首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Cryoelectron microscopy (cryoEM) is an experimental technique to determine the three-dimensional (3D) structure of large protein complexes. Currently, this technique is able to generate protein density maps at 6-9 A resolution, at which the skeleton of the structure (which is composed of alpha-helices and beta-sheets) can be visualized. As a step towards predicting the entire backbone of the protein from the protein density map, we developed a method to predict the topology and sequence alignment for the skeleton helices. Our method combines the geometrical information of the skeleton helices with the Rosetta ab initio structure prediction method to derive a consensus topology and sequence alignment for the skeleton helices. We tested the method with 60 proteins. For 45 proteins, the majority of the skeleton helices were assigned a correct topology from one of our top ten predictions. The offsets of the alignment for most of the assigned helices were within +/-2 amino acids in the sequence. We also analyzed the use of the skeleton helices as a clustering tool for the decoy structures generated by Rosetta. Our comparison suggests that the topology clustering is a better method than a general overlap clustering method to enrich the ranking of decoys, particularly when the decoy pool is small.  相似文献   

2.

Background  

An algorithm is presented to compute a multiple structure alignment for a set of proteins and to generate a consensus (pseudo) protein which captures common substructures present in the given proteins. The algorithm represents each protein as a sequence of triples of coordinates of the alpha-carbon atoms along the backbone. It then computes iteratively a sequence of transformation matrices (i.e., translations and rotations) to align the proteins in space and generate the consensus. The algorithm is a heuristic in that it computes an approximation to the optimal alignment that minimizes the sum of the pairwise distances between the consensus and the transformed proteins.  相似文献   

3.
Following the hierarchical nature of protein folding, we propose a three-stage scheme for the prediction of a protein structure from its sequence. First, the sequence is cut to fragments that are each assigned a structure. Second, the assigned structures are combinatorially assembled to form the overall 3D organization. Third, highly ranked predicted arrangements are completed and refined. This work focuses on the second stage of this scheme: the combinatorial assembly. We present CombDock, a combinatorial docking algorithm. CombDock gets an ordered set of protein sub-structures and predicts the inter-contacts that define their overall organization. We reduce the combinatorial assembly to a graph-theory problem, and give a heuristic polynomial solution to this computationally hard problem. We applied CombDock to various examples of structural units of two types: protein domains and building blocks, which are relatively stable sub-structures of domains. Moreover, we tested CombDock using increasingly distorted input, where the native structural units were replaced by similarly folded units extracted from homologous proteins and, in the more difficult cases, from globally unrelated proteins. The algorithm is robust, showing low sensitivity to input distortion. This suggests that CombDock is a useful tool in protein structure prediction that may be applied to large target proteins.  相似文献   

4.
Three-dimensional (3D) reconstruction in single-particle cryo-electron microscopy (cryo-EM) is a significant technique for recovering the 3D structure of proteins or other biological macromolecules from their two-dimensional (2D) noisy projection images taken from unknown random directions. Class averaging in single-particle cryo-EM is an important procedure for producing high-quality initial 3D structures, where image alignment is a fundamental step. In this paper, an efficient image alignment algorithm using 2D interpolation in the frequency domain of images is proposed to improve the estimation accuracy of alignment parameters of rotation angles and translational shifts between the two projection images, which can obtain subpixel and subangle accuracy. The proposed algorithm firstly uses the Fourier transform of two projection images to calculate a discrete cross-correlation matrix and then performs the 2D interpolation around the maximum value in the cross-correlation matrix. The alignment parameters are directly determined according to the position of the maximum value in the cross-correlation matrix after interpolation. Furthermore, the proposed image alignment algorithm and a spectral clustering algorithm are used to compute class averages for single-particle 3D reconstruction. The proposed image alignment algorithm is firstly tested on a Lena image and two cryo-EM datasets. Results show that the proposed image alignment algorithm can estimate the alignment parameters accurately and efficiently. The proposed method is also used to reconstruct preliminary 3D structures from a simulated cryo-EM dataset and a real cryo-EM dataset and to compare them with RELION. Experimental results show that the proposed method can obtain more high-quality class averages than RELION and can obtain higher reconstruction resolution than RELION even without iteration.  相似文献   

5.
Even when there is agreement on what measure a protein multiple structure alignment should be optimizing, finding the optimal alignment is computationally prohibitive. One approach used by many previous methods is aligned fragment pair chaining, where short structural fragments from all the proteins are aligned against each other optimally, and the final alignment chains these together in geometrically consistent ways. Ye and Godzik have recently suggested that adding geometric flexibility may help better model protein structures in a variety of contexts. We introduce the program Matt (Multiple Alignment with Translations and Twists), an aligned fragment pair chaining algorithm that, in intermediate steps, allows local flexibility between fragments: small translations and rotations are temporarily allowed to bring sets of aligned fragments closer, even if they are physically impossible under rigid body transformations. After a dynamic programming assembly guided by these “bent” alignments, geometric consistency is restored in the final step before the alignment is output. Matt is tested against other recent multiple protein structure alignment programs on the popular Homstrad and SABmark benchmark datasets. Matt's global performance is competitive with the other programs on Homstrad, but outperforms the other programs on SABmark, a benchmark of multiple structure alignments of proteins with more distant homology. On both datasets, Matt demonstrates an ability to better align the ends of α-helices and β-strands, an important characteristic of any structure alignment program intended to help construct a structural template library for threading approaches to the inverse protein-folding problem. The related question of whether Matt alignments can be used to distinguish distantly homologous structure pairs from pairs of proteins that are not homologous is also considered. For this purpose, a p-value score based on the length of the common core and average root mean squared deviation (RMSD) of Matt alignments is shown to largely separate decoys from homologous protein structures in the SABmark benchmark dataset. We postulate that Matt's strong performance comes from its ability to model proteins in different conformational states and, perhaps even more important, its ability to model backbone distortions in more distantly related proteins.  相似文献   

6.
Electron cryo-microscopy is a fast advancing biophysical technique to derive three-dimensional structures of large protein complexes. Using this technique, many density maps have been generated at intermediate resolution such as 6-10 ? resolution. Although it is challenging to derive the backbone of the protein directly from such density maps, secondary structure elements such as helices and β-sheets can be computationally detected. Our work in this paper provides an approach to enumerate the top-ranked possible topologies instead of enumerating the entire population of the topologies. This approach is particularly practical for large proteins. We developed a directed weighted graph, the topology graph, to represent the secondary structure assignment problem. We prove that the problem of finding the valid topology with the minimum cost is NP hard. We developed an O(N(2)2(N)) dynamic programming algorithm to identify the topology with the minimum cost. The test of 15 proteins suggests that our dynamic programming approach is feasible to work with proteins of much larger size than we could before. The largest protein in the test contains 18 helical sticks detected from the density map out of 33 helices in the protein.  相似文献   

7.
MOTIVATION: Local structure segments (LSSs) are small structural units shared by unrelated proteins. They are extensively used in protein structure comparison, and predicted LSSs (PLSSs) are used very successfully in ab initio folding simulations. However, predicted or real LSSs are rarely exploited by protein sequence comparison programs that are based on position-by-position alignments. RESULTS: We developed a SEgment Alignment algorithm (SEA) to compare proteins described as a collection of predicted local structure segments (PLSSs), which is equivalent to an unweighted graph (network). Any specific structure, real or predicted corresponds to a specific path in this network. SEA then uses a network matching approach to find two most similar paths in networks representing two proteins. SEA explores the uncertainty and diversity of predicted local structure information to search for a globally optimal solution. It simultaneously solves two related problems: the alignment of two proteins and the local structure prediction for each of them. On a benchmark of protein pairs with low sequence similarity, we show that application of the SEA algorithm improves alignment quality as compared to FFAS profile-profile alignment, and in some cases SEA alignments can match the structural alignments, a feat previously impossible for any sequence based alignment methods.  相似文献   

8.
Searching for similar 3D protein structures is one of the primary processes employed in the field of structural bioinformatics. However, the computational complexity of this process means that it is constantly necessary to search for new methods that can perform such a process faster and more efficiently. Finding molecular substructures that complex protein structures have in common is still a challenging task, especially when entire databases containing tens or even hundreds of thousands of protein structures must be scanned. Graphics processing units (GPUs) and general purpose graphics processing units (GPGPUs) can perform many time-consuming and computationally demanding processes much more quickly than a classical CPU can. In this paper, we describe the GPU-based implementation of the CASSERT algorithm for 3D protein structure similarity searching. This algorithm is based on the two-phase alignment of protein structures when matching fragments of the compared proteins. The GPU (GeForce GTX 560Ti: 384 cores, 2GB RAM) implementation of CASSERT (“GPU-CASSERT”) parallelizes both alignment phases and yields an average 180-fold increase in speed over its CPU-based, single-core implementation on an Intel Xeon E5620 (2.40GHz, 4 cores). In this paper, we show that massive parallelization of the 3D structure similarity search process on many-core GPU devices can reduce the execution time of the process, allowing it to be performed in real time. GPU-CASSERT is available at: http://zti.polsl.pl/dmrozek/science/gpucassert/cassert.htm.  相似文献   

9.
A parameterized algorithm for protein structure alignment.   总被引:2,自引:0,他引:2  
This paper proposes a parameterized polynomial time approximation scheme (PTAS) for aligning two protein structures, in the case where one protein structure is represented by a contact map graph and the other by a contact map graph or a distance matrix. If the sequential order of alignment is not required, the time complexity is polynomial in the protein size and exponential with respect to two parameters D(u)/D(l) and D(c)/D(l), which usually can be treated as constants. In particular, D(u) is the distance threshold determining if two residues are in contact or not, D(c) is the maximally allowed distance between two matched residues after two proteins are superimposed, and D(l) is the minimum inter-residue distance in a typical protein. This result clearly demonstrates that the computational hardness of the contact map based protein structure alignment problem is related not to protein size but to several parameters modeling the problem. The result is achieved by decomposing the protein structure using tree decomposition and discretizing the rigid-body transformation space. Preliminary experimental results indicate that on a Linux PC, it takes from ten minutes to one hour to align two proteins with approximately 100 residues.  相似文献   

10.
Prediction of the 3D structure greatly benefits from the information related to secondary structure, solvent accessibility, and nonlocal contacts that stabilize a protein's structure. We address the problem of \beta-sheet prediction defined as the prediction of \beta--strand pairings, interaction types (parallel or antiparallel), and \beta-residue interactions (or contact maps). We introduce a Bayesian approach for proteins with six or less \beta-strands in which we model the conformational features in a probabilistic framework by combining the amino acid pairing potentials with a priori knowledge of \beta-strand organizations. To select the optimum \beta-sheet architecture, we significantly reduce the search space by heuristics that enforce the amino acid pairs with strong interaction potentials. In addition, we find the optimum pairwise alignment between \beta-strands using dynamic programming in which we allow any number of gaps in an alignment to model \beta-bulges more effectively. For proteins with more than six \beta-strands, we first compute \beta-strand pairings using the BetaPro method. Then, we compute gapped alignments of the paired \beta-strands and choose the interaction types and \beta--residue pairings with maximum alignment scores. We performed a 10-fold cross-validation experiment on the BetaSheet916 set and obtained significant improvements in the prediction accuracy.  相似文献   

11.
12.
MOTIVATION: Existing algorithms for automated protein structure alignment generate contradictory results and are difficult to interpret. An algorithm which can provide a context for interpreting the alignment and uses a simple method to characterize protein structure similarity is needed. RESULTS: We describe a heuristic for limiting the search space for structure alignment comparisons between two proteins, and an algorithm for finding minimal root-mean-squared-distance (RMSD) alignments as a function of the number of matching residue pairs within this limited search space. Our alignment algorithm uses coordinates of alpha-carbon atoms to represent each amino acid residue and requires a total computation time of O(m(3) n(2)), where m and n denote the lengths of the protein sequences. This makes our method fast enough for comparisons of moderate-size proteins (fewer than approximately 800 residues) on current workstation-class computers and therefore addresses the need for a systematic analysis of multiple plausible shape similarities between two proteins using a widely accepted comparison metric.  相似文献   

13.
The problem of finding an optimal structural alignment for a pair of superimposed proteins is often amenable to the Smith-Waterman dynamic programming algorithm, which runs in time proportional to the product of lengths of the sequences being aligned. While the quadratic running time is acceptable for computing a single alignment of two fixed protein structures, the time complexity becomes a bottleneck when running the Smith-Waterman routine multiple times in order to find a globally optimal superposition and alignment of the input proteins. We present a subquadratic running time algorithm capable of computing an alignment that optimizes one of the most widely used measures of protein structure similarity, defined as the number of pairs of residues in two proteins that can be superimposed under a predefined distance cutoff. The algorithm presented in this article can be used to significantly improve the speed-accuracy tradeoff in a number of popular protein structure alignment methods.  相似文献   

14.
We present the projection structures of the three outer membrane porins KdgM and KdgN from Erwinia chrysanthemi and NanC from Escherichia coli, based on 2D electron crystallography. A wide screening of 2D crystallization conditions yielded tubular crystals of a suitable size and quality to perform high-resolution electron microscopy. Data processing of untilted samples allowed us to separate the information of the two crystalline layers and resulted in projection maps to a resolution of up to 7 Å. All three proteins exhibit a similar putative β-barrel structure and the three crystal forms have the same symmetry. However, there are differences in the packing arrangements of the monomers as well as the densities of the projections. To interpret these projections, secondary structure prediction was performed using β-barrel specific prediction algorithms. The predicted transmembrane β-barrels have a high similarity in the arrangement of the putative β-strands and the loops, but do not match those of OmpG, a related protein porin whose structure was solved.  相似文献   

15.
The prediction of the protein tertiary structure from solely its residue sequence (the so called Protein Folding Problem) is one of the most challenging problems in Structural Bioinformatics. We focus on the protein residue contact map. When this map is assigned it is possible to reconstruct the 3D structure of the protein backbone. The general problem of recovering a set of 3D coordinates consistent with some given contact map is known as a unit-disk-graph realization problem and it has been recently proven to be NP-Hard. In this paper we describe a heuristic method (COMAR) that is able to reconstruct with an unprecedented rate (3-15 seconds) a 3D model that exactly matches the target contact map of a protein. Working with a non-redundant set of 1760 proteins, we find that the scoring efficiency of finding a 3D model very close to the protein native structure depends on the threshold value adopted to compute the protein residue contact map. Contact maps whose threshold values range from 10 to 18 Ångstroms allow reconstructing 3D models that are very similar to the proteins native structure.  相似文献   

16.
Protein structure alignment is a fundamental problem in computational and structural biology. While there has been lots of experimental/heuristic methods and empirical results, very few results are known regarding the algorithmic/complexity aspects of the problem, especially on protein local structure alignment. A well-known measure to characterize the similarity of two polygonal chains is the famous Fréchet distance, and with the application of protein-related research, a related discrete Fréchet distance has been used recently. In this paper, following the recent work of Jiang et al. we investigate the protein local structural alignment problem using bounded discrete Fréchet distance. Given m proteins (or protein backbones, which are 3D polygonal chains), each of length O(n), our main results are summarized as follows: * If the number of proteins, m, is not part of the input, then the problem is NP-complete; moreover, under bounded discrete Fréchet distance it is NP-hard to approximate the maximum size common local structure within a factor of n(1-epsilon). These results hold both when all the proteins are static and when translation/rotation are allowed. * If the number of proteins, m, is a constant, then there is a polynomial time solution for the problem.  相似文献   

17.
We provide the first atomic resolution (<1.20 A) structure of a copper protein, nitrite reductase, and of a mutant of the catalytically important Asp92 residue (D92E). The atomic resolution where carbon-carbon bonds of the peptide become clearly resolved, remains a key goal of structural analysis. Despite much effort and technological progress, still very few structures are known at such resolution. For example, in the Protein Data Bank (PDB) there are some 200 structures of copper proteins but the highest resolution structure is that of amicyanin, a small (12 kDa) protein, which has been resolved to 1.30 A. Here, we present the structures of wild-type copper nitrite reductase (wtNiR) from Alcaligenes xylosoxidans (36.5 kDa monomer), the "half-apo" recombinant native protein and the D92E mutant at 1.04, 1.15 and 1.12A resolutions, respectively. These structures provide the basis from which to build a detailed mechanism of this important enzyme.  相似文献   

18.
Thelightharvestingchlorophylla/bproteincomplex(LHCII)associatedwithphotosystemIIisthemostabundantpigmentproteincomplexinchloroplastthylakoidofallgreenplants.Itcontainsabout50%ofthetotalamountofpigmentsinvolvedinplantphotosynthesis.LHCIIperformsimportantf…  相似文献   

19.

Background

Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the patterns of associations among individual amino acids or sub-domain components within the structure, we apply a k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover associations among groups of sites within the multiple sequence alignment. We then observe what these associations imply within the 3D structure of these two protein families.

Results

The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based on a normalized mutual information measure. The clusters formed correspond to sub-structural components or binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites. These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for each protein family, each of which appear to play an important role in the molecular structure and/or function.

Conclusions

Our results demonstrate that the method we present here using a k- modes site clustering algorithm based on interdependency evaluation among sites obtained from a sequence alignment of homologous proteins can provide significant insights into the complex, hierarchical inter-residue structural relationships within the 3D structure of a protein family.
  相似文献   

20.
Comparative analysis of structure and function of macromolecules, such as proteins, is an integral part of modern evolutionary biology. The first and critical step in understanding evolution of homologous proteins is their amino acid sequence alignment. However, standard algorithms fail to provide unambiguous sequence alignment for proteins of poor homology. More reliable results can be provided by comparing experimental 3D structures obtained at atomic resolution with the aid of X-ray structural analysis. If such structures are lacking, homology modeling is used which considers indirect experimental data on functional roles of individual amino acid residues. An important problem is that sequence alignment, which reflects genetic modifications, not necessarily corresponds to functional homology, which depends on 3D structures critical for natural selection. Since the alignment techniques relying only on the analysis of primary structures carry no information on the functional properties of proteins, the inclusion of 3D structures into consideration is of utmost importance. Here we consider several ion channels as examples to demonstrate that alignment of their 3D structures can significantly improve sequence alignment obtained by traditional methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号