identifies oxidized, i.e. carbonylated, proteins that are normally degraded in proteasomes. Upon inhibition of proteasome activity, pronounced colocalization between carbonyl-staining, anhydro-mannose-containing degradation products, and proteasomes was observed in both T24 carcinoma and N2a neuroblastoma cells. The deaminatively generated products that co-precipitated with the proteasomal subunit contained heparan sulfate but were larger than heparan sulfate oligosaccharides and resistant to both acid and alkali. However, proteolytic degradation released heparan sulfate oligosaccharides. In Niemann-Pick C-1 fibroblasts, where deaminative degradation of heparan sulfate is defective, carbonylated proteins were abundant. Moreover, when glypican-1 expression was silenced in normal fibroblasts, the level of carbonylated proteins increased raising the possibility that deaminative heparan sulfate degradation is involved in the clearance of misfolded proteins.  相似文献   

10.
The Alzheimer's disease βA4 amyloid precursor protein (APP) has been shown to be involved in a diverse set of biological protein precursor-like proteins (APLP1 and APLP2) belong to a superfamily of proteins that are probably functionally related. In order to characterize the cell adhesion properties of APP the brain specific isoform APP695 was purified and used to assess the binding to herparin, a structural and functional analogue of the glycosaminoglycan heparan sulfate. We show that APP binds in a time dependent and saturable manner to heparin. The salt concentration of 620 mM at which APP elutes from heparin Sepharose is greater than physiological. Tha apparent equilibrium constant for dissociation was determined to be 300 pM for APP binding to heparin Sepharose. A high affinity heparin binding site was identified within a region conversed in rodent and human APP, APLP1 and APLP2. This binding site was located between residues 316-337 of APP695 which is within the carbohydrate domain of APP. We also demonstrate an interaction between this heparin binding site and the zinc(II) binding site which is conserved in all members of the APP superfamily. We show by using an automated surface plasmon resonance biosensor (BIAcore, Pharmacia) that the affinity for heparin is increased two- to four-fold in the presence of micromolar zinc(II). The identification of zinc-enhanced binding of APP to heparin sulfate side chains of proteoglycans offers a molecular link between zinc(II), as a putative environmental toxin for Alzheimer's disease, and aggregation of amyloid βA4 protein.  相似文献   

11.
We have previously demonstrated intracellular degradation of the heparan sulfate side chains in recycling glypican-1 by heparanase and by deaminative cleavage at N-unsubstituted glucosamine with nitric oxide derived from intrinsic nitrosothiols (see Ding, K., Mani, K., Cheng, F., Belting, M. and Fransson, L.-A. (2002) J. Biol. Chem. 277, 33353-33360). To determine where and in what order events take place, we have visualized, by using confocal laser-scanning immunofluorescence microscopy, glypican-1 variants in unperturbed cells or arrested at various stages of processing. In unperturbed proliferating cells, glypican-1 was partly S-nitrosylated. Intracellular glypican-1 was enriched in endosomes, colocalized significantly with GM-1 ganglioside, caveolin-1, and Rab9-positive endosomes, and carried side chains rich in N-unsubstituted glucosamine residues. However, such residues were scarce in cell surface glypican-1. Brefeldin A-arrested glypican-1, which was non-S-nitrosylated and carried side chains rich in N-unsubstituted glucosamines, colocalized extensively with caveolin-1 but not with Rab9. Suramin, which inhibits heparanase, induced the appearance of S-nitrosylated glypican-1 in caveolin-1-rich compartments. Inhibition of deaminative cleavage did not prevent heparanase from generating heparan sulfate oligosaccharides that colocalized strongly with caveolin-1. Growth-quiescent cells displayed extensive NO-dependent deaminative cleavage of heparan sulfate-generating anhydromannose-terminating fragments that were partly associated with acidic vesicles. Proliferating cells generated such fragments during polyamine uptake. We conclude that recycling glypican-1 that is associated with caveolin-1-containing endosomes undergoes sequential N-desulfation/N-deacetylation, heparanase cleavage, S-nitrosylation, NO release, and deaminative cleavage of its side chains in conjunction with polyamine uptake.  相似文献   

12.
The Aβ-precursor protein (APP) intracellular domain is highly conserved and contains many potentially important residues, in particular the (682)YENPTY(687) motif. To dissect the functions of this sequence in vivo, we created an APP knock-in allele mutating Tyr(682) to Gly (Y682G). Crossing this allele to APP-like protein 2 (APLP2) knock-out background showed that mutation of Tyr(682) results in postnatal lethality and neuromuscular synapse defects similar to doubly deficient APP/APLP2 mice. Our results demonstrate that a single residue in the APP intracellular region, Tyr(682), is indispensable for the essential function of APP in developmental regulation.  相似文献   

13.
Heparan sulfate endosulfatases Sulf1 and Sulf2 hydrolyze 6-O-sulfate in heparan sulfate, thereby regulating cellular signaling. Previous studies have revealed that Sulfs act predominantly on UA2S-GlcNS6S disaccharides and weakly on UA-GlcNS6S disaccharides. However, the specificity of Sulfs and their role in sulfation patterning of heparan sulfate in vivo remained unknown. Here, we performed disaccharide analysis of heparan sulfate in Sulf1 and Sulf2 knock-out mice. Significant increases in ΔUA2S-GlcNS6S were observed in the brain, small intestine, lung, spleen, testis, and skeletal muscle of adult Sulf1(-/-) mice and in the brain, liver, kidney, spleen, and testis of adult Sulf2(-/-) mice. In addition, increases in ΔUA-GlcNS6S were seen in the Sulf1(-/-) lung and small intestine. In contrast, the disaccharide compositions of chondroitin sulfate were not primarily altered, indicating specificity of Sulfs for heparan sulfate. For Sulf1, but not for Sulf2, mRNA expression levels in eight organs of wild-type mice were highly correlated with increases in ΔUA2S-GlcNS6S in the corresponding organs of knock-out mice. Moreover, overall changes in heparan sulfate compositions were greater in Sulf1(-/-) mice than in Sulf2(-/-) mice despite lower levels of Sulf1 mRNA expression, suggesting predominant roles of Sulf1 in heparan sulfate desulfation and distinct regulation of Sulf activities in vivo. Sulf1 and Sulf2 mRNAs were differentially expressed in restricted types of cells in organs, and consequently, the sulfation patterns of heparan sulfate were locally and distinctly altered in Sulf1 and Sulf2 knock-out mice. These findings indicate that Sulf1 and Sulf2 differentially contribute to the generation of organ-specific sulfation patterns of heparan sulfate.  相似文献   

14.
Amyloid β (Aβ) is generated from the copper- and heparan sulfate (HS)-binding amyloid precursor protein (APP) by proteolytic processing. APP supports S-nitrosylation of the HS proteoglycan glypican-1 (Gpc-1). In the presence of ascorbate, there is NO-catalyzed release of anhydromannose (anMan)-containing oligosaccharides from Gpc-1-nitrosothiol. We investigated whether these oligosaccharides interact with Aβ during APP processing and plaque formation. anMan immunoreactivity was detected in amyloid plaques of Alzheimer (AD) and APP transgenic (Tg2576) mouse brains by immunofluorescence microscopy. APP/APP degradation products detected by antibodies to the C terminus of APP, but not Aβ oligomers detected by the anti-Aβ A11 antibody, colocalized with anMan immunoreactivity in Tg2576 fibroblasts. A 50-55-kDa anionic, sodium dodecyl sulfate-stable, anMan- and Aβ-immunoreactive species was obtained from Tg2576 fibroblasts using immunoprecipitation with anti-APP (C terminus). anMan-containing HS oligo- and disaccharide preparations modulated or suppressed A11 immunoreactivity and oligomerization of Aβ42 peptide in an in vitro assay. A11 immunoreactivity increased in Tg2576 fibroblasts when Gpc-1 autoprocessing was inhibited by 3-β[2(diethylamino)ethoxy]androst-5-en-17-one (U18666A) and decreased when Gpc-1 autoprocessing was stimulated by ascorbate. Neither overexpression of Gpc-1 in Tg2576 fibroblasts nor addition of copper ion and NO donor to hippocampal slices from 3xTg-AD mice affected A11 immunoreactivity levels. However, A11 immunoreactivity was greatly suppressed by the subsequent addition of ascorbate. We speculate that temporary interaction between the Aβ domain and small, anMan-containing oligosaccharides may preclude formation of toxic Aβ oligomers. A portion of the oligosaccharides are co-secreted with the Aβ peptides and deposited in plaques. These results support the notion that an inadequate supply of vitamin C could contribute to late onset AD in humans.  相似文献   

15.
16.
Understanding the intracellular transport of the beta-amyloid precursor protein (APP) is a major key to elucidate the regulation of APP processing and thus beta-amyloid peptide generation in Alzheimer disease pathogenesis. APP and its two paralogues, APLP1 and APLP2 (APLPs), are processed in a very similar manner by the same protease activities. A putative candidate involved in APP transport is protein interacting with APP tail 1 (PAT1), which was reported to interact with the APP intracellular domain. We show that PAT1a, which is 99.0% identical to PAT1, binds to APP, APLP1, and APLP2 in vivo and describe their co-localization in trans-Golgi network vesicles or endosomes in primary neurons. We further demonstrate a direct interaction of PAT1a with the basolateral sorting signal of APP/APLPs. Moreover, we provide evidence for a direct role of PAT1a in APP/APLP transport as overexpression or RNA interference-mediated knockdown of PAT1a modulates APP/APLPs levels at the cell surface. Finally, we show that PAT1a promotes APP/APLPs processing, resulting in increased secretion of beta-amyloid peptide. Taken together, our data establish PAT1a as a functional link between APP/APLPs transport and their processing.  相似文献   

17.
18.
Cell surface heparan sulfate proteoglycans facilitate uptake of growth-promoting polyamines (Belting, M., Persson, S., and Fransson, L.-A. (1999) Biochem. J. 338, 317-323; Belting, M., Borsig, L., Fuster, M. M., Brown, J. R., Persson, L., Fransson, L.-A., and Esko, J. D. (2001) Proc. Natl. Acad. Sci. U. S. A., in press). Here, we have analyzed the effect of polyamine deprivation on the structure and polyamine affinity of the heparan sulfate chains in various glypican-1 glycoforms synthesized by a transformed cell line (ECV 304). Heparan sulfate chains of glypican-1 were either cleaved with heparanase at sites embracing the highly modified regions or with nitrite at N-unsubstituted glucosamine residues. The products were separated and further degraded by heparin lyase to identify sulfated iduronic acid. Polyamine affinity was assessed by chromatography on agarose substituted with the polyamine spermine. In heparan sulfate made by cells with undisturbed endogenous polyamine synthesis, free amino groups were restricted to the unmodified, unsulfated segments, especially near the core protein. Spermine high affinity binding sites were located to the modified and highly sulfated segments that were released by heparanase. In cells with up-regulated polyamine uptake, heparan sulfate contained an increased number of clustered N-unsubstituted glucosamines and sulfated iduronic acid residues. This resulted in a greater number of NO/nitrite-sensitive cleavage sites near the potential spermine-binding sites. Endogenous degradation by heparanase and NO-derived nitrite in polyamine-deprived cells generated a separate pool of heparan sulfate oligosaccharides with an exceptionally high affinity for spermine. Spermine uptake in polyamine-deprived cells was reduced when NO/nitrite-generated degradation of heparan sulfate was inhibited. The results suggest a functional interplay between glypican recycling, NO/nitrite-generated heparan sulfate degradation, and polyamine uptake.  相似文献   

19.
Cell-surface heparan sulfate proteoglycans participate in molecular events that regulate cell adhesion, migration, and proliferation. The present study was performed to elucidate whether glypican-2 plays a role in interactions of neurons with midkine (MK), a heparin-binding neuroregulatory factor. MK bound to heparan sulfate chains of glypican-2 in a manner similar to syndecan-3. Microbeads coated with MK or poly-L-lysine induced clustering of glypican-2 as well as syndecan-3. Substratum-bound MK or poly-L-lysine induced cell adhesion of N2a neuroblastoma cells, while only MK promoted neurite outgrowth of these cells. Ligation of cell-surface glypican-2 with MK or an antibody against epitope-tagged glypican-2 induced cell adhesion and promoted neurite outgrowth. These results verified that cell-surface glypican-2 bound to MK and suggested that MK-glypican-2 interactions participate in neuronal cell migration and neurite outgrowth. In addition, we observed different localization of epitope-tagged glypican-2 and syndecan-3 on the surface of N2a cells; the result suggested that they may play different roles in MK-mediated neural function.  相似文献   

20.
Growing evidence shows that the soluble N-terminal form (sAPPalpha) of the amyloid precursor protein (APP) represents an epidermal growth factor fostering keratinocyte proliferation, migration and adhesion. APP is a member of a protein family including the two mammalian amyloid precursor-like proteins APLP1 and APLP2. In the mammalian epidermis, only APP and APLP2 are expressed. APP and APLP2-deficient mice die shortly after birth but do not display a specific epidermal phenotype. In this report, we investigated the epidermis of APP and/or APLP2 knockout mice. Basal keratinocytes showed reduced proliferation in vivo by about 40%. Likewise, isolated keratinocytes exhibited reduced proliferation rates in vitro, which could be completely rescued by either exogenously added recombinant sAPPalpha, or by co-culture with dermal fibroblasts derived from APP knockout mice. Moreover, APP-knockout keratinocytes revealed reduced migration velocity resulting from severely compromised cell substrate adhesion. Keratinocytes from double knockout mice died within the first week of culture, indicating essential functions of APP-family members for survival in vitro. Our data indicate that sAPPalpha has to be considered as an essential epidermal growth factor which, however, in vivo can be functionally compensated to a certain extent by other growth factors, e.g., factors released from dermal fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号