首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A reproducible and efficient transformation system has been developed for maize that is based on direct DNA uptake into embryogenic protoplasts and regeneration of fertile plants from protoplast-derived transgenic callus tissues. Plasmid DNA, containing the -glucuronidase (GUS) gene, under the control of the doubled enhancer element (the –208 to –46 bp upstream fragment) from CaMV 35S promoter, linked to the truncated (up to –389 bp from ATG) promoter of wheat, -amylase gene was introduced into protoplasts from suspension culture of HE/89 genotype. The constructed transformation vectors carried either the neomycin phosphotransferase (NPTII) or phosphinothricin acetyltransferase (PAT) gene as selective marker. The applied DNA uptake protocol has resulted at least in 10–20 resistant calli, or GUS-expressing colonies after treatment of 106 protoplasts. Vital GUS staining of microcalli has made possible the shoot regeneration from the GUS-stained tissues. 80–90% of kanamycin or PPT resistant calli showed GUS activity, and transgenic plants were regenerated from more than 140 clones. Both Southern hybridization and PCR analysis showed the presence of introduced foreign genes in the genomic DNA of the transformants. The chimeric promoter, composed of a tissue specific monocot promoter, and the viral enhancer element specified similar expression pattern in maize plants, as it was determined by the full CaMV 35S promoter in dicot and other monocot plants. The highest GUS specific activity was found in older leaves with progressively less activity in young leaves, stem and root. Histochemical localization of GUS revealed promoter function in leaf epidermis, mesophyll and vascular bundles, in the cortex and vascular cylinder of the root. In roots, the meristematic tip region and vascular tissues stained intensively. Selected transformants were grown up to maturity, and second-generation seedlings with segregation for GUS activity were obtained after outcrossing. The GUS-expressing segregants carried also the NPTII gene as shown by Southern hybridization.  相似文献   

2.
P N Benfey  L Ren    N H Chua 《The EMBO journal》1990,9(6):1685-1696
We have analyzed expression conferred by five subdomains of the cauliflower mosaic virus (CaMV) 35S enhancer in mature transgenic plants. Expression was detected from subdomains that gave no expression at earlier stages of development indicating developmental regulation of expression and confirming the modular organization of the enhancer. In several cases the expression patterns are highly restricted in cell type, providing useful markers for developmental studies. Comparison of expression patterns conferred by various combinations of 35S enhancer cis-elements suggests that synergistic interactions among cis-elements may play an important role in defining tissue-specific expression. This has implications for the nature of a cis-element combinatorial code that could define expression throughout development.  相似文献   

3.
4.
5.
6.
7.
8.
A 176 bp DNA sequence lying upstream of the octopine synthase (ocs) promoter, previously shown to have enhancer-like properties in transgenic tobacco [Ellis et al. (1987) EMBO J., 6, 11-16], functions as an enhancer in protoplasts of Zea mays (a monocot plant) and Nicotiana plumbaginifolia (a dicotplant). We have characterized this element by transient expression assays using a linked alcohol dehydrogenase (Adh1) promoter from Z. mays and the chloramphenicol acetyltransferase coding sequences. The ocs sequence functions in both orientations but its enhancing activity is dependent upon its distance from the Adh1 promoter. Transient expression assays using deletion mutants and synthetic oligonucleotides show that a 16 bp palindrome ACGTAAGCGCTTACGT, contained within the 176 bp fragment, is essential and sufficient for enhancing activity in transient expression assays.  相似文献   

9.
P N Benfey  L Ren    N H Chua 《The EMBO journal》1990,9(6):1677-1684
The cauliflower mosaic virus (CaMV) 35S enhancer is able to confer strong constitutive expression in plants. We have previously defined two domains within this enhancer that can confer different tissue-specific expression patterns throughout development. We show here that the upstream domain (B) has a modular organization. It contains at least five subdomains that are able to confer distinct expression patterns when fused to the downstream domain (A). When fused to a minimal promoter only three of the five subdomains give any expression in the early stages of plant development. Comparison of the expression patterns conferred by the subdomains alone, in combination with the downstream domain or in combination with other subdomains provides evidence for synergistic interactions among cis-elements within the 35S enhancer.  相似文献   

10.
Early flowering together with small size would be useful for various biotechnical or genetic studies on trees. We report here the selection and micropropagation of early flowering birch (Betula pendula) clones (BPM1–12) obtained from seeds of birches bred elsewhere for early flowering. Under conditions that accelerate flowering (a high CO2 level, strong and continuous illumination), the first male inflorescences emerged in 3–5 months, the trees then being 20–80 cm high. Transgenic lines (CaMV 35S-GUS INT) were produced through Agrobacterium-mediated gene transfer from BPM2, BPM5 and JR1/4 (a normally flowering birch). β-Glucuronidase (GUS) activities in the different lines, assayed 1–1.5 years after transformation, varied greatly. During further in vitro culture for 10 months, the activities decreased to 0.3–7% of the original values. GUS activities were detected in all organs studied, including the developing male inflorescences; the highest activity was in the roots. Received: 28 April 1997 / Revision received: 5 September 1997 / Accepted: 30 November 1997  相似文献   

11.
12.
13.
The influence of the CaMV 35S promoter/enhancer on expression profiles of four Arabidopsis thaliana pollen- and/or embryo-specific promoters, APRS, ESL, MXL, and DLL, was tested in transgenic tobacco plants. Individual promoters were fused to the gus reporter gene and cloned in head-to-head orientation with the CaMV 35S:hpt expression unit within the same T-DNA. With the exception of the TATA-less promoter DLL, all other combinations generated interactions between the promoter under investigation and 35S promoter/enhancer resulting in ectopic β-glucuronidase (GUS) expression in vegetative organs and tissues, the most susceptible being the stem, followed by callus, leaf, and root. To eliminate this crosstalk, DNA spacers of length 1, 2 and 5 kb were cloned between the interacting sequences. Ectopic GUS staining was dependent on the affected promoter as well as the distance between the 5′-end of the CaMV 35S promoter and the reporter gene translation start site. When this distance was less than 1 kb strong ectopic GUS staining was observed in all vegetative tissues, similar to the CaMV35S:gus expression profile in transgenic tobacco plants. Insertion of spacer DNA sequences of increasing length resulted in gradual reduction of ectopic GUS staining in tested plants. Of the tissues and organs related to plant reproduction, only anthers and seed coats in the early stages of seed development showed ectopic GUS staining. Developing pollen and embryos showed a pattern of GUS activity consistent with the predicted role of a developmental stage-specific promoter in transgenic tobacco plants.  相似文献   

14.
15.
The CaMV 35S and Ti plasmid mannopine synthetase (mas) promoters are commonly used by plant genetic engineers. To combine their useful properties, we constructed hybrid promoters incorporating elements from both. These promoters were spliced to the beta-glucuronidase reporter gene and introduced into tobacco and tomato plants by Agrobacterium cocultivation. T1 and T2 transgenic plant populations transformed with different constructs were assayed for the marker enzyme. Comparisons were made based on the range of expression levels found for each promoter construct. We found that a hybrid promoter incorporating the mas region from +65 to -301 and the 35S enhancer region from -90 to -941 had new and interesting properties. This promoter, called Mac, expressed gus at a level three to five times that expressed by a double 35S promoter in the leaves, and 10 to 15 times in hypocotyls and roots. The Mac promoter, however, showed only marginal wound inducibility. Five- to seven-fold wound induction required the presence of the region from -301 to -613 of mas. Reiteration of the 35S enhancer region, from -90 to -430, behind the 35S TATA box region or the mas +65 to -301 region had a smaller effect on expression, ranging from equal to twice the level of the single enhancer control.  相似文献   

16.
A cauliflower mosaic virus (CaMV) 35S promoter derivative, which is tightly repressed by the Tn 10 encoded Tet repressor in a transient expression system as well as in transgenic plants has been constructed. After treatment of transgenic plants with tetracycline (Tc) the activity of the reporter enzyme beta-glucuronidase (GUS) increased up to 500-fold in tissue culture as well as under greenhouse conditions. Efficient de-repression was achieved by Tc uptake through the roots as well as by Tc treatment of leaves of intact plants. As Tc is not very stable in the plants, this system can also be used for a transient expression of a transgene. This system provides a unique tool for regenerating transgenic plants carrying a repressed transgene and for efficiently de-repressing its activity by a specific inducer at any time point of further development.  相似文献   

17.
Summary Two different promoters, a cauliflower mosaic virus (CaMV) 35S promoter with a 5′-untranslated leader sequence from alfalfa mosaic virus RNA4 (designated as CaMV 35S/AMV) and an E-8 fruit-ripening-specific promoter, were compared to evaluate their effects on expression of the uidA reporter gene in transgenic tomato plants. In order to generate sufficient numbers of transgenic tomato plants, both a reliable regeneration system and an efficient Agrobacterium transformation protocol were developed using 8-d-old cotyledons of tomato (Lycopersicon ecsulentum Mill. cv. Swifty Belle). Two sets of constructs, both derivatives of the binary vector pBI121, were used in transformation of tomato whereby the uidA gene was driven either by the CaMV 35S/AMV or the E-8 fruit-ripening-specific promoter. Southern blot hybridization confirmed the stable integration of the chimeric uidA gene into the tomato genome. Fruit and leaf tissues were collected from T0 and T1 plants, and assayed for β-glucuronidase (GUS) enzyme activity. As expected, both vegetative and fruit tissues of transgenic plants carrying the uidA gene under the control of CaMV 35S/AMV showed varying levels of GUS activity, while no expression was observed in vegetative tissues of transgenic plants carrying the uidA gene driven by the E-8 promoter. All fruits from transgenic plants produced with both sets of constructs displayed expression of the uidA gene. However, when this reporter gene was driven by the CaMV 35S/AMV, GUS activity levels were significantly higher than when it was driven by the E-8 fruit-specific promoter. The presence/absence of the uidA gene in T1 plants segregated in a 3∶1 Mendelian ratio.  相似文献   

18.
Strong constitutive promoters, such as CaMV35S, are widely used for plant transformation, but undesirable phenotypic changes have been reported when used to drive biotic stress tolerance and/or for modifying lignin content. The promoter of the eucalyptus cinnamoyl CoA reductase (CCR), a key enzyme of the lignin biosynthetic pathway, was shown to be preferentially expressed in vascular tissues both in herbaceous and woody transgenic plants but not eucalyptus. In this work, we transformed Eucalyptus globulus with the EgCCR promoter governing both β-glucuronidase (GUS) and GFP activity patterns. No statistical differences were found between the survival rate and percentage of GUS positive shoots between eucalyptus transformed with either the constitutive CaMV35S or with the EgCCR promoter. The EgCCR transformed plantlets exhibited high GUS expression levels associated with the vascular tissues opening the possibility of targeting vascular-associated traits such as lignin content or vascular pathogen resistance in adult elite plants of eucalyptus while avoiding the undesirable pleiotropic effects caused by strong constitutive promoters.  相似文献   

19.
20.
Chromatin regions with different states usually harbor distinct epigenetic information, through which gene expression is regulated. Recent studies using mammalian cells showed that a chromatin state signature is associated with active developmental enhancers, defined by high levels of histone H3 lysine 27 acetylation (H3K27ac) and strong depletion of H3K27 trimethylation (H3K27me3). These findings also imply that active enhancers may play a role in creating a chromatin state by changing histone modification markers, which in turn affects gene expression. To explore whether an active enhancer in plants affect histone modifications, we investigated the cauliflower mosaic virus 35S enhancer (35Senh) for understanding its action model in Arabidopsis. We report that the 35Senh has a function to change the histone modification pattern at its presenting loci, by characterization of the 35Senh activated BREVIPEDICELLUS (BP) silencing lines and the randomly selected 35Senh activation tagging lines. By analyzing histone modification markers reflecting the plant chromatin state, we show that the 35Senh is generally correlated with the reduced level of H3K27me3 and the increased level of H3K4me3 at the insertion loci. Our data are consistent with those in mammals and suggest that the enhancer sequence correlating with the active chromatin state signature may be generally present in the eukaryotic kingdom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号