首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resting cells experience mutations without apparent external mutagenic influences. Such DNA replication-independent mutations are suspected to be a consequence of processing of spontaneous DNA lesions. Using experimental systems based on reversions of frameshift alleles in Saccharomyces cerevisiae, we evaluated the impact of defects in DNA double-strand break (DSB) repair on the frequency of replication-independent mutations. The deletion of the genes coding for Ku70 or DNA ligase IV, which are both obligatory constituents of the non-homologous end joining (NHEJ) pathway, each resulted in a 50% reduction of replication-independent mutation frequency in haploid cells. Sequencing indicated that typical NHEJ-dependent reversion events are small deletions within mononucleotide repeats, with a remarkable resemblance to DNA polymerase slippage errors. Experiments with diploid and RAD52- or RAD54-deficient strains confirmed that among DSB repair pathways only NHEJ accounts for a considerable fraction of replication-independent frameshift mutations in haploid and diploid NHEJ non-repressed cells. Thus our results provide evidence that G(0) cells with unrepressed NHEJ capacity pay for a large-scale chromosomal stability with an increased frequency of small-scale mutations, a finding of potential relevance for carcinogenesis.  相似文献   

2.
Reversions of an auxotrophy-causing frameshift allele during prolonged starvation of yeast cells were used as a means to elucidate the mechanisms concerned with the generation of spontaneous adaptive mutations in cell cycle-arrested cells. Whereas about 50% of these reversions were previously shown to depend on the non-homologous end joining pathway of DNA double-strand break repair, the origin of the residual 50% remains unknown. In search for a mechanism for generation of the latter fraction of reversions we examined the role of the translesion synthesis (TLS) polymerases zeta, eta and Rev1p in cells with wild-type or impaired nucleotide excision repair (NER) capacity. The basal level of adaptive mutations in the repair-proficient wild type was not influenced by disruptions of the genes coding for these three TLS polymerases. Intriguingly, a deficiency in NER by disruption of RAD14, RAD16 or RAD26 resulted in a significantly higher frequency of adaptive mutation, yet this increase was strictly dependent on an intact REV3 gene, coding for the catalytic subunit of polymerase zeta. Furthermore, we observed that intact REV3 was also required for the occurrence of increased frequencies of adaptive mutants in the NER-proficient wild type following UV irradiation. While in proliferating cells the translesion synthesis function of polymerase zeta is connected to DNA replication, our data suggest that in cell cycle-arrested cells this enzyme is able to carry out either TLS or error-prone polymerization along an undamaged template in the course of repair processes. Such a hitherto unappreciated activity of polymerase zeta in non-replicating cells may contribute to the incidence of mutations in evolution, aging and cancer.  相似文献   

3.
DNA double-strand breaks (DSBs) are the most serious forms of DNA damage in cells. Unrepaired or misrepaired DSBs account for some of the genetic instabilities that lead to mutations or cell death, and consequently, to cancer predisposition. In human cells non-homologous DNA end joining (NHEJ) is the main repair mechanism of these breaks. Systems for DNA end joining study have been developing during the last 20 years. New assays have some advantages over earlier in vitro DSBs repair assays because they are less time-consuming, allow the use of clinical material and examination of the joining DNA ends produced physiologically in mammalian cells. Proteins involved in NHEJ repair pathway can serve as biomarkers or molecular targets for anticancer drugs. Results of studies on NHEJ in cancer could help to select potent repair inhibitors that may selectively sensitize tumor cells to ionizing radiation (IR) and chemotherapy. Here, we review the principles and practice of in vitro NHEJ assays and provide some insights into the future prospects of this assay in cancer diagnosis and treatment.  相似文献   

4.
DNA double-strand breaks (DSBs) occur at random upon genotoxic stresses and represent obligatory intermediates during physiological DNA rearrangement events such as the V(D)J recombination in the immune system. DSBs, which are among the most toxic DNA lesions, are preferentially repaired by the nonhomologous end-joining (NHEJ) pathway in higher eukaryotes. Failure to properly repair DSBs results in genetic instability, developmental delay, and various forms of immunodeficiency. Here we describe five patients with growth retardation, microcephaly, and immunodeficiency characterized by a profound T+B lymphocytopenia. An increased cellular sensitivity to ionizing radiation, a defective V(D)J recombination, and an impaired DNA-end ligation process both in vivo and in vitro are indicative of a general DNA repair defect in these patients. All five patients carry mutations in the Cernunnos gene, which was identified through cDNA functional complementation cloning. Cernunnos/XLF represents a novel DNA repair factor essential for the NHEJ pathway.  相似文献   

5.
Repair of DNA double strand breaks (DSBs) is critical for the maintenance of genome integrity. DNA DSBs can be repaired by either homologous recombination (HR) or nonhomologous end-joining (NHEJ). Whilst HR requires sequences homologous to thedamaged DNA template in order to facilitate repair, NHEJ occurs through recognition of DNA DSBs by a variety of proteins that process and rejoin DNA termini by direct ligation. Here we review two recent reports that NHEJ is conserved in the social amoebaDictyostelium discoideum. Certain components of the mammalian NHEJ pathway that are absent in genetically tractable organisms such as yeast are present in Dictyostelium and we discuss potential directions for future research, in addition to considering this organism as a genetic model system for the study of NHEJ in vivo.  相似文献   

6.
Mechanism of DNA double-strand break repair by non-homologous end joining   总被引:14,自引:0,他引:14  
The repair of DNA double-strand breaks (DSBs) is critical for maintaining genome stability. Although the non-homologous end joining (NHEJ) pathway frequently results in minor changes in DNA sequence at the break site and occasionally the joining of previously unlinked DNA molecules, it is a major contributor to cell survival following exposure of mammalian cells to agents that cause DSBs. This repair mechanism is conserved in lower eukaryotes and in some prokaryotes although the majority of DSBs are repaired by recombinational repair pathways in these organisms. Here we will describe the biochemical properties of NHEJ factors from bacteria, Saccharomyces cerevisiae and mammals, and how physical and functional interactions among these factors co-ordinate the repair of DSBs.  相似文献   

7.
The ends of chromosomal DNA double-strand breaks (DSBs) can be accurately rejoined by at least two discrete pathways, homologous recombination and nonhomologous end-joining (NHEJ). The NHEJ pathway is essential for repair of specific classes of DSB termini in cells of the budding yeast Saccharomyces cerevisiae. Endonuclease-induced DSBs retaining complementary single-stranded DNA overhangs are repaired efficiently by end-joining. In contrast, damaged DSB ends (e.g., termini produced by ionizing radiation) are poor substrates for this pathway. NHEJ repair involves the functions of at least 10 genes, including YKU70, YKU80, DNL4, LIF1, SIR2, SIR3, SIR4, RAD50, MRE11, and XRS2. Most or all of these genes are required for efficient recombination-independent recircularization of linearized plasmids and for rejoining of EcoRI endonuclease-induced chromosomal DSBs in vivo. Several NHEJ mutants also display aberrant processing and rejoining of DSBs that are generated by HO endonuclease or formed spontaneously in dicentric plasmids. In addition, all NHEJ genes except DNL4 and LIF1 are required for stabilization of telomeric repeat sequences. Each of the proteins involved in NHEJ appears to bind, directly or through protein associations, with the ends of linear DNA. Enzymatic and/or structural roles in the rejoining of DSB termini have been postulated for several proteins within the group. Most yeast NHEJ genes have homologues in human cells and many biochemical activities and protein:protein interactions have been conserved in higher eucaryotes. Similarities and differences between NHEJ repair in yeast and mammalian cells are discussed.  相似文献   

8.
Adaptive or selection-induced mutations are defined as mutations that occur in non-dividing cells as a response to prolonged non-lethal selective pressure such as starvation for an essential amino acid. In the absence of DNA replication, the processing of endogenous DNA lesions by repair enzymes probably acts as a source of mutations. We are studying selection-induced reversions of frameshift alleles in the eukaryote Saccharomyces cerevisiae. Here we show that respiration-deficient strains, totally devoid of mitochondrial DNA, yield selection-induced mutants at slightly elevated frequencies compared to isonucleic respiration-competent strains. Therefore factors of mitochondrial origin such as reactive oxygen species or hypothetical recombinogenic DNA fragments are unlikely to be mediators of selection-induced nuclear frameshift mutation in yeast. Furthermore we compared sequence spectra of reversions of the +1 hom3-10 frameshift allele and found a strong preference for ?1 deletions in mononucleotide repeats in selection-induced and replication-dependent revertants, indicating slippage errors during DNA repair synthesis as well as during DNA replication. Remarkably, a higher degree of variation in the site of the reverting frameshift and accompanying base substitutions was found among selection-induced revertants.  相似文献   

9.
DNA double strand breaks (DSBs) are usually repaired through either non-homologous end-joining (NHEJ) or homologous recombination (HR). While HR is basically error-free repair, NHEJ is a mutagenic pathway that leads to deletion. NHEJ must be precisely regulated to maintain genomic integrity. To clarify the role of NHEJ, we investigated the genetic consequences of NHEJ repair of DSBs in human cells. Human lymphoblastoid cell lines TSCE5 and TSCE105 have, respectively, single and double I-SceI endonuclease sites in the endogenous thymidine kinase gene (TK) located on chromosome 17q. I-SceI expression generated DSBs at the TK gene. We used the novel transfection system (Amaxa Nucleofector) to introduce an I-SceI expression vector into the cells and randomly isolated clones. We found mutations involved in the DSBs in the TK gene in 3% of TSCE5 cells and 30% of TSCE105 cell clones. Most of the mutations in TSCE5 were small (1-30bp) deletions with a 0-4bp microhomology at the junction. The others consisted of large (>60) bp deletions, an insertion, and a rearrangement. Mutants resulting from interallelic HR also occurred, but infrequently. Most of the mutations in TSCE105, on the other hand, were deletions that encompassed the two I-SceI sites generated by NHEJ at DSBs. The sequence joint was similar to that found in TSCE5 mutants. Interestingly, some mutants formed a new I-SceI site by perfectly joining the two original I-SceI sites without deletion of the broken-ends. These results support the idea that NHEJ for repairing I-SceI-induced DSBs mainly results in small or no deletions. Thus, NHEJ must help maintain genomic integrity in mammalian cells by repairing DSBs as well as by preventing many deleterious alterations.  相似文献   

10.
Non-homologous end joining (NHEJ) and homologous recombination repair (HRR) are the main mechanisms involved in the processing of DNA double strand breaks (DSBs) in humans. We showed previously that the oncogenic tyrosine kinase BCR/ABL stimulated DSBs repair by HRR. To evaluate the role of BCR/ABL in DSBs repair by NHEJ we examined the ability of leukemic BCR/ABL-expressing cell line BV173 to repair DNA damage induced by two DNA topoisomerase II inhibitors: etoposide and sobuzoxane. DNA lesions induced by sobuzoxane are repaired by a NHEJ pathway which is dependent on the catalytic subunit of protein kinase dependent on DNA (DNA-PKCS; D-NHEJ), whereas damage evoked by etoposide are repaired by two distinct NHEJ pathways, dependent on or independent of DNA-PKCS (backup NHEJ, B-NHEJ). Cells incubated with STI571, a highly specific inhibitor of BCR/ABL, displayed resistance to these agents associated with an accelerated kinetics of DSBs repair, as measured by the neutral comet assay and pulsed field gel electrophoresis. However, in a functional NHEJ assay, cells preincubated with STI571 repaired DSBs induced by a restriction enzyme with a lower efficacy than without the preincubation and addition of wortmannin, a specific inhibitor of DNA-PKCS, did not change efficacy of the NHEJ reaction. We suggest that BCR/ABL switch on B-NHEJ which is more error-prone then D-NHEJ and in such manner contribute to the increase of the genomic instability of leukemic cells.  相似文献   

11.
DNA non-homologous end joining (NHEJ) and homologous recombination (HR) function to repair DNA double-strand breaks (DSBs) in G2 phase with HR preferentially repairing heterochromatin-associated DSBs (HC-DSBs). Here, we examine the regulation of repair pathway usage at two-ended DSBs in G2. We identify the speed of DSB repair as a major component influencing repair pathway usage showing that DNA damage and chromatin complexity are factors influencing DSB repair rate and pathway choice. Loss of NHEJ proteins also slows DSB repair allowing increased resection. However, expression of an autophosphorylation-defective DNA-PKcs mutant, which binds DSBs but precludes the completion of NHEJ, dramatically reduces DSB end resection at all DSBs. In contrast, loss of HR does not impair repair by NHEJ although CtIP-dependent end resection precludes NHEJ usage. We propose that NHEJ initially attempts to repair DSBs and, if rapid rejoining does not ensue, then resection occurs promoting repair by HR. Finally, we identify novel roles for ATM in regulating DSB end resection; an indirect role in promoting KAP-1-dependent chromatin relaxation and a direct role in phosphorylating and activating CtIP.  相似文献   

12.
A defining characteristic of damage induced in the DNA by ionizing radiation (IR) is its clustered character that leads to the formation of complex lesions challenging the cellular repair mechanisms. The most widely investigated such complex lesion is the DNA double strand break (DSB). DSBs undermine chromatin stability and challenge the repair machinery because an intact template strand is lacking to assist restoration of integrity and sequence in the DNA molecule. Therefore, cells have evolved a sophisticated machinery to detect DSBs and coordinate a response on the basis of inputs from various sources. A central function of cellular responses to DSBs is the coordination of DSB repair. Two conceptually different mechanisms can in principle remove DSBs from the genome of cells of higher eukaryotes. Homologous recombination repair (HRR) uses as template a homologous DNA molecule and is therefore error-free; it functions preferentially in the S and G2 phases. Non-homologous end joining (NHEJ), on the other hand, simply restores DNA integrity by joining the two ends, is error prone as sequence is only fortuitously preserved and active throughout the cell cycle. The basis of DSB repair pathway choice remains unknown, but cells of higher eukaryotes appear programmed to utilize preferentially NHEJ. Recent work suggests that when the canonical DNA-PK dependent pathway of NHEJ (D-NHEJ), becomes compromised an alternative NHEJ pathway and not HRR substitutes in a quasi-backup function (B-NHEJ). Here, we outline aspects of DSB induction by IR and review the mechanisms of their processing in cells of higher eukaryotes. We place particular emphasis on backup pathways of NHEJ and summarize their increasing significance in various cellular processes, as well as their potential contribution to carcinogenesis.  相似文献   

13.
The main pathways for the repair of DNA double strand breaks (DSBs) are non-homologous end-joining (NHEJ) and homologous recombination directed repair (HDR). These operate mutually exclusive and are activated by 53BP1 and BRCA1, respectively. As HDR can only succeed in the presence of an intact copy of replicated DNA, cells employ several mechanisms to inactivate HDR in the G1 phase of cell cycle. As cells enter S-phase, these inhibitory mechanisms are released and HDR becomes active. However, during DNA replication, NHEJ and HDR pathways are both functional and non-replicated and replicated DNA regions co-exist, with the risk of aberrant HDR activity at DSBs in non-replicated DNA. It has become clear that DNA repair pathway choice depends on inhibition of DNA end-resection by 53BP1 and its downstream factors RIF1 and MAD2L2. However, it is unknown how MAD2L2 accumulates at DSBs to participate in DNA repair pathway control and how the NHEJ and HDR repair pathways are appropriately activated at DSBs with respect to the replication status of the DNA, such that NHEJ acts at DSBs in pre-replicative DNA and HDR acts on DSBs in post-replicative DNA. Here we show that MAD2L2 is recruited to DSBs in H4K20 dimethylated chromatin by forming a protein complex with 53BP1 and RIF1 and that MAD2L2, similar to 53BP1 and RIF1, suppresses DSB accumulation of BRCA1. Furthermore, we show that the replication status of the DNA locally ensures the engagement of the correct DNA repair pathway, through epigenetics. In non-replicated DNA, saturating levels of the 53BP1 binding site, di-methylated lysine 20 of histone 4 (H4K20me2), lead to robust 53BP1-RIF1-MAD2L2 recruitment at DSBs, with consequent exclusion of BRCA1. Conversely, replication-associated 2-fold dilution of H4K20me2 promotes the release of the 53BP1-RIF1-MAD2L2 complex and favours the access of BRCA1. Thus, the differential H4K20 methylation status between pre-replicative and post-replicative DNA represents an intrinsic mechanism that locally ensures appropriate recruitment of the 53BP1-RIF1-MAD2L2 complex at DNA DSBs, to engage the correct DNA repair pathway.  相似文献   

14.
Adaptive or selection-induced mutations are defined as mutations that occur in non-dividing cells as a response to prolonged non-lethal selective pressure such as starvation for an essential amino acid. In the absence of DNA replication, the processing of endogenous DNA lesions by repair enzymes probably acts as a source of mutations. We are studying selection-induced reversions of frameshift alleles in the eukaryote Saccharomyces cerevisiae. Here we show that respiration-deficient strains, totally devoid of mitochondrial DNA, yield selection-induced mutants at slightly elevated frequencies compared to isonucleic respiration-competent strains. Therefore factors of mitochondrial origin such as reactive oxygen species or hypothetical recombinogenic DNA fragments are unlikely to be mediators of selection-induced nuclear frameshift mutation in yeast. Furthermore we compared sequence spectra of reversions of the +1 hom3-10 frameshift allele and found a strong preference for −1 deletions in mononucleotide repeats in selection-induced and replication-dependent revertants, indicating slippage errors during DNA repair synthesis as well as during DNA replication. Remarkably, a higher degree of variation in the site of the reverting frameshift and accompanying base substitutions was found among selection-induced revertants. Received: 25 May 1998 / Accepted: 20 August 1998  相似文献   

15.
DNA double strand breaks (DSBs) are highly toxic to the cells and accumulation of DSBs results in several detrimental effects in various cellular processes which can lead to neurological, immunological and developmental disorders. Failure of the repair of DSBs spurs mutagenesis and is a driver of tumorigenesis, thus underscoring the importance of the accurate repair of DSBs. Two major canonical DSB repair pathways are the non-homologous end joining (NHEJ) and homologous recombination (HR) pathways. 53BP1 and BRCA1 are the key mediator proteins which coordinate with other components of the DNA repair machinery in the NHEJ and HR pathways respectively, and their exclusive recruitment to DNA breaks/ends potentially decides the choice of repair by either NHEJ or HR. Recently, Rap1 interacting factor 1 has been identified as an important component of the DNA repair pathway which acts downstream of the ATM/53BP1 to inhibit the 5′–3′ end resection of broken DNA ends, in-turn facilitating NHEJ repair and inhibiting homology directed repair. Rif1 is conserved from yeast to humans but its function has evolved from telomere length regulation in yeast to the maintenance of genome integrity in mammalian cells. Recently its role in the maintenance of genomic integrity has been expanded to include the regulation of chromatin structure, replication timing and intra-S phase checkpoint. We present a summary of these important findings highlighting the various aspects of Rif1 functions and discuss the key implications for genomic integrity.  相似文献   

16.
DNA double-strand breaks (DSBs) are potentially lethal lesions repaired by two major pathways: homologous recombination (HR) and non-homologous end-joining (NHEJ). Homologous recombination preferentially reunites cognate broken ends. In contrast, non-homologous end-joining could ligate together any two ends, possibly generating dicentric or acentric fragments, leading to inviability. Here, we characterize the yeast NHEJ pathway in populations of pure G1 phase cells, where there is no possibility of repair using a homolog. We show that in G1 yeast cells, NHEJ is a highly effective repair pathway for gamma-ray induced breaks, even when many breaks are present. Pulsed-field gel analysis showed chromosome karyotypes following NHEJ repair of cells from populations with multiple breaks. The number of reciprocal translocations was surprisingly low, perhaps zero, suggesting that NHEJ preferentially re-ligates the “correct” broken ends instead of randomly-chosen ends. Although we do not know the mechanism, the preferential correct ligation is consistent with the idea that broken ends are continuously held together by protein–protein interactions or by larger scale chromatin structure.  相似文献   

17.
Double-strand break (DSB) repair pathways catalyze the rejoining of broken chromosomes and the integration of transforming DNAs. These processes have been well characterized in bacteria, fungi, and animals. Plants are generally thought primarily to utilize a non-homologous end joining (NHEJ) pathway to repair DSBs and integrate transgenes, as transforming DNAs with large tracts of homology to the chromosome are integrated at random. In order to test the hypothesis that NHEJ is an important pathway for the repair of DSBs in plants, we isolated T-DNA insertion mutations in the Arabidopsis homologs of the Ku80 and DNA ligase IV genes, required for the initiation and completion, respectively, of NHEJ. Both mutants were hypersensitive to the cytostatic effects of gamma radiation, suggesting that NHEJ is indeed a critical pathway for the repair of DSBs. T-DNA insertion rates were also decreased in the mutants, indicating that Ku80 and DNA ligase IV play an important role in either the mechanism or the regulation of T-DNA integration in Arabidopsis.  相似文献   

18.
The induction of double-strand breaks (DSBs) in DNA by exposure to DNA damaging agents, or as intermediates in normal cellular processes, constitutes a severe threat for the integrity of the genome. If not properly repaired, DSBs may result in chromosomal aberrations, which, in turn, can lead to cell death or to uncontrolled cell growth. To maintain the integrity of the genome, multiple pathways for the repair of DSBs have evolved during evolution: homologous recombination (HR), non-homologous end joining (NHEJ) and single-strand annealing (SSA). HR has the potential to lead to accurate repair of DSBs, whereas NHEJ and SSA are essentially mutagenic. In yeast, DSBs are primarily repaired via high-fidelity repair of DSBs mediated by HR, whereas in higher eukaryotes, both HR and NHEJ are important. In this review, we focus on the functional conservation of HR from fungi to mammals and on the role of the individual proteins in this process.  相似文献   

19.
The Artemis nuclease recognizes and endonucleolytically cleaves at single-stranded to double-stranded DNA (ss/dsDNA) boundaries. It is also a key enzyme in the non-homologous end joining (NHEJ) DNA double-strand break repair pathway. Previously, a truncated form, Artemis-413, was developed that is constitutively active both in vitro and in vivo. Here, we use this constitutively active form of Artemis to detect DNA structures with ss/dsDNA boundaries that arise under topological stress. Topoisomerases prevent abnormal levels of torsional stress through modulation of positive and negative supercoiling. We show that overexpression of Artemis-413 in yeast cells carrying genetic mutations that ablate topoisomerase activity have an increased frequency of DNA double-strand breaks (DSBs). Based on the biochemical activity of Artemis, this suggests an increase in ss/dsDNA-containing structures upon increased torsional stress, with DSBs arising due to Artemis cutting at these ss/dsDNA structures. Camptothecin targets topoisomerase IB (Top1), and cells treated with camptothecin show increased DSBs. We find that expression of Artemis-413 in camptothecin-treated cells leads to a reduction in DSBs, the opposite of what we find with topoisomerase genetic mutations. This contrast between outcomes not only confirms that topoisomerase mutation and topoisomerase poisoning have distinct effects on cells, but also demonstrates the usefulness of Artemis-413 to study changes in DNA structure.  相似文献   

20.
In Saccharomyces cerevisiae, the key components of the nonhomologous end joining (NHEJ) pathway that repairs DNA double-strand breaks (DSBs) are yeast Ku (yKu), Mre11-Rad50-Xrs2, Dnl4-Lif1, and Nej1. Here, we examined the role of Nej1 in NHEJ by a combination of molecular genetic and biochemical approaches. As expected, the recruitment of Nej1 to in vivo DSBs is dependent upon yKu. Surprisingly, Nej1 is required for the stable binding of yKu to in vivo DSBs, in addition to Dnl4-Lif1. Thus, Nej1 and Dnl4-Lif1 are independently recruited by yKu to in vivo DSBs, forming a stable ternary complex that channels DSBs into the NHEJ pathway. In accord with these results, purified Nej1 interacts with yKu and preferentially binds to DNA ends bound by yKu. Furthermore, the binding of a mixture of Nej1 and Dnl4-Lif1 to DNA ends bound by yKu is greater than the sum of the binding of the individual proteins, indicating that pairwise interactions among yKu, Nej1, and Dnl4-Lif1 contribute to complex assembly at DNA ends. Nej1 stimulates intermolecular ligation by Dnl4-Lif1, but, more interestingly, the addition of Nej1 results in more than one intermolecular ligation per Dnl4 molecule. Thus, Nej1 not only plays an important role in determining repair pathway choice by participating in the initial NHEJ complex formed at DSBs but also contributes to the reactivation of Dnl4-Lif1 after repair is complete, thereby increasing the capacity of the NHEJ repair pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号