首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Separation of the complementary strands of adenovirus type 2 DNA by poly(U,G)-CsCl density gradient centrifugation permitted studies of Ad23 DNA renaturation with independently variable concentrations of each complementary strand. Single-stranded DNA was isolated by hydroxylapatite chromatography following exhaustive incubation under such conditions, and was found to selectively represent sequences of the complement present in excess during the incubation. This result was exploited in a general method for isolation of complementary strand-specific sequences of radioactively labeled Ad2 DNA or restriction enzyme fragments of Ad2 DNA. Liquid phase saturation-hybridization experiments were carried out with labeled DNA representing each complementary strand of the six endo R.EcoRI cleavage fragments of Ad2 DNA and unlabeled messenger RNA prepared from HeLa cells late after productive infections with Ad2. The results were combined with the known endo R.EcoRI cleavage map of Ad2 DNA to construct a low-resolution map showing physically separated regions, on both complementary strands of Ad2 DNA, represented in mRNA late after infection.  相似文献   

3.
The concentrations, in copies per cell, of viral RNA sequences complementary to different regions of the genome were determined at 8, 18 and 32 hours after infection of human cells with adenovirus type 2: separated strands of fragments of 32P-labelled adenovirus 2 DNA, generated by cleavage with restriction endonucleases EcoR1, Hpa1 and BamH1, were added to reaction mixtures at sufficient concentrations to drive hybridizations with infected or transformed cell RNA. Under these conditions, the fraction of 32P-labelled DNA entering hybrid is directly proportional to the absolute amount of complementary RNA in the reaction.At 8 hours after infection in the presence of cytosine arabinoside, “early” viral messenger RNA sequences are present at a frequency of 300 to 1000 copies per cell. The abundance of early mRNA sequences in different lines of adenovirus 2-transformed rat cells is markedly lower than their concentration in lytically infected cells. Moreover, the abundance of early mRNA in a given transformed rat cell line reflects the number of copies of its template DNA sequences per diploid quantity of cell DNA. After the onset of the late phase of the lytic cycle, the abundance of one early mRNA species, that coding for a single-stranded DNA binding protein required for viral DNA replication, is amplified. Viral RNA sequences complementary to regions of the genome coding for other early mRNA sequences remain at the level observed at 8 hours after infection.Exclusively “late” viral mRNA sequences are present over a range of concentrations, 500 to 10,000 copies per cell, depending on the region of the genome. By 18 hours after infection, the nucleus contains approximately three times as much total, viral RNA as the cytoplasm. The abundant nuclear, viral RNA sequences at 18 hours are transcribed from a contiguous region, 65% of the genome in length. In some cases, viral RNA sequences complementary to mRNA sequences are very abundant in the nucleus. When cytoplasmic and nuclear fractions are mixed and incubated under annealing conditions, some mRNA sequences will anneal with more abundant, anti-messenger nuclear RNA sequences to form double-stranded RNA. Such annealing of nuclear, viral RNA to early, cytoplasmic mRNA sequences probably accounts for the inability to detect, by filter hybridization, certain classes of early mRNA sequences during the late stage of infection.  相似文献   

4.
5.
The Sm protein Hfq binds small non-coding RNA (sRNAs) in bacteria and facilitates their base pairing with mRNA targets. Molecular beacons and a 16 nt RNA derived from the Hfq binding site in DsrA sRNA were used to investigate how Hfq accelerates base pairing between complementary strands of RNA. Stopped-flow fluorescence experiments showed that annealing became faster with Hfq concentration but was impaired by mutations in RNA binding sites on either face of the Hfq ring or by competition with excess RNA substrate. A fast bimolecular Hfq binding step (∼108 M−1s−1) observed with Cy3-Hfq was followed by a slow transition (0.5 s−1) to a stable Hfq–RNA complex that exchanges RNA ligands more slowly. Release of Hfq upon addition of complementary RNA was faster than duplex formation, suggesting that the nucleic acid strands dissociate from Hfq before base pairing is complete. A working model is presented in which rapid co-binding and release of two RNA strands from the Hfq ternary complex accelerates helix initiation 10 000 times above the Hfq-independent rate. Thus, Hfq acts to overcome barriers to helix initiation, but the net reaction flux depends on how tightly Hfq binds the reactants and products and the potential for unproductive binding interactions.  相似文献   

6.
7.
Methylation of adenovirus 2 (Ad 2) late RNA was studied. RNA was double-labeled with [3H-methyl]-methionine and [14C]-uridine 15–20 h postinfection. Nuclear RNA (rRNA) and cytoplasmic RNA (mRNA) was extracted, and fractionated into polyA(+) and (?) molecules using poly(U)-Sepharose. Ad 2 specific RNA was purified by 2 cycles of hybridization to and elution from Ad 2 DNA immobilized on filters. The Ad 2 polyA(+) and (?) nRNA and mRNA fractions had the same 3H14C ratios, and were estimated to contain a minimum of 1.4 methylated nucleotides per 1000 bases. Viral RNA was digested with RNase T2 and chromatographed on DEAE-Sephadex in 7 M urea at pH 7.6. All four Ad RNA fractions contained methylated constituents consistent with: (1) two classes of methylated “capped” 5′-termini with general structures m7 GpppNmpNp and m7 GpppNmpNmpNp; (2) internal base methylations; (3) minor amounts of internal ribose 2′-0-methylations. Two classes of 5′-termini have previously been reported for animal cell mRNA, but not for mRNA from a variety of viruses. Internal methylations may be unique to RNA molecules transcribed in the nucleus, since they have not been found in RNA from cytoplasmic viruses. No gross differences were observed in the DEAE-Sephadex elution profiles of the methylated constituents of the four types of Ad 2 RNA. These results suggest that the majority of methylation events occur in the nucleus, and raise the possibility that Ad 2 methylated late nRNA may differ significantly from SV40 late nRNA (Lavi, S., and Shatkin, A.J. (1975) Proc. Natl. Acad. Sci. USA 72, 2012–2016).  相似文献   

8.
Ribonucleic acids are highly conserved essential parts of cellular life. RNA function is determined to a large extent by its hydrodynamic behaviour. The presented study proposes a strategy to predict the hydrodynamic behaviour of RNA single strands on the basis of the polymer size. By atom-level shell-modelling of high-resolution structures, hydrodynamic radius and diffusion coefficient of evolutionary conserved RNA single strands (ssRNA) were calculated. The diffusion coefficients D of 17–174 nucleotides (nt) containing ssRNA depended on the number of nucleotides N with D = 4.56 × 1010 N0.39 m2 s1. The hydrodynamic radius RH depended on N with RH = 5.00 × 1010 N0.38 m. An average ratio of the radius of gyration and the hydrodynamic radius of 0.98 ± 0.08 was calculated in solution. The empirical law was tested by in solution measured hydrodynamic radii and radii of gyration and was found to be highly consistent with experimental data of evolutionary conserved ssRNA. Furthermore, the hydrodynamic behaviour of several evolutionary unevolved ribonucleic acids could be predicted. Based on atom-level shell-modelling of high-resolution structures and experimental hydrodynamic data, empirical models are proposed, which enable to predict the translational diffusion coefficient and molecular size of short RNA single strands solely on the basis of the polymer size.  相似文献   

9.
The complementary strands of adenovirus type 12 DNA were separated, and virus-specific RNA was analyzed by saturation hybridization in solution. Late during infection whole cell RNA hybridized to 75% of the light (1) strand and 15% of the heavy (H) strand, whereas cytoplasmic RNA hybridized to 65% of the 1 strand and 15% of the h strand. Late nuclear RNA hybridized to about 90% of the 1 strand and at least 36% of the h strand. Double-stranded RNA was isolated from infected cells late after infection, which annealed to greater than 30% of each of the two complementary DNA strands. Early whole cell RNA hybridized to 45 to 50% of the 1 strand and 15% of the h strand, whereas early cytoplasmic RNA hybridized to about 15% of each of the complementary strands. All early cytoplasmic sequences were present in the cytoplasm at late times.  相似文献   

10.
11.
Nuclei of KB cells harvested at late stages of productive infection with adenovirus type 2 (Ad2) harbor RNA molecules which measure up to 13 μm in length, as determined by electron microscopy of denatured RNA. While some of the molecules display features of secondary structure that are characteristic for precursor rRNA, our interest was in those showing almost no intramolecular folding. When hybridized to double-stranded viral DNA under conditions which favor RNA:DNA duplex formation, nuclear AD2 RNA displaces the homologous DNA region and generates R loop structures whose size is proportional to the length of the hybridizing RNA. Slowly sedimenting RNA forms small R loops, whereas RNA of high sedimentation velocity generates loops that span a large proportion of the DNA length. Using SV40 sequences within Ad2+ND4 hybrid DNA as a position marker, we oriented many of the R loops on the conventional Ad2 map. Our analysis was restricted to the most abundant sequences of late Ad2 nuclear RNA participating in R loop formation. A small but significant proportion of large RNA generates loops between map positions 0.3 and 0.9. The much more frequent RNA of intermediate size (although larger than mRNA) hybridizes with midpoints near map positions 0.55 and 0.88 — that is, near the gene locations for hexon and fiber. Our findings are compatible with the idea that the nuclear RNAs visualized in this study are intermediates in a processing pathway leading to mature forms of late Ad2 mRNA.  相似文献   

12.
The complementary strands of fragments of 32P-labelled adenovirus 2 DNA generated by cleavage with restriction endonucleases EcoRI or Hpa1 were separated by electrophoresis. Saturation hybridization reactions were performed between these fragment strands and unlabelled RNA extracted from the cytoplasm of adenovirus 2-transformed rat embryo cells or from human cells early after adenovirus 2 infection. The fraction of each fragment strand complementary to RNA from these sources was measured by chromatography on hydroxylapatite. Maps of the viral DNA sequences complementary to messenger RNA in different lines of transformed cells and early during lytic infection of human cells were constructed.Five lines of adenovirus 2-transformed cells were examined. All contained the same RNA sequences, complementary to about 10% of the light strand of EcoRI fragment A. DNA sequences coding for this RNA were more precisely located using Hpa1 fragments E and C and mapped at the left-hand end of the genome. Thus any viral function expressed in all adenovirus 2-transformed cells, tumour antigen, for example, must be coded by this region of the viral genome. Two lines, F17 and F18, express only these sequences; two others, 8617 and REM, also contain mRNA complementary to about 7% of the heavy strand of the right-hand end of adenovirus 2 DNA; a fifth line, T2C4, contains these and many additional viral RNA sequences in its cytoplasm.The viral RNA sequences found in all lines of transformed cells are also present in the cytoplasm of human cells during the early phase of a lytic adenovirus infection. The additional cytoplasmic sequences in the 8617 and REM cell lines also correspond to “early” RNA sequences.  相似文献   

13.
14.
A wheat germ cell-free translation system has been used to analyze populations of abundant messenger RNA from sea urchin eggs and embryos and from amphibian oocytes and ovaries. We show directly that sea urchin eggs and embryos contain translatable mRNA of three general classes: poly(A)+ mRNA, poly(A)? histone mRNA, and poly(A)? nonhistone mRNA. Additionally, some histone synthesis appears to be promoted by poly(A)+ RNA. Sea urchin eggs seem to contain a higher proportion of prevalent poly(A)? nonhistone mRNAS than do embryos. Some differences in the proteins encoded by poly(A)+ and poly(A)? RNAs are detectable. Many coding sequences in the egg appear to be represented in both poly(A)+ and poly(A)? RNAs, since the translation products of the two RNA classes exhibit many common bands when run on one-dimensional polyacrylamide gels. However, some of this overlap is probably due to fortuitous comigration of nonidentical proteins. Distinct stage-specific changes in the spectra of prevalent translatable mRNAs of all three classes occur, although many mRNAs are detectable throughout early development. Particularly striking is the presence of an egg poly(A)? mRNA, encoding a 70,000–80,000 molecular weight protein, which is not detected in morula or later-stage embryos. In amphibian (Xenopus laevis and Triturus viridescens) ovary RNA, the translation assay detects the following three mRNA classes: poly(A)+ nonhistone mRNA, poly(A)? histone mRNA, and poly(A)+ histone mRNA. Amphibian ovary RNA appearently lacks an abundant poly(A)? nonhistone mRNA component of the magnitude detectable in sea urchin eggs. mRNA encoding histone-like proteins is found in the very earliest (small stage 1) oocytes of Xenopus as well as in later stage oocytes. During oogenesis there appear to be no striking qualitative changes in the spectra of prevalent translatable mRNAs which are detected by the cell-free translation assay.  相似文献   

15.
Six p53 wild-type cancer cell lines from infrequently p53-mutated entities (neuroblastoma, rhabdomyosarcoma, and melanoma) were continuously exposed to increasing concentrations of the murine double minute 2 inhibitor nutlin-3, resulting in the emergence of nutlin-3-resistant, p53-mutated sublines displaying a multi-drug resistance phenotype. Only 2 out of 28 sublines adapted to various cytotoxic drugs harboured p53 mutations. Nutlin-3-adapted UKF-NB-3 cells (UKF-NB-3rNutlin10 μM, harbouring a G245C mutation) were also radiation resistant. Analysis of UKF-NB-3 and UKF-NB-3rNutlin10 μM cells by RNA interference experiments and lentiviral transduction of wild-type p53 into p53-mutated UKF-NB-3rNutlin10 μM cells revealed that the loss of p53 function contributes to the multi-drug resistance of UKF-NB-3rNutlin10 μM cells. Bioinformatics PANTHER pathway analysis based on microarray measurements of mRNA abundance indicated a substantial overlap in the signalling pathways differentially regulated between UKF-NB-3rNutlin10 μM and UKF-NB-3 and between UKF-NB-3 and its cisplatin-, doxorubicin-, or vincristine-resistant sublines. Repeated nutlin-3 adaptation of neuroblastoma cells resulted in sublines harbouring various p53 mutations with high frequency. A p53 wild-type single cell-derived UKF-NB-3 clone was adapted to nutlin-3 in independent experiments. Eight out of ten resulting sublines were p53-mutated harbouring six different p53 mutations. This indicates that nutlin-3 induces de novo p53 mutations not initially present in the original cell population. Therefore, nutlin-3-treated cancer patients should be carefully monitored for the emergence of p53-mutated, multi-drug-resistant cells.  相似文献   

16.
The poly(A+)RNA of the free mRNP of mouse Taper ascites cell contains a very reduced number of different mRNA sequences compared to the polysome poly(A+)RNA. By the technique of mRNA:cDNA hybridization we have determined that the free mRNP contains approximately 400 different mRNA sequences while the polysomes contain about 9000 different mRNAs. The free mRNP poly(A+)RNA sequences are present in two abundance classes, the abundant free mRNP class containing 15 different mRNA sequences and the less abundant free mRNP class containing 400 different mRNAs. The polysome poly(A+)RNA consists of three abundance classes of 25, 500 and 8500 different mRNA sequences.Despite its intracellular location in RNP structures not directly involved in protein synthesis the poly(A+)RNA purified from the free RNP of these cells was a very effective template for protein synthesis in cell-free systems. Cell-free translation products of free mRNP and polysome poly(A+)RNAs were analyzed by two-dimensional gel electrophoresis. This analysis confirmed the hybridization result that the free mRNP poly(A+)RNA contained fewer sequences than polysomal poly(A+)RNA. The abundant free RNP-mRNA directed protein products were a subset of the polysome mRNA-directed protein products. The numbers of more abundant products of cell-free protein synthesis directed by the free RNP-mRNA and polysomal mRNA were in general agreement with the hybridization estimates of the number of sequences in the abundant classes of these two mRNA populations.  相似文献   

17.
18.
RNA interference is mediated by small interfering RNAs (siRNAs) that upon incorporation into the RNA-induced silencing complex (RISC) can target complementary mRNA for degradation. Standard siRNA design usually feature a 19–27 base pair contiguous double-stranded region that is believed to be important for RISC incorporation. Here, we describe a novel siRNA design composed of an intact antisense strand complemented with two shorter 10–12 nt sense strands. This three-stranded construct, termed small internally segmented interfering RNA (sisiRNA), is highly functional demonstrating that an intact sense strand is not a prerequisite for RNA interference. Moreover, when using the sisiRNA design only the antisense strand is functional in activated RISC thereby completely eliminating unintended mRNA targeting by the sense strand. Interestingly, the sisiRNA design supports the function of chemically modified antisense strands, which are non-functional within the context of standard siRNA designs. This suggests that the sisiRNA design has a clear potential of improving the pharmacokinetic properties of siRNA in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号