首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Rab coupling protein (RCP) is a recently identified novel protein that belongs to the Rab11-FIP family. RCP interacts specifically with Rab4 and Rab11, small guanosine-5'-triphosphatases that function as regulators along the endosomal recycling pathway. We used fluorescence confocal microscopy and biochemical approaches to evaluate the participation of RCP during particle uptake and phagosome maturation. In macrophages, RCP is predominantly membrane-bound and displays a punctuate vesicular pattern throughout the cytoplasm. RCP is mainly associated with transferrin-containing structures and Rab11-labeled endosomes. Overexpression of H13, the carboxyl-terminal region of RCP that contains the Rab binding domain, results in an abnormal endosomal compartment. Interestingly, we found that RCP is associated as discrete patches or protein domains to early phagosomal membranes. In macrophages, overexpression of full-length RCP stimulates recycling from the phagosomal compartment, whereas overexpression of H13 diminishes this vesicular transport step. It is likely that acting as an intermediate between Rab4 and Rab11, RCP regulates membrane flux along the phagocytic pathway via recycling events.  相似文献   

2.
Background information. Rab11 and Rab14 are two related Rab GTPases that are believed to function in endosomal recycling and Golgi/endosome transport processes. We, and others, have identified a group of proteins that interact with Rab11 and function as Rab11 effectors, known as the Rab11‐FIPs (family interacting proteins). This protein family has been sub‐classified into two groups—class I FIPs [FIP2, RCP (Rab coupling protein) and Rip11 (Rab11‐interacting protein)] and class II FIPs (FIP3 and FIP4). Results. In the present study we identify the class I FIPs as dual Rab‐binding proteins by demonstrating that they also interact with Rab14 in a GTP‐dependent manner. We show that these interactions are specific for the class I FIPs and that they occur via their C‐terminal regions, which encompass the previously described RBD (Rab11‐binding domain). Furthermore, we show that Rab14 significantly co‐localizes with the TfnR (transferrin receptor) and that Rab14 Q70L co‐localizes with Rab11a and with the class I FIPs on the ERC (endosomal recycling compartment) during interphase. Additionally, we show that during cytokinesis Rab14 localizes to the cleavage furrow/midbody. Conclusions. The data presented in the present study, which identifies the class I FIPs as the first putative effector proteins for the Rab14 GTPase, indicates greater complexity in the Rab‐binding specificity of the class I FIP proteins.  相似文献   

3.
Rab coupling protein (RCP) is a member of the Rab11-family of interacting proteins (Rab11-FIPs). Family members are characterised by their ability to interact with Rab11. This property is mediated by a conserved Rab binding domain (RBD) located at their carboxy-termini. Several Rab11-FIPs can also interact with other small GTPases. RCP interacts with Rab4 in addition to Rab11. To dissect out the individual properties of the Rab4 and Rab11 interactions with RCP, conserved amino acids within the RBD of RCP were mutated by site-directed mutagenesis. The effect of these mutations on Rab4 and Rab11 binding, and the intracellular localisation of RCP, was examined. Our results indicate that Rab11, rather than Rab4, mediates the intracellular localisation of RCP, and that the class I Rab11-FIPs compete for binding to Rab11.  相似文献   

4.
Rab coupling protein (RCP), a novel Rab4 and Rab11 effector protein.   总被引:18,自引:0,他引:18  
Rab4 and Rab11 are small GTPases belonging to the Ras superfamily. They both function as regulators along the receptor recycling pathway. We have identified a novel 80-kDa protein that interacts specifically with the GTP-bound conformation of Rab4, and subsequent work has shown that it also interacts strongly with Rab11. We name this protein Rab coupling protein (RCP). RCP is predominantly membrane-bound and is expressed in all cell lines and tissues tested. It colocalizes with early endosomal markers including Rab4 and Rab11 as well as with the transferrin receptor. Overexpression of the carboxyl-terminal region of RCP, which contains the Rab4- and Rab11-interacting domain, results in a dramatic tubulation of the transferrin compartment. Furthermore, expression of this mutant causes a significant reduction in endosomal recycling without affecting ligand uptake or degradation in quantitative assays. RCP is a homologue of Rip11 and therefore belongs to the recently described Rab11-FIP family.  相似文献   

5.
The Rab11-FIP/Rip/RCP proteins are a recently described novel protein family, whose members interact with Rab GTPases that function in endosomal recycling. To date, five such proteins have been described in humans, all of which interact with Rab11, and one (RCP) also interacts with Rab4. Here, we characterise several of these proteins with respect to their ability to interact with Rab4, as well as their ability to self-interact, and to interact with each other. We now demonstrate that two of the family members-pp75/Rip11 and Rab11-FIP3 do not bind Rab4 and show that several members of the family can self-interact and interact with each other. These interactions primarily involve their C-terminal end which includes the Rab binding domain (RBD) that is contained within a predicted coiled-coil, or ERM motif. We identify a new (sixth) member of the protein family, which we propose to name Rab11-FIP4, and report the family evolutionary complexity and chromosomal distribution. Furthermore, we propose that the ability of these proteins to bind each other will be important in effecting membrane trafficking events by forming protein 'platforms,' regulated by Rab11 and/or Rab4 activity.  相似文献   

6.
Several Rabs, including Rab11, regulate the traffic and sorting of proteins in the endosomal pathway. Recently, six novel Rab11 family interacting proteins (FIPs) were identified. Although they share little overall sequence homology, all FIPs contain a conserved Rab11-binding domain. Here we investigate the role of FIPs as Rab11-targeting proteins and show that the Rab11-binding domain assumes an alpha-helical structure, with the conserved residues forming a hydrophobic Rab11-binding patch. This hydrophobic patch mediates the formation of mutually exclusive complexes between Rab11 and various members of FIP protein family. Furthermore, the formation of Rab11/FIP complexes regulates Rab11 localization by recruiting it to distinct endocytic compartments. Thus, we propose that Rab11/FIP complexes serve as targeting patches, regulating Rab11 localization and recruitment of additional cellular factors to different endocytic compartments.  相似文献   

7.
We have recently identified Rab11-FIP4 as the sixth member of the Rab11-FIP family of Rab11 interacting proteins. Here, we demonstrate that Rab11-FIP4 interacts with Rab11 in a GTP-dependent manner and that its C-terminal region allows the protein to self-interact and interact with pp75/Rip11, Rab11-FIP2, and Rab11-FIP3. However, Rab11-FIP4 does not appear to interact directly with Rab coupling protein (RCP). We investigated the subcellular localisation of Rab11-FIP4 in HeLa cells and show that it colocalises extensively with transferrin and with Rab11. Furthermore, when overexpressed, it causes a condensation of the Rab11 compartment in the perinuclear region. We demonstrate that the carboxy-terminal region of Rab11-FIP4 (Rab11-FIP4(C-ter)) is necessary and sufficient for its endosomal membrane association. Expression of Rab11-FIP4(C-ter) causes a dispersal of the Rab11 compartment towards the cell periphery and does not inhibit transferrin recycling in HeLa cells. It is likely that Rab11-FIP4 serves as a Rab11 effector in a Rab11 mediated function other than transferrin recycling.  相似文献   

8.
Rab11-FIP2 is a member of a newly identified family of Rab11-binding proteins that have been implicated in the function of recycling endosomes. Here we show that Rab11-FIP2 may also be involved with the process of receptor-mediated endocytosis. First we demonstrate that Rab11-FIP2 contains an NPF motif that allows it to bind Reps1, a member of a family of EH domain proteins involved in endocytosis. We also show that Rab11-FIP2 associates with the alpha-adaptin subunit of AP-2 complexes, which are known to recruit receptors into clathrin-coated vesicles. Finally, we find that overexpression of Rab11-FIP2 suppresses the internalization of epidermal growth factor receptors, but not transferrin receptors, through binding sites that promote complex formation with Rab11, Reps1, and alpha-adaptin. These findings suggest that Rab11-FIP2 may participate in the coupling of receptor-mediated endocytosis to the subsequent sorting of receptor-containing vesicles in endosomes.  相似文献   

9.
10.
Rab GTPases recruit effector proteins, via their GTP-dependent switch regions, to distinct subcellular compartments. Rab11 and Rab25 are closely related small GTPases that bind to common effectors termed the Rab11 family of interacting proteins (FIPs). The FIPs are organized into two subclasses (class I and class II) based on sequence and domain organization, and both subclasses contain a highly conserved Rab-binding domain at their C termini. Yeast two-hybrid and biochemical studies have revealed that the more distantly related Rab14 also interacts with class I FIPs. Here, we perform detailed structural, thermodynamic, and cellular analyses of the interactions between Rab14 and one of the class I FIPs, the Rab-coupling protein (RCP), to clarify the molecular aspects of the interaction. We find that Rab14 indeed binds to RCP, albeit with reduced affinity relative to conventional Rab11-FIP and Rab25-FIP complexes. However, in vivo, Rab11 recruits RCP onto biological membranes. Furthermore, biophysical analyses reveal a noncanonical 1:2 stoichiometry between Rab14-RCP in dilute solutions, in contrast to Rab11/25 complexes. The structure of Rab14-RCP reveals that Rab14 interacts with the canonical Rab-binding domain and also provides insight into the unusual properties of the complex. Finally, we show that both the Rab coupling protein and Rab14 function in neuritogenesis.  相似文献   

11.
Sorting endosomes and the endocytic recycling compartment are critical intracellular stores for the rapid recycling of internalized membrane receptors to the cell surface in multiple cell types. However, the molecular mechanisms distinguishing fast receptor recycling from sorting endosomes and slow receptor recycling from the endocytic recycling compartment remain poorly understood. We previously reported that Rab15 differentially regulates transferrin receptor trafficking through sorting endosomes and the endocytic recycling compartment, suggesting a role for distinct Rab15-effector interactions at these endocytic compartments. In this study, we identified the novel protein Rab15 effector protein (REP15) as a binding partner for Rab15-GTP. REP15 is compartment specific, colocalizing with Rab15 and Rab11 on the endocytic recycling compartment but not with Rab15, Rab4, or early endosome antigen 1 on sorting endosomes. REP15 interacts directly with Rab15-GTP but not with Rab5 or Rab11. Consistent with its localization, REP15 overexpression and small interfering RNA-mediated depletion inhibited transferrin receptor recycling from the endocytic recycling compartment, without affecting receptor entry into or recycling from sorting endosomes. Our data identify REP15 as a compartment-specific protein for receptor recycling from the endocytic recycling compartment, highlighting that the rapid and slow modes of transferrin receptor recycling are mechanistically distinct pathways.  相似文献   

12.
The Rab11-FIPs (Rab11-family interacting proteins; henceforth, FIPs) are a family of Rab11a/Rab11b/Rab25 GTPase effector proteins implicated in an assortment of intracellular trafficking processes. Through proteomic screening, we have identified TSG101 (tumor susceptibility gene 101), a component of the ESCRT-I (endosomal sorting complex required for transport) complex, as a novel FIP4-binding protein, which we find can also bind FIP3. We show that α-helical coiled-coil regions of both TSG101 and FIP4 mediate the interaction with the cognate protein, and that point mutations in the coiled-coil regions of both TSG101 and FIP4 abrogate the interaction. We find that expression of TSG101 and FIP4 mutants cause cytokinesis defects, but that the TSG101-FIP4 interaction is not required for localisation of TSG101 to the midbody/Flemming body during abscission. Together, these data suggest functional overlap between Rab11-controlled processes and components of the ESCRT pathway.  相似文献   

13.
Rab11, a low molecular weight GTP-binding protein, has been shown to play a key role in a variety of cellular processes, including endosomal recycling, phagocytosis, and transport of secretory proteins from the trans-Golgi network. In this study we have described a novel Rab11 effector, EF-hands-containing Rab11-interacting protein (Eferin). In addition, we have identified a 20-amino acid domain that is present at the C terminus of Eferin and other Rab11/25-interacting proteins, such as Rip11 and nRip11. Using biochemical techniques we have demonstrated that this domain is necessary and sufficient for Rab11 binding in vitro and that it is required for localization of Rab11 effector proteins in vivo. The data suggest that various Rab effectors compete with each other for binding to Rab11/25 possibly accounting for the diversity of Rab11 functions.  相似文献   

14.
It is believed that mitochondrial dynamics is coordinated with endosomal traffic rates during cytoskeletal remodeling, but the mechanisms involved are largely unknown. The adenovirus early region 4 ORF4 protein (E4orf4) subverts signaling by Src family kinases (SFK) to perturb cellular morphology, membrane traffic, and organellar dynamics and to trigger cell death. Using E4orf4 as a model, we uncovered a functional connection between mitochondria-shaping proteins and the small GTPase Rab11a, a key regulator of polarized transport via recycling endosomes. We found that E4orf4 induced dramatic changes in the morphology of mitochondria along with their mobilization at the vicinity of a polarized actin network typifying E4orf4 action, in a manner controlled by SFK and Rab11a. Mitochondrial remodeling was associated with increased proximity between Rab11a and mitochondrial membranes, changes in fusion-fission dynamics, and mitochondrial relocalization of the fission factor dynamin-related protein 1 (Drp1), which was regulated by the Rab11a effector protein FIP1/RCP. Knockdown of FIP1/RCP or inhibition of Drp1 markedly impaired mitochondrial remodeling and actin assembly, involving Rab11a-mediated mitochondrial dynamics in E4orf4-induced signaling. A similar mobilization of mitochondria near actin-rich structures was mediated by Rab11 and Drp1 in viral Src-transformed cells and contributed to the biogenesis of podosome rosettes. These findings suggest a role for Rab11a in the trafficking of Drp1 to mitochondria upon SFK activation and unravel a novel functional interplay between Rab11a and mitochondria during reshaping of the cell cytoskeleton, which would facilitate mitochondria redistribution near energy-requiring actin-rich structures.  相似文献   

15.
Rab11-FIP2 is a recently described member of the Rip11/Rab11-FIP/Rab coupling protein family of Rab11 interacting proteins. Rab11-FIP2 interacts with both Rab11 and myosin Vb and co-localizes with Rab11 in both HeLa and Madin-Darby canine kidney cells (Hales, C. M., Griner, R., Hobdy-Henderson, K. C., Dorn, M. C., Hardy, D., Kumar, R., Navarre, J., Chan, E. K., Lapierre, L. A., and Goldenring, J. R. (2001) J. Biol. Chem. 276, 39067-390751). Here, we characterized the specificity of the interaction between Rab11-FIP2 and Rab11 and report that it does not interact with Rab4, Rab3, Rab5, Rab6, or Rab7. We demonstrate that the COOH-terminal region of Rab11-FIP2, which contains the Rab11 binding domain (RBD), is necessary and sufficient for its early endosomal membrane association. In contrast, the amino-terminal region, which contains a phospholipid binding C2-domain, by itself was insufficient for membrane binding. Expression of a deletion mutant of Rab11-FIP2, containing the RBD, caused tubulation of a transferrin receptor-positive early endosomal compartment in HeLa cells. Endogenous Rab11 was also associated with this compartment. This phenotype cannot be reversed by excess wild-type Rab11, or dominant-positive Rab11 (Rab11Q70L), suggesting that Rab11-FIP2 functions downstream of Rab11 in endosomal trafficking.  相似文献   

16.
cGMP-dependent protein kinase II (cGK-II) is implicated in several physiological functions including intestinal secretion, bone growth, and learning and memory, but the detailed mechanisms are still unclear. To identify proteins that are involved in cGMP/cGK-II signaling, we performed yeast two-hybrid screening and identified Rab11b as a cGK-II-interacting protein that regulates the slow-recycling pathway. Interestingly, cGK-II interacted with the GDP-bound form of Rab11b (Rab11b S25N), but not the GTP-bound form, in mammalian cells. Immunofluorescence staining revealed that Rab11b S25N promoted the translocation of cGK-II from the plasma membrane to the cytoplasm and that the localization of cGK-II extensively overlapped with Rab11b. Furthermore, treatment with a membrane-permeable cGMP analog caused the rapid retranslocation of cGK-II and Rab11b S25N to the membrane. These data indicate that Rab11b is necessary for the trafficking of cGK-II and that the cGMP/cGK-II signaling pathway is closely related to Rab11b recycling pathway.  相似文献   

17.
Synaptotagmin-like proteins 1-4 (Slp1-4) are new members of the carboxyl-terminal-type (C-type) tandem C2 proteins and are classified as a subfamily distinct from the synaptotagmin and the Doc2 families, because the Slp family contains a unique homology domain at the amino terminus, referred to as the Slp homology domain (SHD). We previously showed that the SHD functions as a binding site for Rab27A, which is associated with human hemophagocytic syndrome (Griscelli syndrome) [J. Biol. Chem. 277 (2002) 9212; J. Biol. Chem. 277 (2002) 12432]. In the present study, we identified a novel member of the Slp family, Slp5. The same as other Slp family members, the SHD of Slp5 preferentially interacted with the GTP-bound form of Rab27A and marginally with Rab3A and Rab6A, both in vitro and in intact cells, but not with other Rabs tested (Rab1, Rab2, Rab4A, Rab5A, Rab7, Rab8, Rab9, Rab10, Rab11A, Rab17, Rab18, Rab20, Rab22, Rab23, Rab25, Rab28, and Rab37). However, unlike other members of the Slp family, expression of Slp5 mRNA was highly restricted to human placenta and liver. Expression of Slp5 protein and in vivo association of Slp5 with Rab27A in the mouse liver were further confirmed by immunoprecipitation. The results suggest that Slp5 might be involved in Rab27A-dependent membrane trafficking in specific tissues.  相似文献   

18.
A longstanding question in cell biology is how is the routing of intracellular organelles within cells regulated? Although data support the involvement of Rab4 and Rab11 GTPases in the recycling pathway, the function of Rab11 in particular is uncertain. Here we have analyzed the association of these two Rab GTPases with the Fc receptor, FcRn, during intracellular trafficking. This Fc receptor is both functionally and structurally distinct from the classical Fcgamma receptors and transports immunoglobulin G (IgG) within cells. FcRn is therefore a recycling receptor that sorts bound IgG from unbound IgG in sorting endosomes. In the current study we have used dual color total internal reflection fluorescence microscopy (TIRFM) and wide-field imaging of live cells to analyze the events in human endothelial cells that are involved in the trafficking of FcRn positive (FcRn(+)) recycling compartments from sorting endosomes to exocytic sites at the plasma membrane. Our data are consistent with the following model for this pathway: FcRn leaves sorting endosomes in Rab4(+)Rab11(+) or Rab11(+) compartments. For Rab4(+)Rab11(+) compartments, Rab4 depletion occurs by segregation of the two Rab proteins into discrete domains that can separate. The Rab11(+)FcRn(+) vesicle or tubule subsequently fuses with the plasma membrane in an exocytic event. In contrast to Rab11, Rab4 is not involved in exocytosis.  相似文献   

19.
Dual-specific A-kinase-anchoring protein 2 (D-AKAP2/AKAP10), which interacts at its carboxyl terminus with protein kinase A and PDZ domain proteins, contains two tandem regulator of G-protein signaling (RGS) domains for which the binding partners have remained unknown. We show here that these RGS domains interact with Rab11 and GTP-bound Rab4, the first demonstration of RGS domains binding small GTPases. Rab4 and Rab11 help regulate membrane trafficking through the endocytic recycling pathways by recruiting effector proteins to specific membrane domains. Although D-AKAP2 is primarily cytosolic in HeLa cells, a fraction of the protein localizes to endosomes and can be recruited there to a greater extent by overexpression of Rab4 or Rab11. D-AKAP2 also regulates the morphology of the Rab11-containing compartment, with co-expression causing accumulation of both proteins on enlarged endosomes. Knockdown of D-AKAP2 by RNA interference caused a redistribution of both Rab11 and the constitutively recycling transferrin receptor to the periphery of cells. Knockdown also caused an increase in the rate of transferrin recycling, suggesting that D-AKAP2 promotes accumulation of recycling proteins in the Rab4/Rab11-positive endocytic recycling compartment.  相似文献   

20.
Wei J  Fain S  Harrison C  Feig LA  Baleja JD 《Biochemistry》2006,45(22):6826-6834
The Rab11-family interacting protein (Rab11-FIP) group of effector proteins contain a highly conserved region in their C-termini that bind the GTPase, Rab11. Rab11 belongs to the largest family of small GTPases and is believed to regulate vesicle docking with target membranes and vesicle fusion. The amino acid sequence of the Rab11-FIP proteins predicts coiled-coil formation in the conserved C-terminal domain. In this study on Rab11-FIP2, we found experimental evidence for the coiled-coil and then defined the minimal structured core using limited proteolysis. We also showed that the Rab11-FIP2 coiled-coil domain forms a parallel homodimer in solution using cross-linking and mutagenesis and sedimentation equilibrium experiments. Various constructs representing the C-terminal domain of Rab11-FIP2 were characterized by circular dichroism, and their affinity with Rab11 was measured using isothermal titration calorimetry. The longest construct was both well-structured and bound Rab11. A construct truncated at the N-terminus was poorly structured but retained the same affinity for binding to Rab11. Conformational changes were also demonstrated upon complex formation between Rab11 and Rab11-FIP2. A construct truncated at the C-terminus, which was the minimal coiled-coil domain defined by limited proteolysis, did not retain the ability to interact with Rab11, although it was as well-structured as the longer peptide. These data show that coiled-coil formation and Rab11 binding are separable functions of the C-terminal domain of Rab11-FIP2. The dissection of Rab11 binding from the formation of defined structure in a coiled-coil provides a potential mechanism for regulating Rab11-dependent endosomal trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号