共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Shata A Saisu H Odani S Abe T 《Biochemical and biophysical research communications》2007,354(3):808-813
The cytosolic protein synaphin/complexin critically regulates fast neurotransmitter release at the synapse by binding to SNARE complex. However, the exact mechanism of its action remains unclear, and very little is known about how it is physiologically regulated. Here we show that synaphins (Syps) 1 and 2 can be phosphorylated in vitro by protein kinase CK2 (CK2). The only phosphorylation site by CK2 was serine-115 (Ser-115) of Syps 1 and 2. Syps 1 and 2 exhibited higher affinities to native and recombinant SNARE complexes when phosphorylated at Ser-115. We found Ser-115-phosphorylated Syp 1 (pS115-Syp 1) in the cytosolic fraction of the rat brain using polyclonal antibody specific to pS115-Syps 1 and 2. These results suggest that the activity of Syp is regulated by CK2 phosphorylation of its Ser-115 in vivo. The phosphorylation may provide a new route for modulating fast neurotransmitter release. 相似文献
3.
Ca(2+) binding to synaptotagmin 1 triggers fast exocytosis of synaptic vesicles that have been primed for release by SNARE-complex assembly. Besides synaptotagmin 1, fast Ca(2+)-triggered exocytosis requires complexins. Synaptotagmin 1 and complexins both bind to assembled SNARE complexes, but it is unclear how their functions are coupled. Here we propose that complexin binding activates SNARE complexes into a metastable state and that Ca(2+) binding to synaptotagmin 1 triggers fast exocytosis by displacing complexin from metastable SNARE complexes. Specifically, we demonstrate that, biochemically, synaptotagmin 1 competes with complexin for SNARE-complex binding, thereby dislodging complexin from SNARE complexes in a Ca(2+)-dependent manner. Physiologically, increasing the local concentration of complexin selectively impairs fast Ca(2+)-triggered exocytosis but retains other forms of SNARE-dependent fusion. The hypothesis that Ca(2+)-induced displacement of complexins from SNARE complexes triggers fast exocytosis accounts for the loss-of-function and gain-of-function phenotypes of complexins and provides a molecular explanation for the high speed and synchronicity of fast Ca(2+)-triggered neurotransmitter release. 相似文献
4.
Although the binding of synaphin (also called complexin) to the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex is critical for synaptic vesicle exocytosis, the exact role of synaphin remains unclear. Here, we show that synaphin directly binds to synaptotagmin 1, a major Ca2+ sensor for fast neurotransmitter release, in a 1:1 stoichiometry. Mapping of the synaphin site involved in synaptotagmin 1 binding revealed that the C-terminal region is essential for the interaction between these two proteins. Binding was sensitive to ionic strength, suggesting the involvement of charged residues in the C-terminus region. Mutation of the seven consecutive glutamic acid residues (residues 108–114) at the C-terminal region of synaphin to alanines or glutamines resulted in a dramatic reduction in synaptotagmin 1 binding activity. Furthermore, a peptide from the C-terminus of synaphin (residues 91–124) blocked the binding of synaptotagmin 1 to synaphin, an effect that was abolished by mutating the consecutive glutamic acid residues to alanine. Immunoprecipitation experiments with brain membrane extracts showed the presence of a complex consisting of synaphin, synaptotagmin 1, and SNAREs. We propose that synaphin recruits synaptotagmin 1 to the SNARE-based fusion complex and synergistically functions with synaptotagmin 1 in mediating fast synaptic vesicle exocytosis. 相似文献
5.
Complexin is an important protein that functions during Ca2+-dependent neurotransmitter release. Substantial evidence supports that complexin performs its role through rapid interaction with SNARE complex with high affinity. However, alpha-SNAP/NSF, which can disassemble the cis-SNARE complex in the presence of MgATP, competes with complexin to bind to SNARE complex. In addition, injection of alpha-SNAP into chromaffin cells enhances the size of the readily releasable pool, and mutation disrupting the ATPase activity of NSF results in the accumulation of SNARE complex. Thus, whether high concentrations of complexin could result in a reverse result is unclear. In this paper, we demonstrate that when stably overexpressed in PC12 cells, high levels of complexin result in the accumulation of SNARE complex. This in turn leads to a reduction in the size of the readily releasable pool of large dense core vesicles. These results suggest that high levels of complexin seem to prevent SNARE complex recycling, presumably by displacing NSF and alpha-SNAP from SNARE complex. 相似文献
6.
Three-dimensional structure of the complexin/SNARE complex 总被引:12,自引:0,他引:12
During neurotransmitter release, the neuronal SNARE proteins synaptobrevin/VAMP, syntaxin, and SNAP-25 form a four-helix bundle, the SNARE complex, that pulls the synaptic vesicle and plasma membranes together possibly causing membrane fusion. Complexin binds tightly to the SNARE complex and is essential for efficient Ca(2+)-evoked neurotransmitter release. A combined X-ray and TROSY-based NMR study now reveals the atomic structure of the complexin/SNARE complex. Complexin binds in an antiparallel alpha-helical conformation to the groove between the synaptobrevin and syntaxin helices. This interaction stabilizes the interface between these two helices, which bears the repulsive forces between the apposed membranes. These results suggest that complexin stabilizes the fully assembled SNARE complex as a key step that enables the exquisitely high speed of Ca(2+)-evoked neurotransmitter release. 相似文献
7.
Action of complexin on SNARE complex 总被引:6,自引:0,他引:6
Calcium-dependent synaptic vesicle exocytosis requires three SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins: synaptobrevin/vesicle-associated membrane protein in the vesicular membrane and syntaxin and SNAP-25 in the presynaptic membrane. The SNAREs form a thermodynamically stable complex that is believed to drive fusion of vesicular and presynaptic membranes. Complexin, also known as synaphin, is a neuronal cytosolic protein that acts as a positive regulator of synaptic vesicle exocytosis. Complexin binds selectively to the neuronal SNARE complex, but how this promotes exocytosis remains unknown. Here we used purified full-length and truncated SNARE proteins and a gel shift assay to show that the action of complexin on SNARE complex depends strictly on the transmembrane regions of syntaxin and synaptobrevin. By means of a preparative immunoaffinity procedure to achieve total extraction of SNARE complex from brain, we demonstrated that complexin is the only neuronal protein that tightly associates with it. Our data indicated that, in the presence of complexin, the neuronal SNARE proteins assemble directly into a complex in which the transmembrane regions interact. We propose that complexin facilitates neuronal exocytosis by promoting interaction between the complementary syntaxin and synaptobrevin transmembrane regions that reside in opposing membranes prior to fusion. 相似文献
8.
9.
Although it is clear that soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) complex plays an essential role in synaptic vesicle fusion, the dynamics of SNARE assembly during vesicle fusion remain to be determined. In this report, we employ fluorescence resonance energy transfer technique to study the formation of SNARE complexes. Donor/acceptor pair variants of green fluorescent protein (GFP), cyan fluorescent protein (CFP), and yellow fluorescent protein (YFP) are fused with the N termini of SNAP-25 and synaptobrevin, respectively. In vitro assembly of SNARE core complex in the presence of syntaxin shows strong fluorescence resonance energy transfer (FRET) between the CFP-SNAP-25 and YFP-synaptobrevin. Under the same conditions, CFP fused to the C terminus of SNAP-25, and YFP- synaptobrevin have no FRET. Adenovirus-mediated gene transfer is used to express the fusion proteins in PC12 cells and cultured rat cerebellar granule cells. Strong FRET is associated with neurite membranes and vesicular structures in PC12 cells co-expressing CFP-SNAP-25 and YFP-synaptobrevin. In cultured rat cerebellar granule cells, FRET between CFP-SNAP-25 and YFP-synaptobrevin is mostly associated with sites presumed to be synaptic junctions. Neurosecretion in PC12 cells initiated by KCl depolarization leads to an increase in the extent of FRET. These results demonstrate that significant amounts of stable SNARE complex exist prior to evoked synaptic vesicle fusion and that the assembly of SNARE complex occurs during vesicle docking/priming stage. Moreover, it demonstrates that FRET can be used as an effective tool for investigating dynamic SNARE interactions during synaptic vesicle fusion. 相似文献
10.
The synaptic SNARE complex is a highly stable four-helix bundle that links the vesicle and plasma membranes and plays an essential role in the Ca(2+)-triggered release of neurotransmitters and hormones. An understanding has yet to be achieved of how this complex assembles and undergoes structural transitions during exocytosis. To investigate this question, we have mutated residues within the hydrophobic core of the SNARE complex along the entire length of all four chains and examined the consequences using amperometry to measure fusion pore opening and dilation. Mutations throughout the SNARE complex reduced two distinct rate processes before fusion pore opening to different degrees. These results suggest that two distinct, fully assembled conformations of the SNARE complex drive transitions leading to open fusion pores. In contrast, a smaller number of mutations that were scattered through the SNARE complex but were somewhat concentrated in the membrane-distal half stabilized open fusion pores. These results suggest that a structural transition within a partially disassembled complex drives the dilation of open fusion pores. The dependence of these three rate processes on position within the SNARE complex does not support vectorial SNARE complex zipping during exocytosis. 相似文献
11.
Di Stasi AM Mallozzi C Macchia G Maura G Petrucci TC Minetti M 《Journal of neurochemistry》2002,82(2):420-429
The reactive species peroxynitrite, formed via the near diffusion-limited reaction of nitric oxide and superoxide anion, is a potent oxidant that contributes to tissue damage in neurodegenerative disorders. Peroxynitrite readily nitrates tyrosine residues in proteins, producing a permanent modification that can be immunologically detected. We have previously demonstrated that in the nerve terminal, nitrotyrosine immunoreactivity is primarily associated with synaptophysin. Here we identify two other presynaptic proteins nitrated by peroxynitrite, Munc-18 and SNAP25, both of which are involved in sequential steps leading to vesicle exocytosis. To investigate whether peroxynitrite affects vesicle exocytosis, we used the fluorescent dye FM1-43 to label a recycling population of secretory vesicles within the synaptosomes. Bolus addition of peroxynitrite stimulated exocytosis and glutamate release. Notably, these effects were strongly reduced in the presence of NaHCO(3), indicating that peroxynitrite acts mainly intracellularly. Furthermore, peroxynitrite enhanced the formation of the sodium dodecyl sulfate-resistant SNARE complex in a dose-dependent manner (100-1000 microm) and induced the formation of 3-nitrotyrosine in proteins of SNARE complex. These data suggest that modification(s) of synaptic vesicle proteins induced by peroxynitrite may affect protein-protein interactions in the docking/fusion steps, thus promoting exocytosis, and that, under excessive production of superoxide and nitric oxide, neurons may up-regulate neuronal signaling. 相似文献
12.
The mammalian protein Eps15 is phosphorylated by EGF receptor tyrosine kinase and has been shown to interact with several components of the endocytic machinery. We have identified a hypomorphic Eps15 mutant in Drosophila which shows reversible paralysis and an altered physiology at restrictive temperatures. In addition, the temperature-sensitive paralytic defect of shibire mutant is enhanced by this mutant. Eps15 is enriched in the larval neuromuscular junction in endocytic 'hot spots' in a pattern similar to Dynamin. Eps15 mutants show a decrease in the alpha-Adaptin levels at the larval neuromuscular junction synapse. Genetic and biochemical studies of interactions with components of the endocytic machinery suggest that Eps15 has an important role in synaptic vesicle recycling and regulates recruitment of alpha-Adaptin. 相似文献
13.
The assembly of multiprotein complexes at the membrane interface governs many signaling processes in cells. However, very few methods exist for obtaining biophysical information about protein complex formation at the membrane. We used single molecule fluorescence resonance energy transfer to study complexin and synaptotagmin interactions with the SNARE complex in deposited lipid bilayers. Using total internal reflectance microscopy, individual binding events at the membrane could be resolved despite an excess of unbound protein in solution. Fluorescence resonance energy transfer (FRET)-efficiency derived distances for the complexin-SNARE interaction were consistent with the crystal structure of the complexin-SNARE complex. The unstructured N-terminal region of complexin showed broad distributions of FRET efficiencies to the SNARE complex, suggesting that information on conformational variability can be obtained from FRET efficiency distributions. The low-affinity interaction of synaptotagmin with the SNARE complex changed dramatically upon addition of Ca2+ with high FRET efficiency interactions appearing between the C2B domain and linker domains of synaptotagmin and the membrane proximal portion of the SNARE complex. These results demonstrate that single molecule FRET can be used as a spectroscopic ruler to simultaneously gain structural and kinetic information about transient multiprotein complexes at the membrane interface. 相似文献
14.
In yeast, the Class C Vps protein complex (C-Vps complex), composed of Vps11, Vps16, Vps18, and Vps33, functions in Golgi-to-vacuole protein transport. In this study, we characterized and purified this complex and identified its interaction with the syntaxin homolog Vam3. Vam3 pairs with the SNAP-25 homolog Vam7 and VAMP homolog Vti1 to form SNARE complexes during vesicle docking/fusion with the vacuole. The C-Vps complex does not bind to Vam3-Vti1-Vam7 paired SNARE complexes but instead binds to unpaired Vam3. Antibodies to a component of this complex inhibited in vitro vacuole-to-vacuole fusion. Furthermore, temperature-conditional mutations in the Class C VPS genes destabilized Vam3-Vti1-Vam7 pairing. Therefore, we propose that the C-Vps complex associates with unpaired (activated) Vam3 to mediate the assembly of trans-SNARE complexes during both vesicle docking/fusion and vacuole-to-vacuole fusion. 相似文献
15.
Mammalian exocyst complex is required for the docking step of insulin vesicle exocytosis 总被引:1,自引:0,他引:1
Tsuboi T Ravier MA Xie H Ewart MA Gould GW Baldwin SA Rutter GA 《The Journal of biological chemistry》2005,280(27):25565-25570
Glucose stimulates insulin secretion from pancreatic beta cells by inducing the recruitment and fusion of insulin vesicles to the plasma membrane. However, little is currently known about the mechanism of the initial docking or tethering of insulin vesicles prior to fusion. Here, we examined the role of the SEC6-SEC8 (exocyst) complex, implicated in trafficking of secretory vesicles to fusion sites in the plasma membrane in yeast and in regulating glucose-stimulated insulin secretion from pancreatic MIN6 beta cells. We show first that SEC6 is concentrated on insulin-positive vesicles, whereas SEC5 and SEC8 are largely confined to the cytoplasm and the plasma membrane, respectively. Overexpression of truncated, dominant-negative SEC8 or SEC10 mutants decreased the number of vesicles at the plasma membrane, whereas expression of truncated SEC6 or SEC8 inhibited overall insulin secretion. When single exocytotic events were imaged by total internal reflection fluorescence microscopy, the fluorescence of the insulin surrogate, neuropeptide Y-monomeric red fluorescent protein brightened, diffused, and then vanished with kinetics that were unaffected by overexpression of truncated SEC8 or SEC10. Together, these data suggest that the exocyst complex serves to selectively regulate the docking of insulin-containing vesicles at sites of release close to the plasma membrane. 相似文献
16.
FM dyes have been used to label and then monitor synaptic vesicles, secretory granules and other endocytic structures in a variety of preparations. Here, we describe the general procedure for using FM dyes to study endosomal trafficking in general, and synaptic vesicle recycling in particular. The dye, dissolved in normal saline solution, is added to a chamber containing the preparation to be labeled. Stimulation evokes exocytosis, and compensatory endocytosis that follows traps FM dye inside the retrieved vesicles. The extracellular dye is then washed from the chamber, and labeled endocytic structures are examined with a fluorescence microscope. Fluorescence intensity provides a direct measure of the labeled vesicle number, a good measure of the amount of exocytosis. If the preparation is stimulated again, without dye in the chamber, dimming of the preparation provides a measure of exocytosis of labeled vesicles. With a synaptic preparation on hand, this protocol requires 1 day. 相似文献
17.
Synaptotagmin C2A loop 2 mediates Ca2+-dependent SNARE interactions essential for Ca2+-triggered vesicle exocytosis
下载免费PDF全文

Lynch KL Gerona RR Larsen EC Marcia RF Mitchell JC Martin TF 《Molecular biology of the cell》2007,18(12):4957-4968
Synaptotagmins contain tandem C2 domains and function as Ca(2+) sensors for vesicle exocytosis but the mechanism for coupling Ca(2+) rises to membrane fusion remains undefined. Synaptotagmins bind SNAREs, essential components of the membrane fusion machinery, but the role of these interactions in Ca(2+)-triggered vesicle exocytosis has not been directly assessed. We identified sites on synaptotagmin-1 that mediate Ca(2+)-dependent SNAP25 binding by zero-length cross-linking. Mutation of these sites in C2A and C2B eliminated Ca(2+)-dependent synaptotagmin-1 binding to SNAREs without affecting Ca(2+)-dependent membrane binding. The mutants failed to confer Ca(2+) regulation on SNARE-dependent liposome fusion and failed to restore Ca(2+)-triggered vesicle exocytosis in synaptotagmin-deficient PC12 cells. The results provide direct evidence that Ca(2+)-dependent SNARE binding by synaptotagmin is essential for Ca(2+)-triggered vesicle exocytosis and that Ca(2+)-dependent membrane binding by itself is insufficient to trigger fusion. A structure-based model of the SNARE-binding surface of C2A provided a new view of how Ca(2+)-dependent SNARE and membrane binding occur simultaneously. 相似文献
18.
Synaptic vesicles are clustered at the presynaptic terminal where they fuse and recycle in response to stimulation. Vesicles appear to be sorted into pools, but we do not yet understand how physiologically defined pools relate to morphological pools. The advent of dynamic imaging approaches has led to an appreciation of the regulation of vesicle mobility. Newly endocytosed vesicles are highly mobile but appear to become transiently trapped as they re-enter the recycling pool. Recent experiments indicate that endocytosis might have a constant rate, but limited capacity. How endocytosis is linked to exocytosis remains unclear, although calcium emerges as an important player. 相似文献
19.
The paradigm for soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) function in mammalian cells has been built on advancements in our understanding of structural and biochemical aspects of synaptic vesicle exocytosis, involving specifically synaptobrevin, syntaxin 1 and SNAP25. Interestingly, a good number of SNAREs which are not directly involved in neurotransmitter exocytosis, are either brain-enriched or have distinct neuron-specific functions. Syntaxins 12/13 regulates glutamate receptor recycling via its interaction with neuron-enriched endosomal protein of 21 kDa (NEEP21). TI-VAMP/VAMP7 is essential for neuronal morphogenesis and mediates the vesicular transport processes underlying neurite outgrowth. Ykt6 is highly enriched in the cerebral cortex and hippocampus and is targeted to a novel compartment in neurons. Syntaxin 16 has a moderate expression level in many tissues, but is rather enriched in the brain. Here, we review and discuss the neuron-specific physiology and possible pathology of these and other (such as SNAP-29 and Vti1a-beta) members of the SNARE family. 相似文献
20.
Drosophila CAPS is an essential gene that regulates dense-core vesicle release and synaptic vesicle fusion 总被引:7,自引:0,他引:7
Renden R Berwin B Davis W Ann K Chin CT Kreber R Ganetzky B Martin TF Broadie K 《Neuron》2001,31(3):421-437
Calcium-activated protein for secretion (CAPS) is proposed to play an essential role in Ca2+-regulated dense-core vesicle exocytosis in vertebrate neuroendocrine cells. Here we report the cloning, mutation, and characterization of the Drosophila ortholog (dCAPS). Null dCAPS mutants display locomotory deficits and complete embryonic lethality. The mutant NMJ reveals a 50% loss in evoked glutamatergic transmission, and an accumulation of synaptic vesicles at active zones. Importantly, dCAPS mutants display a highly specific 3-fold accumulation of dense-core vesicles in synaptic terminals, which was not observed in mutants that completely arrest synaptic vesicle exocytosis. Targeted transgenic CAPS expression in identified motoneurons fails to rescue dCAPS neurotransmission defects, demonstrating a cell nonautonomous role in synaptic vesicle fusion. We conclude that dCAPS is required for dense-core vesicle release and that a dCAPS-dependent mechanism modulates synaptic vesicle release at glutamatergic synapses. 相似文献