首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mutation in Bacillus subtilis call recC4 which results in an impairment of genetic transformation was transferred to a new strain using the closely linked marker mit-2 (mitomycin C-resistance) for selection. This derived strain was in turn impaired in transformation but showed normal levels of sensitivity to ultraviolet irradiation and methyl methane sulfonate. The genetic and molecular fate of transforming DNA in the recC4 strain was studied. Normal amounts of DNA were taken up by the cells and this DNA or parts of it became associated with recipient DNA. Linkage between genes on donor and recipient molecules was, however, not established and transformants were not generated. The recC4 mutation therefore affects a step in the recombination pathway during transformation. Either the association between donor and recipient DNA molecules is abnormal or the cells are deficient in the further processing of the associated complex.  相似文献   

2.
The estuarine bacterium Vibrio strain DI-9 has been shown to be naturally transformable with both broad host range plasmid multimers and homologous chromosomal DNA at average frequencies of 3.5 X 10(-9) and 3.4 X 10(-7) transformants per recipient, respectively. Growth of plasmid transformants in nonselective medium resulted in cured strains that transformed 6 to 42, 857 times more frequently than the parental strain, depending on the type of transforming DNA. These high-frequency-of-transformation (HfT) strains were transformed at frequencies ranging from 1.1 X 10(-8) to 1.3 X 10(-4) transformants per recipient with plasmid DNA and at an average frequency of 8.3 X 10(-5) transformants per recipient with homologous chromosomal DNA. The highest transformation frequencies were observed by using multimers of an R1162 derivative carrying the transposon Tn5 (pQSR50). Probing of total DNA preparations from one of the cured strains demonstrated that no plasmid DNA remained in the cured strains which may have provided homology to the transforming DNA. All transformants and cured strains could be differentiated from the parental strains by colony morphology. DNA binding studies indicated that late-log-phase HfT strains bound [3H]bacteriophage lambda DNA 2.1 times more rapidly than the parental strain. These results suggest that the original plasmid transformation event of strain DI-9 was the result of uptake and expression of plasmid DNA by a competent mutant (HfT strain). Additionally, it was found that a strain of Vibrio parahaemolyticus, USFS 3420, could be naturally transformed with plasmid DNA. Natural plasmid transformation by high-transforming mutants may be a means of plasmid acquisition by natural aquatic bacterial populations.  相似文献   

3.
DNA-mediated genetic changes in Neurospora crassa.   总被引:4,自引:0,他引:4  
Evidence for genetic transformation in Neurospora crassa is based on the observations that allo-DNA has a specific effect in producing transformants which is abolished by DNAase treatment and that iso-DNA is not effective in transformation. Here, unambiguous evidence for genetic transformation is provided by transfer of a temperature-sensitive inositol requirement from a donor to a recipient strain. Data provided also suggest the role of growth conditions and the involvement of a nuclease gene in the DNA uptake and transformation of N. crassa.  相似文献   

4.
The environmental reservoirs for Vibrio cholerae are natural aquatic habitats, where it colonizes the chitinous exoskeletons of copepod molts. Growth of V. cholerae on a chitin surface induces competence for natural transformation, a mechanism for intra-species gene exchange. The antigenically diverse O-serogroup determinants of V. cholerae are encoded by a genetically variable biosynthetic cluster of genes that is flanked on either side by chromosomal regions that are conserved between different serogroups. To determine whether this genomic motif and chitin-induced natural transformation might enable the exchange of serogroup-specific gene clusters between different O serogroups of V. cholerae, a strain of V. cholerae O1 El Tor was co-cultured with a strain of V. cholerae O139 Bengal within a biofilm on the same chitin surface immersed in seawater, and O1-to-O139 transformants were obtained. Serogroup conversion of the O1 recipient by the O139 donor was demonstrated by comparative genomic hybridization, biochemical and serological characterization of the O-antigenic determinant, and resistance of O1-to-O139 transformants to bacteriolysis by a virulent O1-specific phage. Serogroup conversion was shown to have occurred as a single-step exchange of large fragments of DNA. Crossovers were localized to regions of homology common to other V. cholerae serogroups that flank serogroup-specific encoding sequences. This result and the successful serogroup conversion of an O1 strain by O37 genomic DNA indicate that chitin-induced natural transformation might be a common mechanism for serogroup conversion in aquatic habitats and for the emergence of V. cholerae variants that are better adapted for survival in environmental niches or more pathogenic for humans.  相似文献   

5.
Genetic transformation of nonpilated strains of Neisserai gonorrhoeae to pilated forms is described. The transformants displayed phenotypic T1 and T2 colonial morphology on agar and possessed pili visualized by electron microscopy. When T1 or T2 transformant cells were injected into 11-day-old chicken embryos, they exhibited virulence characteristics only slightly less than the parental donor strains, though the parental recipient strains were avirulent. Competence was maximal in the late log phase of growth, and the frequency of transformation of clonal T4s to pilation and virulence approached 2%. DNA extracted from transformants could be used to transform other T4 cells. In the course of this work, a shift to a novel colonial type, designated T2-T3 wrinkled, was observed as a consequence of growth of T4 in presence of enzymatic digests of either DNA or RNA, nucleases or individual deoxy- or ribonucleosides. In sharp distinction to the parental T4, these novel organisms were very pilated; however, they were only minimally virulent. Various nucleic acid analogs could neither induce nor inhibit this population shift. Additionally, DNA extracted from this T2-T3 wrinkled variant could be used to transform genetically both T1 and T4 gonococci to the new morphology.  相似文献   

6.
The protein II (PII) outer membrane proteins of Neisseria gonorrhoeae are a family of heat-modifiable proteins that are subject to phase variation, in which the synthesis of different PII species is turned on and off at a high frequency. Transformation of PII genes from a donor gonococcal strain into a recipient strain was detected with monoclonal antibodies specific for the PII proteins of the donor. Individual PII protein-expressing transformants generally bound only one donor-specific PII monoclonal antibody. Recovery of transformants expressing a donor-specific PII protein depended on the PII protein expression state of the donor: the transformed population bound only monoclonal antibodies specific for PII proteins that were expressed in the donor. Colony variants with an altered frequency of switching of PII protein expression were isolated, but the altered switch phenotype did not cotransform with the PII structural gene. These results provide genetic evidence that PII proteins are the products of different genes and that expressed and unexpressed forms of the PII gene are different from each other.  相似文献   

7.
A mutation (ery-r8) conferring a high level of resistance to erythromycin in the Challis strain of Streptoccus sanguis can be transferred to wild-type erythromycin-sensitive recipients via single molecules of donor DNA. The transformants thus produced are of two types: (1) cells slightly more resistant to erythromycin than wild-type and capable of segregating (at a frequency of 2 X 10(-4)/bacterium/generation) either wild-type or highly-resistant cells like the original donor type; (2) cells phenotypically and genotypically identical to the original donor type. The unstable diploids (ery-r8/+) occur with a frequency equivalent to that obtained with high-efficiency (HE) markers, whereas the stable donor-type (ery-r8) transformants occur with about five hundred times lower frequency. Penetration of the wild-type recipient by more than one molecule of DNA bearing the ery-r8 marker increases by as much as seven times the incidence of stable transformants. UV-irradiation of molecules bearing the ery-r8 marker diminishes their ability to cooperate in producing a stable transformant, although the UV sensitivity of stable transformant production by a single DNA molecule is not different from that of diploid production. Hence, stable transformants do not appear to be produced by a process typical of low efficiency (LE) markers, which are generally highly sensitive to ultraviolet irradiation. Moreover, stable ery-r8 transformants are produced with equally low frequencies in strains of S. pneumoniae that discriminate (hex+) and fail to discriminate (hex--) between HE and LE markers. We postulate that all transformations by the ery-r8 marker result in ery-r8/+ diploids, and that segregation results in the infrequent stable transformants of the original donor type. This hypothesis is supported by the observations that rifampin treatment of ery-r8/+ populations increases the frequency of segregation and similar treatment of wild-type recipients under-going transformation by the ery-r8 marker increases the frequency of stable transformants.--In producing the ery-r8/+ transformant the r8 allele is integrated close to the site of its wild-type homolog, since single molecules of DNA from this transformant can be shown to carry both alleles. Segregation of either the ery-r8 or + allele is not detectably enhanced by acridine orange or thymidine deprivation.--The ery-r8 marker occurs close to a site of mutation (ery-r2) which confers erythromycin resistance upon ribosomes. When the r2 and r8 markers are jointly transferred, ery-r2-r8/+ genomes are produced in which the r2 marker is stably integrated but the r8 marker is unstably adjoined to its wild-type homolog. Thus, the duplicated region can be quite short. When the ery-r8 marker is stably integrated, the region of the marker is refractory to subsequent transformation. Markers with properties like ery-r8 are not particularly rare, being found with a frequency of about 4% among spontaneous mutations to erythromycin resistance.  相似文献   

8.
Pseudomonas stutzeri and related species undergo natural transformation   总被引:19,自引:9,他引:10  
Cells of Pseudomonas stutzeri are naturally transformed by homologous chromosomal DNA; they do not require chemical treatment to become competent. This capacity to undergo natural transformation was found to be shared by the closely related species P. mendocina, P. alcaligenes, and P. pseudoalcaligenes, but was not detectable in strains of P. aeruginosa, P. perfectomarinus, P. putida, P. fluorescens, or P. syringae. P. stutzeri could be transformed either on plates or in liquid medium. Only double-stranded chromosomal DNA was effective; single-stranded DNA and plasmid DNA were not. DNA fragments larger than 10 kilobase pairs were more effective than smaller fragments. The transformation frequency was proportional to DNA concentration from 1 ng/ml to 1 microgram/ml; higher concentrations were saturating. The maximum frequency, about 10(-4) transformants per recipient cell, was obtained with cells from a culture in the early stationary growth phase. A variety of chromosomal mutations have been transformed, including mutations to auxotrophy and to antibiotic resistance. Other systems for genetic exchange in P. stutzeri have not yet been found; transformation offers a means for the genetic analysis of this metabolically versatile organism.  相似文献   

9.
The estuarine bacterium Vibrio strain DI-9 has been shown to be naturally transformable with both broad host range plasmid multimers and homologous chromosomal DNA at average frequencies of 3.5 X 10(-9) and 3.4 X 10(-7) transformants per recipient, respectively. Growth of plasmid transformants in nonselective medium resulted in cured strains that transformed 6 to 42, 857 times more frequently than the parental strain, depending on the type of transforming DNA. These high-frequency-of-transformation (HfT) strains were transformed at frequencies ranging from 1.1 X 10(-8) to 1.3 X 10(-4) transformants per recipient with plasmid DNA and at an average frequency of 8.3 X 10(-5) transformants per recipient with homologous chromosomal DNA. The highest transformation frequencies were observed by using multimers of an R1162 derivative carrying the transposon Tn5 (pQSR50). Probing of total DNA preparations from one of the cured strains demonstrated that no plasmid DNA remained in the cured strains which may have provided homology to the transforming DNA. All transformants and cured strains could be differentiated from the parental strains by colony morphology. DNA binding studies indicated that late-log-phase HfT strains bound [3H]bacteriophage lambda DNA 2.1 times more rapidly than the parental strain. These results suggest that the original plasmid transformation event of strain DI-9 was the result of uptake and expression of plasmid DNA by a competent mutant (HfT strain). Additionally, it was found that a strain of Vibrio parahaemolyticus, USFS 3420, could be naturally transformed with plasmid DNA. Natural plasmid transformation by high-transforming mutants may be a means of plasmid acquisition by natural aquatic bacterial populations.  相似文献   

10.
Batch mating experiments with Pseudomonas putida PAW 1 (TOL) as a donor and Pseudomonas aeruginosa PAO 1162 as a recipient strain were performed to quantify the effect of the substrate concentration in the mating medium on the observed plasmid transfer rate coefficient. The impact of the substrate concentration in the mating medium was highly correlated with the growth history of the donor strain. When the donor strain was harvested in exponential growth phase, no impact was observed; when the donor strain was taken from the stationary phase, however, a strong impact of the substrate concentration was measured: a 10-fold reduction in the substrate concentration decreased the observed plasmid transfer rate by 55%.  相似文献   

11.
The kinetics of appearance of transformants as a function of time of exposure to deoxyribonucleic acid (DNA) was examined in Neisseria meningitidis. Incubation with chloramphenicol for as long as 2 hr, which probably leads to chromosome alignment, resulted in augmentation of the lag period before the appearance of the first transformants. The lag periods thus found were dependent upon the marker tested. This permitted the construction of a time map according to the lag periods observed for individual markers. This map was in general agreement with the chromosome map of the recipient strain as determined by marker frequency analysis. Transformation of recipient cells with chromosomes aligned by growth to the stationary phase showed the same type of increased lag in the appearance of transformants before the logarithmic phase of growth had again been reached. These results support the assumption that the nature of the marker accepted by a recipient cell corresponds to the marker present at the replication point of the chromosome. In the absence of DNA and protein synthesis, the uptake of one marker seems to be successively followed by other markers in a linear order determined by the chromosome of the recipient cell.  相似文献   

12.
A transformation-deficient strain of Haemophilus influenzae, lacking adenosine 5'-triphosphate-dependent deoxyribonuclease activity, was isolated by selection for sensitivity to mitomycin. The mutant, designated JK57, possibily showed a moderate sensitivity to ultraviolet (UV) irradiation and treatment with methyl methane sulfonate. Contrary to the wild type, the mutant degraded chromosomal deoxyribonucleic acid (DNA) to some extent. However, after UV irradiation to the mutant degraded considerably less DNA than the wild type and the TD24 mutant of H. influenzae, the latter being equivalent to a recA mutant of Escherichia coli. A TD2457 double mutant, constructed by transferring the TD24 mutation into the JK57 strain, was as sensitive to deleterious agents and as deficient in transformation as the TD24 single mutant; in the double mutant, however, after UV irradiation chromosomal DNA was degraded to the same extent as in the JK57 mutant. The number of transformants per unit of radioactive donor DNA taken up by JK57 recipient cells was approximately 10-fold smaller than in the wild type. Presynaptically, the fate of donor DNA in the adenosine 5'-triphosphate-dependent deoxyribonuclease-deficient mutants was not different from that in the wild type. In contrast to TD24 and the TD2457 double mutant, in the JK57 mutant, recombinant-type activities (molecules carrying both the donor and recipient markers) were formed almost as well as in the wild type. After integration into the JK57 recipient genome, the rate of replication of the donor marker was equal to that of the recipient marker during a number of generations, which suggests that the donor DNA is normally integrated into the JK57 chromosome. It is suggested that transformed JK57 cells pass with a high frequency into a type of cells that can replicate their chromosomes many times but have lost the ability to form visible colonies after plating.  相似文献   

13.
Trans-kingdom conjugation is a phenomenon by which DNA is transferred into a eukaryotic cell by a bacterial conjugal transfer system. Improvement in this method to facilitate the rapid co-cultivation of donor bacterial and recipient eukaryotic cell cultures could make it the simplest transformation method, requiring neither isolation of vector DNA nor preparation of competent recipient cells. To evaluate this potential advantage of trans-kingdom conjugation, we examined this simple transformation method using vector combinations, helper plasmids, and recipient Saccharomyces cerevisiae strains. Mixing donor Escherichia coli and recipient S. cerevisiae overnight cultures (50 μL each) consistently yielded on the order of 101 transformants using the popular experimental strain BY4742 derived from S288c and a shuttle vector for trans-kingdom conjugation. Transformation efficiency increased to the order of 102 using a high receptivity trans-kingdom conjugation strain. In addition, either increasing the amount of donor cells or pretreating the recipient cells with thiols such as dithiothreitol improved the transformation efficiency by one order of magnitude. This simple trans-kingdom conjugation-mediated transformation method could be used as a practical yeast transformation method upon enrichment of available vectors and donor E. coli strains.  相似文献   

14.
Lactobacillus acidophilus strain 100-33, originally isolated from swine faeces, was transformed to rifampicin resistance with DNA from spontaneous rifampicin-resistant mutants derived from it. Cells of the recipient strain were treated with lysozyme and mutanolysin, mixed with donor DNA and polyethylene glycol and grown on a regeneration medium overnight. After 48 h incubation, the numbers of rifampicin-resistant cells in the populations of regenerated cells were estimated from numbers of colonies. Efficiency of the lysozyme/mutanolysin treatment (the ratio of the number of osmotically fragile cells after the enzyme treatment to the initial cell number) was about 99%. The regeneration frequency of the enzyme-treated cells varied from 5 to 67%. The transformation frequency varied from about 0.2 X 10(-8) to 8.0 X 10(-8) transformants per regenerated cell per microgram DNA. To our knowledge, this method for genetic transformation is the first to be reported for a Lactobacillus strain.  相似文献   

15.
A number of heterologous plasmid deoxyribonucleic acids (DNAs) coding for erythromycin, tylosin, lincomycin, tetracycline, or chloramphenicol resistance have been introduced into Streptococcus pneumoniae via genetic transformation with frequencies that varied between 10(-5) to as high as 5 x 10(-1) per colony-forming unit. Transformation with plasmid DNA required pneumococcal competence, was competed by chromosomal DNA, and showed a saturation at about 0.5 micrograms/ml (with a recipient population of 3 x 10(7) colony-forming units of competent cells per ml). Plasmid transformation did not occur with a recipient strain, 410, defective in endonuclease I activity and in chromosomal genetic transformation. All erythromycin-resistant transformants examined contained covalently closed circular DNA with the same electrophoretic mobility on agarose gels as the donor DNAs, and when examined in detail the plasmid reisolated from the transformants had the same restriction patterns and the same specific transforming activity as the donor DNA. In the cases of two plasmids examined in detail--pAM77 and pSA5700 Lc9--most of the transforming activity was associated with DNA monomers; DNA multimers present in pSA5700 Lc9 also had biological activity. An unexpected finding was the demonstration of transformation (2 x 10(-5) per colony-forming unit) with plasmid DNAs linearized by treatment with S1 nuclease or with restriction endonucleases.  相似文献   

16.
Deoxyribonucleic acid (DNA) of Bacillus subtilis var. amylosacchariticus showed almost the same ability as B. subtilis Marburg to induce transfer of several genetic markers in DNA-mediated transformation. DNA-DNA hybridization data also showed an intimate relationship between the two strains. Genetic elements involved in the production of extracellular alpha-amylase (EC 3.2.1.1.) in B. subtilis var. amylosacchariticus were studied by using DNA-mediated transformation. Two Marburg derivatives, NA20(amyR2) and NA20-22(amyR1), produced about 50 and 10 U of alpha-amylase per mg of cells, respectively, whereas B. subtilis var. amylosacchariticus produced as much as 150 U of the enzyme per mg of cells. When B. subtilis var. amylosacchariticus was crossed with strain NA20-22 as recipient, transformants that acquired high alpha-amylase productivity (about 50 U/mg of cells) were obtained. Genetic analysis revealed that a regulator gene (amyR) for alpha-amylase synthesis was found in B. subtilis var. amylosacchariticus, as in the case of B. natto 1212 (amyR2) and B. subtilis Marburg (amyR1). The allele was designated amyR3; it is phenotypically indistinguishable from amyR2, but is readily distinguishable from amyR1. The presence of amyR3 was not sufficient for an organism to render production of an exceptional amount of alpha-amylase. Extra-high alpha-amylase producers could be obtained by crossing B. subtilis var. amylosacchariticus as donor with strain NA20 as recipient. The transformants produced the same or even greater amounts of the enzyme than the donor strain. Results suggest the presence of another gene that is involved in the production of the exceptional amount of alpha-amylase.  相似文献   

17.
Transformation During Mixed Pneumococcal Infection of Mice   总被引:6,自引:1,他引:5       下载免费PDF全文
The recent demonstration by others of transformation during peritoneal infection of mice by two genetically distinct pneumococcal strains supports the notion that transformation may be significant in pneumococcal infection in nature. These studies confirm the occurrence of transformation during mixed infection of mice and define some conditions for its occurrence and its significance. Mice were inoculated with deoxyribonucleic acid (DNA) donor (small type III capsule, low virulence, streptomycin-susceptible) and recipient (noncapsulated, low virulence, streptomycin-resistant) pneumococci, and the bacteremia in mice that died was evaluated. Transformants (large type III capsule, virulent, streptomycin-resistant) were isolated from up to 80% of mice that died from mixed peritoneal infection. Transformation occurred in mice that received donor and recipient 6 hr apart; hence, active DNA was released and competence developed during growth in vivo. Transformation was detected only with progressive infection by both strains, and then transformants were few in the blood and apparently were not responsible for the death of the animals. In doubly infected mice treated with streptomycin, transformation was enhanced; transformants numerically dominated the bacteremia and seemed to cause the death of the mice. Transformation was also demonstrated for the first time during infection of the respiratory tract.  相似文献   

18.
Two techniques, electroporation and conjugation, have been used to introduce the RK2-based broad-host-range plasmids pRK415 and pLAFR3 into strains of the bacterial genus Acidiphilium. Using electroporation, cells were also transformed with a series of chimeric plasmids constructed by cloning cryptic Acidiphilium plasmids into the Escherichia coli vector pBR328. Various parameters affecting electroporation were investigated. Transformation efficiency varied widely with different recipient strains. Growth at an elevated temperature (37 degrees C) prior to electroporation increased transformation efficiency 10-fold compared with growth at 32 degrees C. For three strains tested, optimum transformation efficiency was obtained with field strengths of 10-15 kV/cm. Transformation efficiency increased linearly with increasing DNA concentration up to 10 micrograms/mL. Transformation efficiencies in these experiments ranged up to 10(4) transformants/micrograms DNA. Mobilization of pRK415 and pLAFR3 from E. coli strain S17.1 into several Acidiphilium strains was achieved following incubation for 3 h on nutrient agar medium (pH 7.0). Conjugation frequencies in the range of 10(-5)-10(-9) per recipient cell were obtained. Conjugation frequency was also dependent on recipient strain.  相似文献   

19.
Under optimal conditions, the cyanobacterium Anacystis nidulans R2 was transformed to ampicillin resistance at frequencies of greater than 10(7) transformants per microgram of plasmid (pCH1) donor DNA. No stringent period of competency was detected, and high frequencies of transformation were achieved with cultures at various growth stages. Transformation increased with time after addition of donor DNA up to 15 to 18 h. The peak of transformation efficiency (transformants/donor molecule) occurred at plasmid concentrations of 125 to 325 ng/ml with an ampicillin resistance donor plasmid (pCH1) and 300 to 625 ng/ml for chloramphenicol resistance conferred by plasmid pSG111. The efficiency of transformation was enhanced by excluding light during the incubation or by blocking photosynthesis with the electron transport inhibitor 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea (DCMU) or the uncoupler carbonyl cyanide-m-chlorophenyl hydrazone. Preincubation of cells in darkness for 15 to 18 h before addition of donor DNA significantly decreased transformation efficiency. Growth of cells in iron-deficient medium before transformation enhanced efficiency fourfold. These results were obtained with selection for ampicillin (pCH1 donor plasmid)- or chloramphenicol (pSG111 donor plasmid)-resistant transformants. Approximately 1,000 transformants per microgram were obtained when chromosomal DNA from an herbicide (DCMU)-resistant mutant was used as donor DNA. DCMU resistance was also transferred to recipient cells by using restriction fragments of chromosomal DNA from DCMU-resistant mutants. This procedure allowed size classes of fragments to be assayed for the presence of the DCMU resistance gene.  相似文献   

20.
An altered β-tubulin gene that confers resistance to the fungicide benomyl was isolated from a genomic library of a UV-induced mutant of Cercospora kikuchii and used as a selectable marker for transformation. The level of benomyl resistance conferred to the transformants was at least 150-fold greater than the intrinsic resistance of the C. kikuchii recipient protoplasts. In the majority of cases, the tubulin fragment was integrated at the native β-tubulin locus, apparently by gene replacement or gene conversion. The frequency of transformation ranged from 0.2 to 6 transformants per μg of DNA, depending on the recipient strain. Transformation with linearized plasmid resulted in a higher frequency, without changing the type of integration event. Transformants were phenotypically stable after eight consecutive transfers on medium without benomyl. This is the first report of a genetic transformation system for a Cercospora species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号