首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We study the case of two sibling species ofHippolais(Aves). Very little differences can be observed in the morphology of both species. The breeding area of these species are complementary. Roughly, one species breeds North and East of Europe (Hippolais icterina) while the other breeds South and West of Europe (Hippolais polyglotta). There exitst a narrow zone of sympatry passing through Burgundy. Since several years, it has been observed that this area of sympatry was moving in the North-East direction at a European scale. This means that progressivelyH. icterina is declining and is replaced byH. polyglotta. Some assumptions can be made in order to explain this evolution, for instance competition or predation. Series of observations concerning the diets of nestlings of both species have been realized. These observations show some differences in the diet compositions. The breeding success of the two species has been studied. Numerical simulations of a competition model taking into account the observed differences between the food types eaten by the two species are presented. These simulations do not explain the regression ofH. icterina. Then, we present numerical simulations of a predation model with one predator attacking the nestlings of both species. These simulations show that with time one of the two preys must extinct. Predation rather than competition seems to be the right explanation.  相似文献   

2.
Disentangling the factors shaping species distributions remains a central goal in biogeography, ecology and evolutionary biology. The extrinsic pressures that may facilitate range shifts, such as climatic factors or biotic interactions are well known. However, in contrast, the possible intrinsic factors are manifold and hard to generalize across taxa. Recently, several theoretical studies have investigated the consequences of moving range borders on genetic diversity. However, empirical studies that support or refute these theoretical predictions are scarce. Moving contact zones between parapatric sister species are suitable models to test these hypotheses. Changes in genetic diversity can be tested simultaneously along the expanding and receding edges of two species of the contact zone while accounting for intra‐specific effects (e.g. introgression). The two Old World warblers Hippolais polyglotta and H. icterina form a narrow moving contact zone, where interspecific interactions are suspected to be the main factor shaping this zone. We investigated the population genetic structure of both species along a transect ranging from the core range of the expanding H. polyglotta across the contact zone and far into the range of the receding H. icterina. The theoretical predictions of changes in genetic diversity at the range edges were tested. No gradual change in genetic diversity was detected for both the expanding and the receding range margin. Furthermore, no genetic structure was found in either species supporting the hypothesis that long distance dispersal (LDD) occurs frequently due to the high mobility of these long‐distance migrants. The results suggest that when dispersal propensity is high and accompanied by frequent LDD events, then neither an enrichment nor a depletion of alleles along moving range edges would be detected. This these species as the probability to retain genetic diversity during exogenous induced range shifts is high in such mobile species.  相似文献   

3.
Hybridization can drive the convergence of territorial and sexual signals. However, non-genetic processes such as competition, environment matching, or cultural transmission, also generate this pattern. We investigated the effect of hybridization on song convergence between two interspecifically territorial warblers in a moving hybrid zone. We confirmed song convergence in each species. Using an AFLP-based genetic index, we detected an effect of genetics on song convergence in Hippolais polyglotta, the expanding species. Evidence was weaker for H. icterina, the receding species. In moving zones, introgression is expected to be larger in the expanding species than in the receding. Thus, the asymmetric contribution of the genetic index to convergence was consistent with expectations for genetically determined traits in moving hybrid zones, and the observed introgression pattern of AFLP markers. However, the geographical location of individuals had an effect on song variation too when genetics was accounted for, suggesting that convergence also has non-genetic explanations. We examine the possible role of alternative processes to that of hybridization and discuss their conflicting effects on reinforcement and hybrid zone dynamics.  相似文献   

4.
The process of fragmentation can greatly influence plant–animal interactions. To assess the degree to which it affects the balance between two interactions of opposite sign, namely seed dispersal and post-dispersal seed predation, we selected 16 patches of chestnut forest in O Courel and El Bierzo, northwestern Spain. We assessed the effect of fragmentation over two different seed dispersal–predation systems using Helleborus foetidus and Ilex aquifolium as model species. In the first case, field experiments consisted of seed-offering trays with selective exclusion of rodents and ants in a two-way orthogonal design. In the second experiment, we placed experimental branches and trays on the floor to assess seed dispersal and predation. The interactions between several fragment traits and the relative contribution of rodents, ants and birds to seed removal were analyzed by means of generalized linear mixed models. Results show that for H. foetidus, differences in seed dispersal–predation were accounted for by patch shape, which affected mainly the dispersal phase. Major seed dispersal took place in patches with a smaller edge to core ratio and high plant cover (abandoned patches), whilst the latter also showed maximum seed predation. For I. aquifolium, fragmentation effects were significant only for seed predation, which was increased in abandoned patches. This shows that the effects of habitat fragmentation can emerge at different phases depending on specific traits of the interacting animals. It also highlights the importance of traditional land-use practices in species interactions.  相似文献   

5.
Climate is a major factor delimiting species’ distributions. However, biotic interactions may also be prominent in shaping geographical ranges, especially for parapatric species forming hybrid zones. Determining the relative effect of each factor and their interaction of the contact zone location has been difficult due to the lack of broad scale environmental data. Recent developments in species distribution modelling (SDM) now allow disentangling the relative contributions of climate and species’ interactions in hybrid zones and their responses to future climate change. We investigated the moving hybrid zone between the breeding ranges of two parapatric passerines in Europe. We conducted SDMs representing the climatic conditions during the breeding season. Our results show a large mismatch between the realized and potential distributions of the two species, suggesting that interspecific interactions, not climate, account for the present location of the contact zone. The SDM scenarios show that the southerly distributed species, Hippolais polyglotta, might lose large parts of its southern distribution under climate change, but a similar gain of novel habitat along the hybrid zone seems unlikely, because interactions with the other species (H. icterina) constrain its range expansion. Thus, whenever biotic interactions limit range expansion, species may become ‘trapped’ if range loss due to climate change is faster than the movement of the contact zone. An increasing number of moving hybrid zones are being reported, but the proximate causes of movement often remain unclear. In a global context of climate change, we call for more interest in their interactions with climate change.  相似文献   

6.
Spatial segregation (parapatry) often occurs between closely related species. The distributions of the two species are sometimes defined with a small overlapping zone (called a `sympatric area') which generally shifts. Exclusion is necessary to explain the persistence and shift of such a spatial pattern. Field studies are carried out to identify the type of interaction that leads to the required exclusion. This is usually achieved by estimating competition and predation parameters to define the type of interaction strong enough to imply exclusion. But interaction parameters are estimated by quantitative methods which require prolonged observation (5–10 years). These estimations are thus difficult to obtain and are open to criticism because of the spatial and temporal variations in the biotic context. Now the study of these variations requires estimation of several other interaction parameters (for different times and sites); therefore, we are unable to discuss these criticisms from a study of realistic duration. We have, therefore, developed a faster study method using the spatial properties of the sympatric area (width and velocity). We used a between-species competition and a predation model, spatially extended with coupled map lattice formalism (CML), to generate substitution waves corresponding to the `moving sympatric area' and to study their spatial properties (asymptotic width and velocity). The relationships between the asymptotic width and the interaction level had different shapes with competition and predation parameters. We used this difference to define a rapid study method that does not use quantitative estimations of the interaction parameters. This method is more reliable than the usual method with respect to the above criticisms. These findings may have considerable consequences for field studies of parapatry.  相似文献   

7.
Edward W. Evans 《Oecologia》1991,87(3):401-408
Summary The nature and relative strengths of intra versus interspecific interactions among foraging ladybeetle larvae were studied experimentally by measuring short-term growth rates of predators and reductions in population sizes of prey in laboratory microcosms. In these microcosms, ladybeetle larvae foraged singly or as conspecific or heterospecific pairs, for pea aphids on bean plants over a two-day period. Similarly sized third instar larvae ofHippodamia convergens andH. tredecimpunctata, H. convergens andH. sinuata, andH. convergens andCoccinella septempunctata, were tested in experiments designed to ensure that paired larvae experienced moderate competition. Interspecific competition in these experiments did not differ significantly from intraspecific competition, in that an individual's weight gain did not depend on whether its competitor was heterospecific or conspecific. Furthermore, aphid populations were reduced equally by heterospecific and conspecific pairs. These results suggest that there is little or no difference between intra and interspecific interactions among larvae of these ladybeetles when two similarly sized individuals co-occur on a host plant. Thus, the species diversityper se of assemblages of ladybeetle larvae may have little influence over the short term on the reduction of aphid populations by ladybeetle predation.  相似文献   

8.
We consider systems with one predator and one prey, or a common predator and two prey species (apparent competitors) in source and sink habitats. In both models, the predator species is vulnerable to extinction, if productivity in the source is insufficient to rescue demographically deficient sink populations. Conversely, in the model with two prey species, if the source is too rich, one of the prey species may be driven extinct by apparent competition, since the predator can maintain a large population because of the alternative prey. Increasing the rate of predator movement from the source population has opposite effects on prey and predator persistence. High emigration rate exposes the predator population to danger of extinction, reducing the number of individuals that breed and produce offspring in the source habitat. This may promote coexistence of prey by relaxing predation pressure and apparent competition between the two prey species. The number of sinks and spatial arrangement of patches, or connectivity between patches, also influence persistence of the species. More sinks favor the prey and fewer sinks are advantageous to the predator. A linear pattern with the source at one end is profitable for the predator, and a centrifugal pattern in which the source is surrounded by sinks is advantageous to the prey. When the dispersal rate is low, effects of the spatial structure may exceed those of the number of sinks. In brief, productivity in patches and patterns of connectivity between patches differentially influence persistence of populations in different trophic levels.  相似文献   

9.
The model of N. D. Atkinson and B. Shorrocks (J. Anim. Ecol. 50, 461–471 (1981)) as two competing species distributing their progeny amongst patches according to independent negative binomial distributions. The resulting separation of the species increases the likelihood of coexistence. We have assumed a much simpler distribution of the competitors which has enabled us to explore analytically the dynamics of interactions with two competing species and a shared natural enemy in a patchy environment. Two types of natural enemy have been considered: a generalist predator whose dynamics are uncoupled from those of the two prey species, and a specialist (e.g., a parasitoid) whose dynamics are entirely coupled to those of its two prey. The following conclusions emerge. Non-aggregating generalist predators causing random predation across patches are generally destabilizing (although asymmetrical predation may in some case enhance coexistence as a result of preferential predation on the superior competitor). Predator aggregation in patches of high prey density, however, produces a switching effect which tends to promote stability. Coexistence is now even possible with high degrees of correlation in the distribution of the two prey and in situations of extreme competition where the competition coefficients exceed one. The main difference in the models with a specialist parasitoid as the natural enemy is a reduction in stability compared with the equivalent generalist-prey interaction. But stable coexistence can still readily occur if the natural enemies aggregate markedly in patches of high prey density.  相似文献   

10.
ávila-Pires’ saddle-back tamarins (Saguinus fuscicollis avilapiresi) and red-cap moustached tamarins (S. mystax pileatus), coexisting in highly stable mixed-species groups, overlapped considerably in their use of plant food resources at an Amazonian terra firme forest site. Overlap between food types consumed by the two species was particularly high during periods of lowest fruit availability, when they resorted to a common food supply, primarily the pod exudates of two emergent species of legume trees (Parkia nitida andParkia pendula) and nectar ofSymphonia globulifera. Within-group interspecific competition did not covary with independent measures of resource availability, contrary to predictions based on resource partitioning models. A greater number of both saddle-back and moustached tamarins were able to feed for longer patch residence periods within larger and more productive food patches, whereas small and clumped patches could be monopolized by the socially and numerically dominant moustached tamarins to the physical exclusion of the smaller-bodied saddle-back tamarins. Overall rates of interspecific aggression were extremely low, however, partly because patches that could be monopolized contributed with a minor proportion of either species’ diet. Saddle-backs foraged at lower levels in the understory and encountered smaller food patches more often, whereas moustached tamarins foraged higher and encountered more larger patches in the middle canopy. Although the two species led one another to differently-sized patches, moustached tamarins initiated most feeding bouts and encountered significantly larger and more productive patches that tended to accommodate the entire mixed-species group. Disadvantages of exploitative and interference feeding competition over plant resources, and advantages of shared knowledge of food patches, are but one component of the overall cost-benefit relationship of interspecific associations in tamarins.  相似文献   

11.
12.
Summary The nest locations of two ant species in the Colorado Desert are intraspecifically overdispersed. Intraspecific overdispersion has been thought to represent strong intraspecific competition. Here we consider this hypothesis along with three competing hypotheses: microhabitat selection by foundress queens, predation on foundress queens, and predation on established colonies. To test these hypotheses five types of data were collected: (1) the forager population sizes of Veromessor pergandei and Pogonomyrmex californicus, (2) the response of the territory use of V. pergandei to varying levels of food, (3) the encounter rates of conspecifics and other ant species to foundress queens artificially placed near and far from conspecific colonies, (4) predation on colonies as a function of colony spacing, and (5) the relationship between the plant microhabitat at the nest and colony spacing. The results show that established colonies have no apparent selectivity for a particular type of plant microhabitat nor do foundress queens show avoidance or attraction toward conspecifics. V. pergandei workers show only a slight ability to find V. pergandei queens that are artificially placed near their entrances. Certain spiders are the most common ant predators on our study area. Direct observations on spiders indicate that colonies with closer neighbors are not prone to a higher risk of predation. In addition, the estimates of the death rate of workers from a mark-recapture technique indicate that colonies with closer neighbors lose similar numbers of workers as compared to colonies with further neighbors. In favor of the competition hypothesis, the summed size of intraspecific nearest neighbor pairs are larger for colonies that are spaced further apart than those colonies that are spaced closer together. We also develop an index of foraging directionality for the column foraging species V. pergandei. Using this measure, we find that nearest neighbors tend to avoid foraging toward each other. The response of territory use to food levels was tested with experiments involving patches of cracked wheat. These experiments showed that patches away from nearest neighbors were found significantly sooner than patches toward nearest neighbors. The above five sets of data together suggest that resource competition and perhaps queen predation by established colonies account for the intraspecific spatial patterns of these species.  相似文献   

13.
This paper considers intraguild predation (IGP) systems where species in the same community kill and eat each other and there is intraspecific competition in each species. The IGP systems are characterized by a lattice gas model, in which reaction between sites on the lattice occurs in a random and independent way. Global dynamics of the model with two species demonstrate mechanisms by which IGP leads to survival/extinction of species. It is shown that an intermediary level of predation promotes survival of species, while over-predation or under-predation could result in species extinction. An interesting result is that increasing intraspecific competition of one species can lead to extinction of one or both species, while increasing intraspecific competitions of both species would result in coexistence of species in facultative predation. Initial population densities of the species are also shown to play a role in persistence of the system. Then the analysis is extended to IGP systems with one species. Numerical simulations confirm and extend our results.  相似文献   

14.
Species at the same trophic level may interact through competition for food, but can also interact through intraguild predation. Intraguild predation is widespread at the second and third trophic level and the effects may cascade down to the plant level. The effects of intraguild predation can be modified by antipredator behaviour in the intraguild prey. We studied intraguild predation and antipredator behaviour in two species of predatory mite, Neoseiulus californicus and Phytoseiulus persimilis, which are both used for control of the two-spotted spider mite in greenhouse and outdoor crops. Using a Y-tube olfactometer, we assessed in particular whether each of the two predators avoids odours emanating from prey patches occupied by the heterospecific predator. Furthermore, we measured the occurrence and rate of intraguild predation of different developmental stages of P. persimilis and N. californicus on bean leaves in absence or in presence of the shared prey. Neither of the two predator species avoided prey patches with the heterospecific competitor, both when inexperienced with the other predator and when experienced with prey patches occupied by the heterospecific predator. Intraguild experiments showed that N. californicus is a potential intraguild predator of P. persimilis. However, P. persimilis did not suffer much from intraguild predation as long as the shared prey was present. This is probably because N. californicus prefers to feed on two-spotted spider mites rather than on its intraguild prey.  相似文献   

15.
Although the behaviour of animals facing the conflicting demands of increasing foraging success and decreasing predation risk has been studied in many taxa, the response of pollinators to variations in both factors has only been studied in isolation. We compared visit rates of two pollinator species, hoverflies and honeybees, to 40 Chrysanthemum segetum patches in which we manipulated predation risk (patches with and without crab spiders) and nectar availability (rich and poor patches) using a full factorial design. Pollinators responded differently to the tradeoff between maximising intake rate and minimising predation risk: honeybees preferred rich safe patches and avoided poor risky patches while the number of hoverflies was highest at poor risky patches. Because honeybees were more susceptible to predation than hoverflies, our results suggest that, in the presence of competition for resources, less susceptible pollinators concentrate their foraging effort on riskier resources, where competition is less severe. Crab spiders had a negative effect on the rate at which inflorescences were visited by honeybees. This effect was mediated through changes in the foraging strategy of honeybees, and could, in principle, be reversed by increasing nectar productivity of inflorescences. Our study shows that both pollinator species responded simultaneously and differently to variations in food reward and predation risk, and highlights the importance of studying the foraging strategies of pollinators in order to fully understand how plant–pollinator interactions are established.  相似文献   

16.
The influence of temporal and spatial heterogeneity in seed availability on the foraging behaviour of the harvester ant Messor arenarius was studied in an arid shrubland in the Negev Desert, Israel. The study investigated the implications of behavioural responses to heterogeneity in seed availability for the seed predation process and the potential for feedback effects on vegetation. Vegetation and seed rain were monitored across two landscape patch types (shrub patches and inter-shrub patches) in 1997. Shrub patches were shown to have higher plant and seed-rain density than inter-shrub patches. Patch use and seed selection by M. arenarius foragers were monitored through the spring, summer and autumn of 1997. After a pulse of seed production in the spring, the ants exhibited very narrow diet breadth, specialising on a single annual grass species, Stipa capensis. At this time, ants were foraging and collecting seeds mainly from inter-shrub patches. In the summer, diet breadth broadened and use of shrub patches increased, although the rate of seed collection per unit area was approximately equal in the two patch types. The increase in the use of shrub patches was due to colony-level selection of foraging areas with relatively high shrub cover and an increase in the use of shrub patches by individual foragers. In the autumn, a pulse of seed production by the shrub species Atractylis serratuloides and Noaea mucronata led to a reduction in diet breadth as foragers specialised on these species. During this period, foragers exhibited a large increase in the proportion of time spent in shrub patches and in the proportion of food items collected from shrub patches. The seasonal patterns in foraging behaviour showed linked changes in seed selection and patch use resulting in important differences in the seed predation process between the two landscape patch types. For much of the study period, there was higher seed predation pressure on the inter-shrub patches, which were of relatively low productivity compared with the shrub patches. This suggests that the seed predation process may help maintain the spatial heterogeneity in the density of ephemeral plants in the landscape.  相似文献   

17.
Experimental field and laboratory studies indicate that Cerithidea californica, a native mud snail, is restricted to only a portion of its normal habitat range in San Francisco Bay as a result of direct interactions with an introduced ecological equivalent, Ilyanassa obsoleta. The native snail typically inhabits marsh pans, tidal creeks and mudflats in estuaries along the Pacific coast. However, in San Francisco Bay it is confined to pans for most of the year, while the non-native snail inhabits the creeks and mudflats. Experiments and field monitoring demonstrate that this abnormal distribution pattern is caused by 1) interference competition for space in the form of an adult-adult behavioral avoidance by C. californica in the presence of invading I. obsoleta, and 2) predation by I. obsoleta on the eggs and juveniles of C. californica. The competitive exclusion of C. californica by I. obsoleta has not led to the extinction of the native snail because of the existence of a refuge for C. californica in pan habitats, beyond the physiological tolerances of I. obsoleta. As a consequence of the seasonal migrations of both species and changes in abiotic factors along the habitat gradient, repeated competitive displacements, rather than a one-time competitive exclusion, are observed between these two species. This is the first documented case of the competitive displacement of an endemic marine intertidal species by an introduced ecological equivalent.  相似文献   

18.
R. G. Creese 《Oecologia》1982,52(1):85-96
Summary At Cape Banks, New South Wales, adults of the small intertidal limpet, Patelloida latistrigata occur exclusively in the barnacle zone, and are primarily associated with the barnacle, Tesseropora rosea. Limpet density increases with barnacle density. Juvenile limpets can be found throughout the barnacle zone, and on patches of bare rock that may be temporarily available at lower levels on the shore. The failure of juveniles to survive and grow in places other than among Tesseropora is due to a combination of factors. These include desication at high levels on the shore, smothering by rapidly growing algae low on the shore, and the grazing activities of the larger limpet, Cellana tramoserica. These latter two factors also reduce the survival of experimentally transplanted adult Patelloida: algae by covering the substratum and smothering the limpets, and Cellana by outcompeting them for food. The density of Cellana is greater on patches of bare rock than among barnacles, and these large limpets may be unable to move and feed effectively over the irregular surface created by Tesseropora. Patelloida, however, is small enough to feed over and among these barnacles, and hence has a refuge from competition with Cellana. Barnacles may also provide shelter from the effects of desiccation and strong wave action, and thus increase the survival of juvenile Patelloida. By being associated with barnacles, however, Patelloida becomes vulnerable to intermittent predation by the whelk, Morula marginalba. This effect may be serious enough to eliminate small local populations of limpets, either by direct predation or by removing the refuge-providing barnacles. The association with barnacles may also limit the maximum size to which Patelloida can grow. Patelloida is not always found with Tesseropora, and adults in different localities can be found in association with other sessile organisms. It may be argued that small species of limpets require a spatial refuge from physical and/or biological pressures. To examine this hypothesis, the relationship between Patelloida and Tesseropora is compared to other published accounts of limpets with specialised modes of life.  相似文献   

19.
Abstract: San Joaquin kit foxes (Vulpes macrotis mutica) are an endangered species with a narrow geographic range whose natural populations are limited by predation by coyotes (Canis latrans). In the warm, arid grassland and shrubland habitats where kit foxes occur, coyotes are more cover dependent than kit foxes, creating the possibility of habitat segregation. Effects of habitat variation on coyote and kit fox competition are unknown. We assessed exploitation and interference competition between coyotes and kit foxes in grassland and shrubland habitats to determine if such competition varies among habitats. With respect to exploitation competition, we evaluated habitat and spatial partitioning, diet, prey abundance, and survival for kit foxes and coyotes at the Lokern Natural Area in central California, USA, from January 2003 through June 2004. Kit foxes partitioned habitat, space, and diet with coyotes. Coyotes primarily used shrubland habitats whereas kit foxes selectively used burned grasslands. Kit foxes and coyotes had high dietary overlap with regards to items used, but proportional use of items differed between the 2 species. Kit foxes selected for Heermann's kangaroo rats (Dipodomys heermanni), which were closely tied to shrub habitats. With respect to interference competition, predation was the primary source of mortality for kit foxes, and survival of individual kit foxes was inversely related to proportion of shrub habitat within their home ranges. Our results suggest that a heterogeneous landscape may benefit kit foxes by providing habitat patches where predation risk may be lower.  相似文献   

20.
In the headwaters of the New River in western North Carolina, the dominant crayfish species changes with increasing stream size. One transition occurs between third- and fourth-order streams. Cambarus chasmodactylus is the dominant species in third-order tributaries. Orconectes cristavarius is the dominant species in the fourth-order South Fork of the New River. While adult C. chasmodactylus are present in the South Fork, the young-of-the-year (YOY) of this species are absent despite evidence of reproduction. In this study we evaluated the factors that may be responsible for the absence of C. chasmodactylus YOY from the South Fork. A field experiment was used to evaluate the role of abiotic factors and competition with YOY O. cristavarius. There was no significant effect of either of these factors on mortality or growth of C. chasmodactylus YOY. The growth rate of O. cristavarius was 3× faster than that of C. chasmodactylus in this experiment. Since neither abiotic factors nor competition appeared responsible for the exclusion of C. chasmodactylus YOY from the South Fork we evaluated the potential importance of selective predation by rock bass (Ambloplites rupestris), a fish species that is common in the South Fork but virtually absent in the tributaries. In a laboratory experiment, C. chasmodactylus YOY experienced significantly higher mortality than O. cristavarius YOY in the presence of rock bass. Field observations and a laboratory experiment suggest that the two crayfish species differ in their anti-predator behaviors. Cambarus chasmodactylus was less likely to swim when initially disturbed and swam shorter distances than O. cristavarius. The differences in escape behavior and growth rate may contribute to the differences in the vulnerability of the two species to rock bass predation. Our results suggest that intense predation pressure exerted by the rock bass may contribute to the virtual exclusion of C. chasmodactylus YOY from the fourth-order South Fork. Handling editor: J. Trexler  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号