首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
 蒙古栎(Quercus mongolica)是东北地区天然次生林重要组成树种, 研究该树种对未来气候变暖的响应, 可为预测未来气候变暖情况下蒙古栎林的发展动态、制定合理的经营措施提供科学参考。该文旨在探讨不同的供氮水平下, CO2浓度和温度升高综合作用对蒙古栎幼苗生物量及其分配的影响。实验采用人工气候箱控制, 控制条件分别为温度升高4 ℃(ET)、CO2浓度倍增(700 μmol CO2 ·mol–1) × 温度升高4 ℃ (ECET)和对照(正常温度, CO2浓度为400 μmol CO2·mol–1) (CK), 每个控制条件幼苗的基质分别用3种氮素水平处理: N1 (15 mmol·L–1 N)、N2 (7.5 mmol·L–1 N)和N3 (不施氮)。研究结果显示, 1)在ET条件下, N1明显促进幼苗茎的高生长、径生长和生物量积累, 幼苗生物量的分配随氮素浓度的增加, 地下生物量所占的比例增大。2) ECET条件下N1明显促进幼苗的高生长, 但对径生长影响不显著, 对幼苗总生物量积累的影响不显著。但N1增加了地下生物量的比例。3) ET与ECET条件下幼苗叶片的碳氮比均随供氮水平降低而升高, 但ECET下碳氮比的升高是由于叶片碳含量较高引起的, 而ET条件下则是由于叶片氮含量的降低而引起的。ECET和ET条件较低的氮素供应水平综合作用对蒙古栎幼苗的生物量积累无促进作用。因此, 在未来气候变化情况下, 土壤中充足的氮供给可能将促进蒙古栎幼苗的生长, 增加其天然更新潜力, 并增加其碳库容。  相似文献   

4.
van Ginkel  J.H.  Gorissen  A.  van Veen  J.A. 《Plant and Soil》1997,188(2):299-308
The effect of elevated CO2 on the carbon and nitrogen distribution within perennial ryegrass (L. perenne L.) and its influence on belowground processes were investigated. Plants were homogeneously 14C-labelled in two ESPAS growth chambers in a continuous 14C-CO2 atmosphere of 350 and 700 L L-1 CO2 and at two soil nitrogen regimes, in order to follow the carbon flow through all plant and soil compartments.After 79 days, elevated CO2 increased the total carbon uptake by 41 and 21% at low (LN) and high nitrogen (HN) fertilisation, respectively. Shoot growth remained unaffected, whereas CO2 enrichment stimulated root growth by 46% and the root/soil respiration by 111%, irrespective of the nitrogen concentration. The total 14C-soil content increased by 101 and 28% at LN and HN, respectively. The decomposition of the native soil organic matter was not affected either by CO2 or by the nitrogen treatment.Elevated CO2 did not change the total nitrogen uptake of the plant either at LN or at HN. Both at LN and HN elevated CO2 significantly increased the total amount of nitrogen taken up by the roots and decreased the absolute and relative amounts translocated to the shoots.The amount of soil nitrogen immobilised by micro-organisms and the size of the soil microbial biomass were not affected by elevated CO2, whereas both were significantly increased at the higher soil N content.Most striking was the 88% increase in net carbon input into the soil expressed as: 14C-roots plus total 14C-soil content minus the 12C-carbon released by decomposition of native soil organic matter. The net carbon input into the soil at ambient CO2 corresponded with 841 and 1662 kg ha-1 at LN and HN, respectively. Elevated CO2 increased these amounts with an extra carbon input of 950 and 1056 kg ha-1. Combined with a reduced decomposition rate of plant material grown at elevated CO2 this will probably lead to carbon storage in grassland soils resulting in a negative feed back on the increasing CO2 concentration of the atmosphere.  相似文献   

5.
Some ploidy plants demonstrate environmental stress tolerance. Tetraploid (4×) black locust (Robinia pseudoacacia L.) exhibits less chlorosis in response to high CO2 than do the corresponding diploid (2×) plants of this species. We investigated the plant growth, anatomy, photosynthetic ability, chlorophyll (chl) fluorescence, and antioxidase activities in 2× and 4× black locusts cultivated under high CO2 (0.5%). Elevated CO2 (0.5%) induced a global decrease in the contents of total chl, chl a, and chl b in 2× leaves, while few changes were found in the chl content of 4× leaves. Analyses of the chl fluorescence intensity, maximum quantum yield of photosystem II (PSII) photochemistry (Fv/Fm), K‐step (Vk), and J‐step (VJ) revealed that 0.5% CO2 had a negative effect on the photosynthetic capacity and growth of the 2× plants, especially the performance of PSII. In contrast, there was no significant effect of high CO2 on the growth of the 4× plants. These analyses indicate that the decreased inhibition of the growth of 4× plants by high CO2 (0.5%) may be attributed to an improved photosynthetic capacity, pigment content, and ultrastructure of the chloroplast compared to 2× plants.  相似文献   

6.
The influence of vesicular–arbuscular mycorrhizal (M) colonization on biomass production and photosynthesis of Trifolium repens L. was investigated in two experiments in which the foliar nitrogen and phosphorus contents of non-mycorrhizal (NM) plants were manipulated to be no lower than that of M plants. Throughout both experiments there was a stimulation in the rate of CO2 assimilation of the youngest, fully expanded leaf of M compared with NM plants. In addition, M plants exhibited a higher specific leaf area compared with NM plants, a response that maximized the area available for CO2 assimilation per unit of carbon (C) invested. Despite the increased rate of photosynthesis in M plants there was no evidence that the additional C gained was converted to biomass production of M plants. It is suggested that this additional C gained by colonized plants was allocated to the mycorrhizal fungus and that it is the fungus, by acting as a sink for assimilates, that facilitated the stimulation in the rate of photosynthesis of the plant partner.  相似文献   

7.
Aims Some shade-tolerant understory tree species such as mountain maple (Acer spicatum L.) exhibit light-foraging growth habits. Changes in environmental conditions, such as the rise of carbon dioxide concentration ([CO2]) in the atmosphere and soil warming, may affect the performance of these species under different light environments. We investigated how elevated [CO2] and soil warming influence the growth and biomass responses of mountain maple seedlings to light availability.Methods The treatments were two levels of light (100% and 30% of the ambient light in the greenhouse), two [CO2] (392 μmol mol-1 (ambient) and 784 μmol mol-1 (elevated)) and two soil temperatures (T soil) (17 and 22°C). After one growing season, we measured seedling height, root collar diameter, leaf biomass, stem biomass and root biomass.Important findings We found that under the ambient [CO2], the high-light level increased seedlings height by 70% and 56% at the low T soil and high T soil, respectively. Under the elevated [CO2], however, the high-light level increased seedling height by 52% and 13% at the low T soil and high T soil, respectively. The responses of biomasses to light generally followed the response patterns of height growth under both [CO2] and T soil and the magnitude of biomass response to light was the lowest under the elevated [CO2] and warmer T soil. The results suggest that the elevated [CO2] and warmer T soil under the projected future climate may have negative impact on the colonization of open sites and forest canopy gaps by mountain maple.  相似文献   

8.
Arbuscular mycorrhizal (AM) fungi form mutualistic symbioses with the root systems of most plant species. These mutualisms regulate nutrient exchange in the plant–soil interface and might influence the way in which plants respond to increasing atmospheric CO2. In other experiments, mycorrhizal responses to elevated CO2 have been variable, so in this study we test the hypothesis that different genera of AM fungi differ in their response, and in turn alter the plant's response, to elevated CO2. Four species from three genera of AM fungi were tested. Artemisia tridentata Nutt. seedlings were inoculated with either Glomus intraradices Schenck & Smith, Glomus etunicatum Becker & Gerdemann, Acaulospora sp. or Scutellospora calospora (Nicol. & Gerd.) Walker & Sanders and grown at either ambient CO2 (350 ppm) or elevated CO2 (700 ppm). Several significant inter-specific responses were detected. Elevated CO2 caused percent arbuscular and hyphal colonization to increase for the two Glomus species, but not for Acaulospora sp. or S. calospora . Vesicular colonization was not affected by elevated CO2 for any fungal species. In the extra-radical phase, the two Glomus species produced a significantly higher number of spores in response to elevated CO2, whereas Acaulospora sp. and S. calospora developed significantly higher hyphal lengths. These data show that AM fungal taxa differ in their growth allocation strategies and in their responses to elevated CO2, and that mycorrhizal diversity should not be overlooked in global change research.  相似文献   

9.
A fast growing high density Populus plantation located in central Italy was exposed to elevated carbon dioxide for a period of three years. An elevated CO2 treatment (550 ppm), of 200 ppm over ambient (350 ppm) was provided using a FACE technique. Standing root biomass, fine root turnover and mycorrhizal colonization of the following Populus species was examined: Populus alba L., Populus nigra L., Populus x euramericana Dode (Guinier). Elevated CO2 increased belowground allocation of biomass in all three species examined, standing root biomass increased by 47–76% as a result of FACE treatment. Similarly, fine root biomass present in the soil increased by 35–84%. The FACE treatment resulted in 55% faster fine root turnover in P. alba and a 27% increase in turnover of roots of P. nigra and P. x euramericana. P. alba and P. nigra invested more root biomass into deeper soil horizon under elevated CO2. Response of the mycorrhizal community to elevated CO2 was more varied, the rate of infection increased only in P. alba for both ectomycorrhizal (EM) and arbuscular mycorrhizas (AM). The roots of P. nigra showed greater infection only by AM and the colonization of the root system of P. x euramericana was not affected by FACE treatment. The results suggest that elevated atmospheric CO2 conditions induce greater belowground biomass investment, which could lead to accumulation of assimilated C in the soil profile. This may have implications for C sequestration and must be taken into account when considering long‐term C storage in the soil.  相似文献   

10.
The effect of elevated atmospheric CO2 concentration on the growth of shoots, roots, mycorrhizas and extraradical mycorrhizal mycelia of pine (Pinus silvestris L.) was examined. Two and a half-month-old seedlings were inoculated axenically with the mycorrhizal fungus Pisolithus tincto-rius (Pers.) by a method allowing rapid mycorrhiza formation in Petri dishes. The plants were then cultivated for 3 months in growth chambers with daily concentrations of 350 and 600 μmol mol?1 CO2 during the day. Whereas plants harvested after 1 and 2 months did not differ appreciably between ambient and increased CO2 concentrations, after 3 months they developed a considerably higher root biomass (%57%) at elevated CO2, but did not increase significantly in root length. The mycorrhizal fungus Pisolithus tinctorius, which depended entirely on the plant assimilates in the model system, grew much faster at increased CO2: 3 times more mycorrhizal root clusters were formed and the extraradical mycelium produced had twice the biomass at elevated as at ambient CO2. No difference in shoot biomass was found between the two treatments after 91 d. However, since the total water consumption of seedlings was similar in the two treatments, the water use efficiency was appreciably higher for the seedlings at increased CO2 because of the higher below-ground biomass.  相似文献   

11.
Both endophytic and mycorrhizal fungi interact with plants to form symbiosis in which the fungal partners rely on, and sometimes compete for, carbon (C) sources from their hosts. Changes in photosynthesis in host plants caused by atmospheric carbon dioxide (CO2) enrichment may, therefore, influence those mutualistic interactions, potentially modifying plant nutrient acquisition and interactions with other coexisting plant species. However, few studies have so far examined the interactive controls of endophytes and mycorrhizae over plant responses to atmospheric CO2 enrichment. Using Festuca arundinacea Schreb and Plantago lanceolata L. as model plants, we examined the effects of elevated CO2 on mycorrhizae and endophyte (Neotyphodium coenophialum) and plant nitrogen (N) acquisition in two microcosm experiments, and determined whether and how mycorrhizae and endophytes mediate interactions between their host plant species. Endophyte‐free and endophyte‐infected F. arundinacea varieties, P. lanceolata L., and their combination with or without mycorrhizal inocula were grown under ambient (400 μmol mol−1) and elevated CO2 (ambient + 330 μmol mol−1). A 15N isotope tracer was used to quantify the mycorrhiza‐mediated plant acquisition of N from soil. Elevated CO2 stimulated the growth of P. lanceolata greater than F. arundinacea, increasing the shoot biomass ratio of P. lanceolata to F. arundinacea in all the mixtures. Elevated CO2 also increased mycorrhizal root colonization of P. lanceolata, but had no impact on that of F. arundinacea. Mycorrhizae increased the shoot biomass ratio of P. lanceolata to F. arundinacea under elevated CO2. In the absence of endophytes, both elevated CO2 and mycorrhizae enhanced 15N and total N uptake of P. lanceolata but had either no or even negative effects on N acquisition of F. arundinacea, altering N distribution between these two species in the mixture. The presence of endophytes in F. arundinacea, however, reduced the CO2 effect on N acquisition in P. lanceolata, although it did not affect growth responses of their host plants to elevated CO2. These results suggest that mycorrhizal fungi and endophytes might interactively affect the responses of their host plants and their coexisting species to elevated CO2.  相似文献   

12.
Plantago lanceolata with or without the mycorrhizal fungus Glomus mosseae were grown over a 100 d period under ambient (38050 mol mol-1) and elevated (600150 mol mol-1) atmospheric CO2 conditions. To achieve similar growth, non-mycorrhizal plants received phosphorus in solution whereas mycorrhizal plants were supplied with bonemeal. Measures of plant growth, photosynthesis and carbon input to the soil were obtained. Elevated CO2 stimulated plant growth to the same extent in mycorrhizal and non0mycorrhizal plants, but had no effect on the partitioning of carbon between shoots and roots or on shoot tissue phosphorus concentration. Mycorrhizal colonization was low, but unaffected by CO2 treatment. Net photosynthesis was stimulated both by mycorrhizal colonization and elevated CO2, and there was a more than additive effect of the two treatments on net photosynthesis. Colonization by mycorrhizal fungi inhibited acclimation, in terms of net carbon assimilation, or plants to elevated CO2. 13C natural abundance techniques were used to measure carbon input into the soil, although the results were not conclusive. Direct measurements of below-ground root biomass showed that elevated CO2 did stimulate carbon flow below-ground and this was higher in mycorrhizal than non-mycorrhizal plants. For the four treatment combinations, the observed relative differences in amount of below-ground carbon were compared with those expected from the differences in net photosynthesis. A considerable amount of the extra carbon fixed both as a result of mycorrhizal colonization and growth in elevated CO2 did not reveal itself as increased plant biomass. As there was no evidence for a substantial increase in soil organic matter, most of this extra carbon must have been respired by the mycorrhizal fungus and the roots or by the plants as dark-respiration. The need for detailed studies in this area is emphasized.  相似文献   

13.
Abstract. Herbaceous C3 plants grown in elevated CO2 show increases in carbon assimilation and carbohydrate accumulation (particularly starch) within source leaves. Although changes in the partitioning of biomass between root and shoot occur, the proportion of this extra assimilate made available for sink growth is not known. Root:shoot ratios tend to increase for CO2-enriched herbaceous plants and decrease for CO2-enriched trees. Root:shoot ratios for cereals tend to remain constant. In contrast, elevated temperatures decrease carbohydrate accumulation within source and sink regions of a plant and decrease root:shoot ratios. Allometric analysis of at least two species showing changes in root: shoot ratios due to elevated CO2 show no alteration in the whole-plant partitioning of biomass. Little information is available for interactions between temperature and CO2. Cold-adapted plants show little response to elevated levels of CO2, with some species showing a decline in biomass accumulation. In general though, increasing temperature will increase sucrose synthesis, transport and utilization for CO2-enriched plants and decrease carbohydrate accumulation within the leaf. Literature reports are discussed in relation to the hypothesis that sucrose is a major factor in the control of plant carbon partitioning. A model is presented in support.  相似文献   

14.
通过测定小麦拔节期叶片的光合气体交换参数和光强-光合速率(Pn)响应曲线,研究了氮素对长期高大气CO2浓度(760 μmol·mol-1)下小麦叶片光合作用的影响.结果表明:在长期高大气CO2浓度下,增施氮肥能提高小麦叶片Pn、蒸腾速率(Tr)和瞬时水分利用效率(WUEi);与正常大气CO2浓度相比,高大气CO2浓度下小麦叶片的Pn和WUEi增加,气孔导度(Gs)和胞间CO2浓度(Ci)降低.随光合有效辐射的增强,高大气CO2浓度下小麦叶片的Pn和WUEi均高于正常大气CO2浓度处理,Gs则较低,而Ci和Tr无显著变化.高氮水平下小麦叶片Gs与Pn、Tr、WUEi呈线性正相关,Gs与Ci在正常大气CO2浓度下呈线性负相关,但高大气CO2浓度下二者无相关性;低氮水平下小麦叶片的Gs与Pn、WUEi无相关性,而与Ci和Tr呈线性正相关,表明高大气CO2浓度下低氮水平的小麦叶片Pn由非气孔因素限制.  相似文献   

15.
大气CO2浓度升高对不同施氮土壤酶活性的影响   总被引:7,自引:3,他引:7  
利用中国唯一的无锡FACE(Free-air CO2 enrichment,开放式空气CO2浓度升高)平台,研究了大气CO2浓度升高对土壤β-葡糖苷酶、转化酶、脲酶、酸性磷酸酶、-氨基葡糖苷酶的影响。研究发现,不同氮肥处理下大气CO2浓度升高对某些土壤酶活性的影响不同。在低氮施肥处理中,大气CO2浓度升高显著降低-葡糖苷酶活性,但是在高氮施肥处理下,大气CO2浓度升高显著增加β-葡糖苷酶活性。在低氮和常氮施肥处理中大气CO2浓度升高显著增加了土壤脲酶活性,但在高氮水平下影响不显著。在低氮、常氮施肥处理中,大气CO2浓度升高对土壤酸性磷酸酶活性没有影响,而在高氮施肥处理中显著增强了土壤中磷酸酶活性。大气CO2浓度升高对土壤转化酶活性和-氨基葡糖苷酶的活性有增加趋势,但影响不显著。研究还发现,在不同的CO2浓度下,土壤酶活性对不同氮肥处理的响应也不同。在正常CO2浓度下,土壤中β-葡糖苷酶活性随着氮肥施用量的增加而降低,而在大气CO2浓度升高条件下,却随着氮肥施用量的增加而增加。在大气CO2浓度升高条件下,高氮施肥显著增加了转化酶和酸性磷酸酶活性,而在正常CO2浓度下,影响不显著。在大气CO2浓度升高条件下,氮肥处理对脲酶活性的影响不大,但在正常CO2浓度下,脲酶活性随着氮肥施用量的增加而增加。氮肥对β-氨基葡糖苷酶活性的影响不明显。  相似文献   

16.
The increasing concentration of atmospheric carbon dioxide (CO2) is expected to lead to enhanced competition between plants and microorganisms for the available nitrogen (N) in soil. Here, we present novel results from a 15N tracing study conducted with a sheep‐grazed pasture soil that had been under 10 years of CO2 enrichment. Our study aimed to investigate changes in process‐specific gross N transformations in a soil previously exposed to an elevated atmospheric CO2 (eCO2) concentration and to examine indicators for the occurrence of progressive nitrogen limitation (PNL). Our results show that the mineralization–immobilization turnover (MIT) was enhanced under eCO2, which was driven by the mineralization of recalcitrant organic N. The retention of N in the grassland was enhanced by increased dissimilatory NO3? reduction to NH4+ (DNRA) and decreased NH4+ oxidation. Our results indicate that heterotrophic processes become more important under eCO2. We conclude that higher MIT of recalcitrant organic N and enhanced N retention are mechanisms that may alleviate PNL in grazed temperate grassland.  相似文献   

17.
While soil biota and processes are becoming increasingly appreciated as important parameters for consideration in global change studies, the fundamental characteristic of soil structure is a neglected area of research. In a sorghum [Sorghum bicolor (L.) Moench] field experiment in which CO2[supplied using free‐air CO2 enrichment (FACE) technology] was crossed factorially with an irrigation treatment, soil aggregate (1–2 mm) water stability increased in response to elevated CO2. Aggregate water stability was increased by 40% and 20% in response to CO2, at ample and limited water supply treatments, respectively. Soil hyphal lengths of arbuscular mycorrhizal fungi (AMF) increased strongly (with a threefold increase in the dry treatment) in response to CO2, and the concentrations of one fraction (easily extractable glomalin, EEG) of the AMF‐produced protein glomalin were also increased. Two fractions of glomalin, and AMF hyphal lengths were all positively correlated with soil aggregate water stability. The present results further support the hypothesis that AMF can become important in global change scenarios. Although in this field study a causal relationship between hyphal length, glomalin and aggregate stability cannot be demonstrated, the present data do suggest that AMF could mediate changes in soil structure under elevated CO2. This could be of great importance in agricultural systems threatened by erosional soil loss.  相似文献   

18.
We tested the main and interactive effects of elevated carbon dioxide concentration ([CO2]), nitrogen (N), and light availability on leaf photosynthesis, and plant growth and survival in understory seedlings grown in an N‐limited northern hardwood forest. For two growing seasons, we exposed six species of tree seedlings (Betula papyrifera, Populus tremuloides, Acer saccharum, Fagus grandifolia, Pinus strobus, and Prunus serotina) to a factorial combination of atmospheric CO2 (ambient, and elevated CO2 at 658 μmol CO2 mol−1) and N deposition (ambient and ambient +30 kg N ha−1 yr−1) in open‐top chambers placed in an understory light gradient. Elevated CO2 exposure significantly increased apparent quantum efficiency of electron transport by 41% (P<0.0001), light‐limited photosynthesis by 47% (P<0.0001), and light‐saturated photosynthesis by 60% (P<0.003) compared with seedlings grown in ambient [CO2]. Experimental N deposition significantly increased light‐limited photosynthesis as light availability increased (P<0.037). Species differed in the magnitude of light‐saturated photosynthetic response to elevated N and light treatments (P<0.016). Elevated CO2 exposure and high N availability did not affect seedling growth; however, growth increased slightly with light availability (R2=0.26, P<0.0001). Experimental N deposition significantly increased average survival of all species by 48% (P<0.012). However, seedling survival was greatest (85%) under conditions of both high [CO2] and N deposition (P<0.009). Path analysis determined that the greatest predictor for seedling survival in the understory was total biomass (R2=0.39, P<0.001), and that carboxylation capacity (Vcmax) was a better predictor for seedling growth and survival than maximum photosynthetic rate (Amax). Our results suggest that increasing [CO2] and N deposition from fossil fuel combustion could alter understory tree species recruitment dynamics through changes in seedling survival, and this has the potential to alter future forest species composition.  相似文献   

19.
N2 fixation by Acacia species increases under elevated atmospheric CO2   总被引:1,自引:0,他引:1  
In the present study the effect of elevated CO2 on growth and nitrogen fixation of seven Australian Acacia species was investigated. Two species from semi‐arid environments in central Australia (Acacia aneura and A. tetragonophylla) and five species from temperate south‐eastern Australia (Acacia irrorata, A. mearnsii, A. dealbata, A. implexa and A. melanoxylon) were grown for up to 148 d in controlled greenhouse conditions at either ambient (350 µmol mol?1) or elevated (700 µmol mol?1) CO2 concentrations. After establishment of nodules, the plants were completely dependent on symbiotic nitrogen fixation. Six out of seven species had greater relative growth rates and lower whole plant nitrogen concentrations under elevated versus normal CO2. Enhanced growth resulted in an increase in the amount of nitrogen fixed symbiotically for five of the species. In general, this was the consequence of lower whole‐plant nitrogen concentrations, which equate to a larger plant and greater nodule mass for a given amount of nitrogen. Since the average amount of nitrogen fixed per unit nodule mass was unaltered by atmospheric CO2, more nitrogen could be fixed for a given amount of plant nitrogen. For three of the species, elevated CO2 increased the rate of nitrogen fixation per unit nodule mass and time, but this was completely offset by a reduction in nodule mass per unit plant mass.  相似文献   

20.
The response of Phaseolus vulgaris L. cv. Contender grown under controlled environment at either ambient or elevated (360 and 700 μmol mol-1, respectively) CO2 concentrations ([CO2]), was monitored from 10 days after germination (DAG) until the onset of senescence. Elevated CO2 had a pronounced effect on total plant height (TPH), leaf area (LA), leaf dry weight (LD), total plant biomass (TB) accumulation and specific leaf area (SLA). All of these were significantly increased under elevated carbon dioxide with the exception of SLA which was significantly reduced. Other than high initial growth rates in CO2-enriched plants, relative growth rates remained relatively unchanged throughout the growth period. While the trends in growth parameters were clearly different between [CO2], some physiological processes were largely transient, in particular, net assimilation rate (NAR) and foliar nutrient concentrations of N, Mg and Cu. CO2 enrichment significantly increased NAR, but from 20 DAG, a steady decline to almost similar levels to those measured in plants grown under ambient CO2 occurred. A similar trend was observed for leaf N content where the loss of leaf nitrogen in CO2-enriched plants after 20 DAG, was significantly greater than that observed for ambient-CO2 plants. Under enhanced CO2, the foliar concentrations of K and Mn were increased significantly whilst P, Ca, Fe and Zn were reduced significantly. Changes in Mg and Cu concentrations were insignificant. In addition. high CO2 grown plants exhibited a pronounced leaf discoloration or chlorosis, coupled with a significant reduction in leaf longevity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号