首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The micronuclear versions of genes in stichotrichous ciliates are interrupted by multiple, short, non-coding DNA segments called internal eliminated segments, or IESs. IESs divide a gene into macronuclear destined segments, or MDSs. In some micronuclear genes MDSs are in a scrambled disorder. During development of a micronucleus into a macronucleus after cell mating the IESs are excised from micronuclear genes and the MDSs are spliced in the sequentially correct order. Pairs of short repeat sequences in the ends of MDSs undergo homologous recombination to excise IESs and splice MDSs. However, the repeat sequences are too short to guide unambiguously their own alignment in preparation for recombination. Based on experiments by others on the distantly related ciliate, Paramecium, we propose a molecular model of template-guided recombination to explain the excision of the 100,000-150,000 IESs and splicing of MDSs, including unscrambling, in the genome of stichotrichous ciliates. The model solves the problem of correct pairing of pointers, precisely identifies MDS-IES junctions, and provides for irreversible recombination.  相似文献   

2.
Dramatic DNA reorganization and elimination processes occur during macronuclear differentiation in ciliates. In this study we analyzed whether cytosine methylation of specific sequences plays a functional role during DNA rearrangement. Three classes of sequences, macronuclear-destined sequences (MDSs, pCE7), members from a large family of transposon-like elements and micronuclear-specific sequences (pLJ01), differing in their structure and future destiny during nuclear differentiation, were studied in the micronucleus, the developing macronucleus and, when present, in the mature macronucleus. While the MDSs become processed to a 1.1 and 1.3 kb gene-sized macronuclear DNA molecule, the family of transposon-like elements represented by MaA81 becomes removed late in the course of polytene chromosome formation. The micronuclear-specific sequence pLJ01 is eliminated together with bulk micronuclear DNA during degradation of polytene chromosomes. No methylated cytosine could be detected in the vegetative macronucleus and no difference in methylation pattern was observed either between micronucleus and developing macronucleus in MDSs or in a micronuclear-specific sequence. However, a significant percentage of the cytosines contained in the transposon-like element becomes methylated de novo in the course of macronuclear differentiation. This is the first demonstration that cytosine methylation in specific sequences occurs during macronuclear differentiation and may provide a first step towards understanding epigenetic factors involved in DNA processing.  相似文献   

3.
Ciliates are microbial eukaryotes that separate their nuclear functions into a germline micronucleus and a somatic macronucleus. During development of the macronucleus the genome undergoes a series of reorganization events that includes the precise excision of intervening DNA. Here, we determine the architecture of four loci in the micronuclear and macronuclear genomes of the ciliate Chilodonella uncinata and compare the levels of variation in micronuclear-limited sequences to macronuclear destined sequences at two of these loci. We find that within a population, germline-limited sequences are evolving at the same rate as other putatively neutral sites, but between populations germline-limited sequences are accumulating mutations at a much faster rate than other sites. We also find evidence of macronuclear recombination and incomplete elimination of intervening DNA, which result in increased diversity in the macronuclear genome. Our results support the assertion that the unusual genomic features of ciliates can result in rapid and unpredicted patterns of diversification.  相似文献   

4.
The development of the macronucleus from the zygotic micronucleus in the ciliated protozoan Tetrahymena spp. involves the elimination of specific DNA sequences (M. C. Yao and M. Gorovsky, Chromosoma 48:1-18 1974). The present study demonstrates that micronucleus-specific DNA is present on all five of the micronuclear chromosomes. Fragments of micronuclear DNA from Tetrahymena thermophila were cloned in the plasmid vector pBR322. A procedure was developed to examine the organization of the cloned sequences in micro- and macronuclear DNA without nick translating each individual probe. Twenty-three percent of randomly selected DNA sequences examined by this method were micronucleus (germ line) specific. They were all members of families of repeated sequences. Hybridization of six micronucleus-specific DNA sequences to micronuclear DNA from nullisomic strains of T. thermophila, which are lacking one or more pairs of chromosomes in the micronucleus, suggested that these sequences are present on several chromosomes. One micronucleus-specific sequence was shown by in situ hybridization to be present on all five of the micronuclear chromosomes.  相似文献   

5.
Pdd1, a specialized HP1-like protein, is required for genome-wide DNA rearrangements that restructure a previously silent germ line genome into an active somatic genome during macronuclear differentiation of Tetrahymena thermophila. We deleted or otherwise mutated conserved regions of the protein to investigate how its different domains promote the excision of thousands of internal eliminated sequences (IESs). Previous studies revealed that Pdd1 contributes to recognition of IES loci after they are targeted by small-RNA-guided methylation of histone H3 on lysine 27 (H3K27), subsequently aids the establishment of H3K9 methylation, and recruits proteins that lead to excision. The phenotypes we observed for different Pdd1 alleles showed that each of the two chromodomains and the chromoshadow domain (CSD) have distinct contributions during somatic genome differentiation. Chromodomain 1 (CD1) is essential for conjugation as either its deletion or the substitution of two key aromatic amino acid residues (the W97A W100A mutant) is lethal. These mutations caused mislocalization of a cyan fluorescent protein (CFP)-tagged protein, prevented the establishment of histone H3 dimethylated on K9 (H3K9me2), and abolished IES excision. Nevertheless, the requirement for CD1 could be bypassed by recruiting Pdd1 directly to an IES by addition of a specific DNA binding domain. Chromodomain 2 (CD2) was necessary for producing viable progeny, but low levels of H3K9me2 and IES excision still occurred. A mutation in the chromoshadow domain (CSD) prevented Pdd1 focus formation but still permitted ∼17% of conjugants to produce viable progeny. However, this mutant was unable to stimulate excision when recruited to an ectopic IES, indicating that this domain is important for recruitment of excision factors.  相似文献   

6.
7.
8.
9.
Ardell DH  Lozupone CA  Landweber LF 《Genetics》2003,165(4):1761-1777
DNA polymerase alpha is the most highly scrambled gene known in stichotrichous ciliates. In its hereditary micronuclear form, it is broken into >40 pieces on two loci at least 3 kb apart. Scrambled genes must be reassembled through developmental DNA rearrangements to yield functioning macronuclear genes, but the mechanism and accuracy of this process are unknown. We describe the first analysis of DNA polymorphism in the macronuclear version of any scrambled gene. Six functional haplotypes obtained from five Eurasian strains of Stylonychia lemnae were highly polymorphic compared to Drosophila genes. Another incompletely unscrambled haplotype was interrupted by frameshift and nonsense mutations but contained more silent mutations than expected by allelic inactivation. In our sample, nucleotide diversity and recombination signals were unexpectedly high within a region encompassing the boundary of the two micronuclear loci. From this and other evidence we infer that both members of a long repeat at the ends of the loci provide alternative substrates for unscrambling in this region. Incongruent genealogies and recombination patterns were also consistent with separation of the two loci by a large genetic distance. Our results suggest that ciliate developmental DNA rearrangements may be more probabilistic and error prone than previously appreciated and constitute a potential source of macronuclear variation. From this perspective we introduce the nonsense-suppression hypothesis for the evolution of ciliate altered genetic codes. We also introduce methods and software to calculate the likelihood of hemizygosity in ciliate haplotype samples and to correct for multiple comparisons in sliding-window analyses of Tajima's D.  相似文献   

10.
Gratias A  Bétermier M 《Biochimie》2001,83(11-12):1009-1022
The development of a new somatic nucleus (macronucleus) during sexual reproduction of the ciliate Paramecium aurelia involves reproducible chromosomal rearrangements that affect the entire germline genome. Macronuclear development can be induced experimentally, which makes P. aurelia an attractive model for the study of the mechanism and the regulation of DNA rearrangements. Two major types of rearrangements have been identified: the fragmentation of the germline chromosomes, followed by the formation of the new macronuclear chromosome ends in association with imprecise DNA elimination, and the precise excision of internal eliminated sequences (IESs). All IESs identified so far are short, A/T rich and non-coding elements. They are flanked by a direct repeat of a 5'-TA-3' dinucleotide, a single copy of which remains at the macronuclear junction after excision. The number of these single-copy sequences has been estimated to be around 60,000 per haploid genome. This review focuses on the current knowledge about the genetic and epigenetic determinants of IES elimination in P. aurelia, the analysis of excision products, and the tightly regulated timing of excision throughout macronuclear development. Several models for the molecular mechanism of IES excision will be discussed in relation to those proposed for DNA elimination in other ciliates.  相似文献   

11.
In a process similar to exon splicing, ciliates use DNA splicing to produce a new somatic macronuclear genome from their germline micronuclear genome after sexual reproduction. This extra layer of DNA rearrangement permits novel mechanisms to create genetic complexity during both evolution and development. Here we describe a chimeric macronuclear chromosome in Oxytricha trifallax constructed from two smaller macronuclear chromosomes. To determine how the chimera was generated, we cloned and sequenced the corresponding germline loci. The chimera derives from a novel locus in the micronucleus that arose by partial duplication of the loci for the two smaller chromosomes. This suggests that an exon shuffling-like process, which we call MDS shuffling, enables ciliates to generate novel genetic material and gene products using different combinations of genomic DNA segments.  相似文献   

12.
The accumulation of divergent histone H4 amino acid sequences within and between ciliate lineages challenges traditional views of the evolution of this essential eukaryotic protein. We analyzed histone H4 sequences from 13 species of ciliates and compared these data with sequences from well-sampled eukaryotic clades. Ciliate histone H4s differ from one another at as many as 46% of their amino acids, in contrast with the highly conserved character of this protein in most other eukaryotes. Equally striking, we find paralogs of histone H4 within ciliate genomes that differ by up to 25% of their amino acids, whereas paralogs in other eukaryotes share identical or nearly identical amino acid sequences. Moreover, the most divergent H4 proteins within ciliates are found in the lineages with highly processed macronuclear genomes. Our analyses demonstrate that the dual nature of ciliate genomes-the presence of a "germline" micronucleus and a "somatic" macronucleus within each cell-allowed the dramatic variation in ciliate histone genes by altering functional constraints or enabling adaptive evolution of the histone H4 protein, or both.  相似文献   

13.
ABSTRACT In ciliates, development of the polyploid somatic macronucleus after sexual events involves extensive and reproducible rearrangements of the germ-line genome, including chromosome fragmentation and precise excision of numerous internal sequence elements. In Paramecium aurelia, alternative macronuclear versions of the same germ-line genome can be maternally inherited across sexual generations, showing that rearrangement patterns are not strictly determined by the germ-line sequence. Homology-dependent maternal effects can be evidenced by transformation of the vegetative macronucleus with cloned macronuclear sequences: new fragmentation patterns or internal deletions are specifically induced during differentiation of a new macronucleus, in sexual progeny of transformed clones. Furthermore, transformation of the maternal macronucleus with germ-line sequences containing internal eliminated sequences (short single-copy elements) can result in a specific inhibition of the excision of the same elements in the zygotic macronucleus. These experiments show that the processing of many germ-line sequences in the developing macronucleus is sensitive to the structure and copy number of homologous sequences in the maternal macronucleus. The generality and sequence specificity of this trans-nuclear, epigenetic regulation of rearrangements suggest that it is mediated by pairing interactions between germ-line sequences and sequences imported from the maternal macronucleus.  相似文献   

14.
Macronuclear gene-sized molecules of hypotrichs.   总被引:7,自引:1,他引:6       下载免费PDF全文
The macronuclear genome of hypotrichous ciliates consists of DNA molecules of gene-sized length. A macronuclear DNA molecule contains a single coding region. We have analyzed the many hypotrich macronuclear DNA sequences sequenced by us and others. No highly conserved promoter sequences nor replication initiation sequences have been identified in the 5' nor in the 3' non-translated regions, suggesting that promoter function in hypotrichs may differ from other eukaryotes. The macronuclear genes are intron-poor; approximately 19% of the genes sequenced to date have one to three introns. Not all macronuclear DNA molecules may be transcribed; some macronuclear molecules may not have any coding function. Codon bias in hypotrichs is different in many respects from other ciliates and from other eukaryotes.  相似文献   

15.
The development of a new somatic nucleus (macronucleus) during sexual reproduction of the ciliate Paramecium aurelia involves reproducible chromosomal rearrangements that affect the entire germline genome. Macronuclear development can be induced experimentally, which makes P. aurelia an attractive model for the study of the mechanism and the regulation of DNA rearrangements. Two major types of rearrangements have been identified: the fragmentation of the germline chromosomes, followed by the formation of the new macronuclear chromosome ends in association with imprecise DNA elimination, and the precise excision of internal eliminated sequences (IESs). All IESs identified so far are short, A/T rich and non-coding elements. They are flanked by a direct repeat of a 5’-TA-3’ dinucleotide, a single copy of which remains at the macronuclear junction after excision. The number of these single-copy sequences has been estimated to be around 60 000 per haploid genome. This review focuses on the current knowledge about the genetic and epigenetic determinants of IES elimination in P. aurelia, the analysis of excision products, and the tightly regulated timing of excision throughout macronuclear development. Several models for the molecular mechanism of IES excision will be discussed in relation to those proposed for DNA elimination in other ciliates.  相似文献   

16.
Rexer CH  Chalker DL 《Eukaryotic cell》2007,6(8):1320-1329
Extensive genome-wide rearrangements occur during somatic macronuclear development in Tetrahymena thermophila. These events are guided by RNA interference-directed chromatin modification including histone H3 lysine 9 methylation, which marks specific germ line-limited internal eliminated sequences (IESs) for excision. Several genes putatively involved in these developmental genome rearrangements were identified based on their proteins' localization to differentiating somatic nuclei, and here we demonstrate that one, LIA1, encodes a novel protein that is an essential component of the genome rearrangement machinery. A green fluorescent protein-Lia1 fusion protein exhibited dynamic nuclear localization during development that has striking similarity to that of the dual chromodomain-containing DNA rearrangement protein, Pdd1p. Coimmunoprecipitation experiments showed that Lia1p associates with Pdd1p and IES chromatin during macronuclear development. Cell lines in which we disrupted both the germ line and somatic copies of LIA1 (DeltaLIA1) grew normally but were unable to generate viable progeny, arresting late in development just prior to returning to vegetative growth. These mutant lines failed to properly form Pdd1p-containing nuclear structures and eliminate IESs despite showing normal levels of H3K9 methylation. These data indicate that Lia1p is required late in conjugation for the reorganization of the Tetrahymena genome.  相似文献   

17.
DNA in the polyploid macronucleus of the ciliated protozoan Tetrahymena thermophila contains the modified base N6-methyladenine. We identified two GATC sites which are methylated in most or all of the 45 copies of the macronuclear genome. One site is 2 kilobases 5' to the histone H4-I gene, and the other is 5 kilobases 3' to the 73-kilodalton heat shock protein gene. These sites are de novo methylated between 10 and 16 h after initiation of conjugation, during macronuclear anlage development. The methylation states of these two GATC sites and four other unmethylated GATC sites do not change in the DNA of cells cultured under conditions which change the activity of the genes, including logarithmic growth, starvation, and heat shock.  相似文献   

18.
Extensive DNA elimination occurs as part of macronuclear differentiation during Tetrahymena sexual reproduction. The identification of sequences to excise is guided by a specialized RNA interference (RNAi) machinery that targets the methylation of histone H3 lysine 9 (K9) and K27 on chromatin associated with these internal eliminated sequences (IESs). This modified chromatin is reorganized into heterochromatic subnuclear foci, which is a hallmark of their subsequent elimination. Here, we demonstrate that Lia4, a chromoshadow domain-containing protein, is an essential component in this DNA elimination pathway. LIA4 knockout (ΔLIA4) lines fail to excise IESs from their developing somatic genome and arrest at a late stage of conjugation. Lia4 acts after RNAi-guided heterochromatin formation, as both H3K9 and H3K27 methylation are established. Nevertheless, without LIA4, these cells fail to form the heterochromatic foci associated with DNA rearrangement, and Lia4 accumulates in the foci, indicating that Lia4 plays a key role in their structure. These data indicate a critical role for Lia4 in organizing the nucleus during Tetrahymena macronuclear differentiation.  相似文献   

19.
In Tetrahymena, the DNA of the macronucleus exists as very large (100 to 4,000-kb) linear molecules that are randomly partitioned to the daughter cells during cell division. This genetic system leads directly to an assortment of alleles such that all loci become homozygous during vegetative growth. Apparently, there is a copy number control mechanism operative that adjusts the number of each macronuclear DNA molecule so that macronuclear DNA molecules (with their loci) are not lost and aneuploid death is a rare event. In comparing Southern analyses of the DNA from various species of Tetrahymena using histone H4 genes as a probe, we find different band intensities in many species. These differences in band intensities primarily reflect differences in the copy number of macronuclear DNA molecules. The variation in copy number of macronuclear DNA molecules in some species is greater than an order of magnitude. These observations are consistent with a developmental control mechanism that operates by increasing the macronuclear copy number of specific DNA molecules (and the genes located on these molecules) to provide the relatively high gene copy number required for highly expressed proteins.  相似文献   

20.
Jönsson F  Steinbrück G  Lipps HJ 《Genome biology》2001,2(2):research0005.1-research000511

Background  

Programmed DNA-reorganization and DNA-elimination events take place frequently during cellular differentiation. An extreme form of such processes, involving DNA reorganization, DNA elimination and DNA fragmentation, is found during macronuclear differentiation in hypotrichous ciliates. Ciliated protozoa can therefore serve as a model system to analyze the molecular basis of these processes during cellular differentiation in eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号