首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have shown in a previous study that desensitization and internalization of the human dopamine D(1) receptor following short-term agonist exposure are mediated by temporally and biochemically distinct mechanisms. In the present study, we have used site-directed mutagenesis to remove potential phosphorylation sites in the third intracellular loop and carboxyl tail of the dopamine D(1) receptor to study these processes. Mutant D(1) receptors were stably transfected into Chinese hamster ovary cells, and kinetic parameters were measured. Mutations of Ser/Thr residues to alanine in the carboxyl tail demonstrated that the single substitution of Thr-360 abolished agonist-induced phosphorylation and desensitization of the receptor. Isolated mutation of the adjacent glutamic acid Glu-359 also abolished agonist-induced phosphorylation and desensitization of the receptor. These data suggest that Thr-360 in conjunction with Glu-359 may comprise a motif necessary for GRK2-mediated phosphorylation and desensitization. Agonist-induced internalization was not affected with mutation of either the Thr-360 or the Glu-359 residues. However, receptors with Ser/Thr residues mutated in the distal carboxyl tail (Thr-446, Thr-439, and Ser-431) failed to internalize in response to agonist activation, but were able to desensitize normally. These results indicate that agonist-induced desensitization and internalization are regulated by separate and distinct serine and threonine residues within the carboxyl tail of the human dopamine D(1) receptor.  相似文献   

2.
It is generally accepted that the internalization and desensitization of mu-opioid receptor (MOR) involves receptor phosphorylation and beta-arrestin recruitment. However, a mutant MOR, which is truncated after the amino acid residue Ser363 (MOR363D), was found to undergo phosphorylation-independent internalization and desensitization. As expected, MOR363D, missing the putative agonist-induced phosphorylation sites, did not exhibit detectable agonist-induced phosphorylation. MOR363D underwent slower internalization as reflected in the attenuation of membrane translocation of beta-arrestin 2 when compared with wild type MOR, but the level of receptor being internalized was similar to that of wild type MOR after 4 h of etorphine treatment. Furthermore, MOR363D was observed to desensitize faster than that of wild type MOR upon agonist activation. Surface biotinylation assay demonstrated that the wild type receptors recycled back to membrane after agonist-induced internalization, which contributed to the receptor resensitization and thus partially reversed the receptor desensitization. On the contrary, MOR363D did not recycle after internalization. Hence, MOR desensitization is controlled by the receptor internalization and the recycling of internalized receptor to cell surface in an active state. Taken together, our data indicated that receptor phosphorylation is not absolutely required in the internalization, but receptor phosphorylation and subsequent beta-arrestin recruitment play important roles in the resensitization of internalized receptors.  相似文献   

3.
Desensitization and internalization of G-protein-coupled receptors can reflect receptor phosphorylation-dependent binding of beta-arrestin, which prevents G-protein activation and targets receptors for internalization via clathrin-coated vesicles. These can be pinched off by a dynamin collar, and proteins controlling receptor internalization can also mediate mitogen-activated protein kinase signaling. Gonadotropin-releasing hormone (GnRH) stimulates internalization of its receptors via clathrin-coated vesicles. Mammalian GnRH receptors (GnRH-Rs) are unique in that they lack C-terminal tails and do not rapidly desensitize, whereas non-mammalian GnRH-R have C-terminal tails and, where investigated, do rapidly desensitize and internalize. Using recombinant adenovirus expressing human and Xenopus GnRH-Rs we have explored the relationship between receptor internalization and mitogen-activated protein kinase signaling in HeLa cells with regulated tetracycline-controlled expression of wild-type or a dominant negative mutant (K44A) of dynamin. These receptors were phospholipase C-coupled and had appropriate ligand affinity and specificity. K44A dynamin expression did not alter human GnRH-R internalization but dramatically reduced internalization of Xenopus GnRH-R (and epidermal growth factor (EGF) receptor). Blockade of clathrin-mediated internalization (sucrose) abolished internalization of all three receptors. Both GnRH-Rs also mediated phosphorylation of ERK 2 and for both receptors, this was inhibited by K44A dynamin. The same was true for EGF- and protein kinase C-mediated ERK 2 phosphorylation. ERK 2 phosphorylation was also inhibited by a protein kinase C inhibitor but not affected by an EGF receptor tyrosine kinase inhibitor. We conclude that a) desensitizing and non-desensitizing GnRH-Rs are targeted for clathrin-coated vesicle-mediated internalization by functionally distinct mechanisms, b) GnRH-R signaling to ERK 2 is dynamin-dependent and c) this does not reflect a dependence on dynamin-dependent GnRH-R internalization.  相似文献   

4.
Beta-arrestins are multifunctional adaptors that bind agonist-activated G protein-coupled receptors (GPCRs), mediate their desensitization and internalization, and control the rate at which receptors recycle back at the plasma membrane ready for subsequent stimulation. The activation of the bradykinin (BK) type 2 receptor (B2R) results in the rapid desensitization and internalization of the receptor. Little is known, however, about the role of beta-arrestin in regulating the intracellular trafficking and the resensitization of the B2R. Using confocal microscopy, we show that BK stimulation of COS-7 cells expressing B2R induces the colocalization of the agonist-activated receptor with beta-arrestin into endosomes. Fluorescent imaging and ligand binding experiments also reveal that upon agonist removal, beta-arrestin rapidly dissociates from B2R into endosomes, and that receptors return back to the plasma membrane, fully competent for reactivating B2R signaling as measured by NO production upon a second BK challenge. However, when the receptor is mutated in its C-terminal domain to increase its avidity for beta-arrestin, B2R remains associated with beta-arrestin into endosomes, and receptors fail to recycle to the plasma membrane postagonist wash. Similarly, the recycling of receptors is prevented when a beta-arrestin mutant exhibiting increased avidity for agonist-bound GPCRs is expressed with B2R. Stabilizing receptor/beta-arrestin complexes into endosomes results in the dampening of the BK-mediated NO production. These results provide evidence for the involvement of beta-arrestin in the intracellular trafficking of B2R, and highlight the importance of receptor recycling in reestablishing B2R signaling.  相似文献   

5.
The widely expressed beta-arrestin isoforms 1 and 2 bind phosphorylated G protein-coupled receptors (GPCRs) and mediate desensitization and internalization. Phosphorylation of protease-activated receptor-1 (PAR1), a GPCR for thrombin, is important for desensitization and internalization, however, the role of beta-arrestins in signaling and trafficking of PAR1 remains unknown. To assess beta-arrestin function we examined signaling and trafficking of PAR1 in mouse embryonic fibroblasts (MEFs) derived from beta-arrestin (betaarr) knockouts. Desensitization of PAR1 signaling was markedly impaired in MEFs lacking both betaarr1 and betaarr2 isoforms compared with wild-type cells. Strikingly, in cells lacking only betaarr1 PAR1 desensitization was also significantly impaired compared with betaarr2-lacking or wild-type cells. In wild-type MEFs, activated PAR1 was internalized through a dynamin- and clathrin-dependent pathway and degraded. Surprisingly, in cells lacking both betaarr1 and betaarr2 activated PAR1 was similarly internalized through a dynamin- and clathrin-dependent pathway and degraded, whereas the beta(2)-adrenergic receptor (beta(2)-AR) failed to internalize. A PAR1 cytoplasmic tail mutant defective in agonist-induced phosphorylation failed to internalize in both wild-type and beta-arrestin knockout cells. Thus, PAR1 appears to utilize a distinct phosphorylation-dependent but beta-arrestin-independent pathway for internalization through clathrin-coated pits. Together, these findings strongly suggest that the individual beta-arrestin isoforms can differentially regulate GPCR desensitization and further reveal a novel mechanism by which GPCRs can internalize through a dynamin- and clathrin-dependent pathway that is independent of arrestins.  相似文献   

6.
Agonist binding to the CC chemokine receptor 5 (CCR5) induces the phosphorylation of four distinct serine residues that are located in the CCR5 C terminus. We established a series of clonal RBL-2H3 cell lines expressing CCR5 with alanine mutations of Ser(336), Ser(337), Ser(342), and Ser(349) in various combinations and explored the significance of phosphorylation sites for the ability of the receptor to interact with beta-arrestins and to undergo desensitization and internalization upon ligand binding. Receptor mutants that lack any two phosphorylation sites retained their ability to recruit endogenous beta-arrestins to the cell membrane and were normally sequestered, whereas alanine mutation of any three C-terminal serine residues abolished both beta-arrestin binding and rapid agonist-induced internalization. In contrast, RANTES (regulated on activation normal T cell expressed and secreted) stimulation of a S336A/S349A mutant triggered a sustained calcium response and enhanced granular enzyme release. This mutational analysis implies that CCR5 internalization largely depends on a beta-arrestin-mediated mechanism that requires the presence of any two phosphorylation sites, whereas receptor desensitization is independently regulated by the phosphorylation of distinct serine residues. Surface plasmon resonance analysis further demonstrated that purified beta-arrestin 1 binds to phosphorylated and nonphosphorylated C-tail peptides with similar affinities, suggesting that beta-arrestins use additional receptor sites to discriminate between nonactivated and activated receptors. Surface plasmon resonance analysis revealed beta-arrestin 1 binding to the second intracellular loop of CCR5, which required an intact Asp-Arg-Tyr triplet. These results suggest that a conserved sequence motif within the second intracellular loop of CCR5 that is known to be involved in G protein activation plays a significant role in beta-arrestin binding to CCR5.  相似文献   

7.
Agonist-induced internalization of G protein-coupled receptors plays an important role in signal regulation. The underlying mechanisms of the internalization of the human neuropeptide Y(2) receptor (hY(2)R), as well as its desensitization, endocytosis, and resensitization are mainly unknown. In the present study we have investigated the role of carboxyl-terminal (C-terminal) Ser/Thr residues and acidic amino acids in regulating receptor internalization, arrestin interaction, and recycling by fluorescence microscopy, cell surface enzyme-linked immunosorbent assay, and bioluminescence resonance energy transfer in several cell lines. Strikingly, C-terminal truncation mutants revealed two different internalization motifs. Whereas a distal motif (373)DSXTEXT(379) was found to be the primary regulatory internalization sequence acting in concert with arrestin-3, the proximal motif (347)DXXXSEXSXT(356) promoted ligand-induced internalization in an arrestin-3-independent manner. Moreover, we identified a regulatory sequence located between these internalization motifs ((357)FKAKKNLEVRKN(368)), which serves as an inhibitory element. We found that hY(2)R recycling is also governed by structural determinants within the proximal internalization motif. In conclusion, these results indicate that the hY(2)R C terminus is involved in multiple molecular events that regulate internalization, interaction with arrestin-3, and receptor resensitization. Our findings provide novel insights into complex mechanisms of controlled internalization of hY(2)R, which is likely applicable to other GPCRs.  相似文献   

8.
beta-Arrestins have been shown to inhibit competitively G protein-dependent signaling and to mediate endocytosis for many of the hundreds of nonvisual rhodopsin family G protein-coupled receptors (GPCR). An open question of fundamental importance concerning the regulation of signal transduction of several hundred rhodopsin-like GPCRs is how these receptors of limited sequence homology, when considered in toto, can all recruit and activate the two highly conserved beta-arrestin proteins as part of their signaling/desensitization process. Although the serine and threonine residues that form GPCR kinase phosphorylation sites are common beta-arrestin-associated receptor determinants regulating receptor desensitization and internalization, the agonist-activated conformation of a GPCR probably reveals the most fundamental determinant mediating the GPCR and arrestin interaction. Here we identified a beta-arrestin binding determinant common to the rhodopsin family GPCRs formed from the proximal 10 residues of the second intracellular loop. We demonstrated by both gain and loss of function studies for the serotonin 2C, beta2-adrenergic, alpha2a)adrenergic, and neuropeptide Y type 2 receptors that the highly conserved amino acids, proline and alanine, naturally occurring in rhodopsin family receptors six residues distal to the highly conserved second loop DRY motif regulate beta-arrestin binding and beta-arrestin-mediated internalization. In particular, as demonstrated for the beta2 AR, this occurs independently of changes in GPCR kinase phosphorylation. These results suggest that a GPCR conformation directed by the second intracellular loop, likely using the loop itself as a binding patch, may function as a switch for transitioning beta-arrestin from its inactive form to its active receptor-binding state.  相似文献   

9.
Lysophosphatidic acid (LPA) stimulates cells by activation of five G-protein-coupled receptors, termed LPA 1-5. The LPA 1 receptor is the most widely expressed and is a major regulator of cell migration. In this study, we show that phorbol ester (PMA)-induced internalization of the LPA(1) receptor requires clathrin AP-2 complexes, protein kinase C, and a distal dileucine motif (amino acids 352 and 353) in the cytoplasmic tail but not beta-arrestin. Agonist-dependent internalization of LPA 1, however, requires a cluster of serine residues (amino acids 341-347) located proximal to the dileucine motif, beta-arrestin, and to a lesser extent clathrin AP-2. The serine cluster of LPA 1 is required for beta-arrestin2-GFP translocation to the plasma membrane and signal desensitization. In contrast, the dileucine motif (IL) is required for both basal and PMA-induced internalization. Evidence for the beta-arrestin independence of PMA-induced internalization of LPA 1 comes from the observations that beta-arrestin2-GFP is not recruited to the plasma membrane upon PMA treatment and that LPA 1 is readily internalized in beta-arrestin1/2 knock-out mouse embryonic fibroblasts. These results indicate that distinct molecular mechanisms regulate agonist-dependent and PMA-dependent internalization of the LPA 1 receptor.  相似文献   

10.
Lin FT  Chen W  Shenoy S  Cong M  Exum ST  Lefkowitz RJ 《Biochemistry》2002,41(34):10692-10699
Beta-arrestins mediate agonist-dependent desensitization and internalization of G protein-coupled receptors. Previously, we have shown that phosphorylation of beta-arrestin1 by ERKs at Ser-412 regulates its association with clathrin and its function in promoting clathrin-mediated internalization of the receptor. In this paper we report that beta-arrestin2 is also phosphorylated, predominantly at residues Thr-383 and Ser-361. Isoproterenol stimulation of the beta(2)-adrenergic receptor promotes dephosphorylation of beta-arrestin2. Mutation of beta-arrestin2 phosphorylation sites to aspartic acid decreases the association of beta-arrestin2 with clathrin, thereby reducing its ability to promote internalization of the beta(2)-adrenergic receptor. Its ability to bind and desensitize the beta(2)-adrenergic receptor is, however, unaltered. These results suggest that, analogous to beta-arrestin1, phosphorylation/dephosphorylation of beta-arrestin2 regulates clathrin-mediated internalization of the beta(2)-adrenergic receptor. In contrast to beta-arrestin1, which is phosphorylated by ERK1 and ERK2, phosphorylation of beta-arrestin2 at Thr-383 is shown to be mediated by casein kinase II. Recently, it has been reported that phosphorylation of visual arrestin at Ser-366 prevents its binding to clathrin. Thus it appears that the function of all arrestin family members in mediating internalization of G protein-coupled receptors is regulated by distinct phosphorylation/dephosphorylation mechanisms.  相似文献   

11.
Homologous desensitization of beta2-adrenergic and other G-protein-coupled receptors is a two-step process. After phosphorylation of agonist-occupied receptors by G-protein-coupled receptor kinases, they bind beta-arrestins, which triggers desensitization and internalization of the receptors. Because it is not known which regions of the receptor are recognized by beta-arrestins, we have investigated beta-arrestin interaction and internalization of a set of mutants of the human beta2-adrenergic receptor. Mutation of the four serine/threonine residues between residues 355 and 364 led to the loss of agonist-induced receptor-beta-arrestin2 interaction as revealed by fluorescence resonance energy transfer (FRET), translocation of beta-arrestin2 to the plasma membrane, and receptor internalization. Mutation of all seven serine/threonine residues distal to residue 381 did not affect agonist-induced receptor internalization and beta-arrestin2 translocation. A beta2-adrenergic receptor truncated distal to residue 381 interacted normally with beta-arrestin2, whereas its ability to internalize in an agonist-dependent manner was compromised. A similar impairment of internalization was observed when only the last eight residues of the C terminus were deleted. Our experiments show that the C terminus distal to residue 381 does not affect the initial interaction between receptor and beta-arrestin, but its last eight amino acids facilitate receptor internalization in concert with beta-arrestin2.  相似文献   

12.
Once internalized, some G protein-coupled receptors (GPCRs) can recycle back to the cell surface, while some of them are delivered to lysosomes for degradation. Because recycling and degradation represent two opposing receptor fates, understanding the mechanisms that determine post-endocytic fate of GPCRs is of great importance. Our recent work has verified that agonist-induced internalization of delta-opioid receptor (DOR) employs both phosphorylation-dependent and -independent mechanisms in HEK293 cells. To investigate whether these two internalization mechanisms work differently in receptor regulation, we monitored receptor post-endocytic fates using flow cytometry, surface receptor biotinylation and radioligand binding assays. Results showed that the internalized wild type DOR could either recycle to the cell surface or be degraded. Mutant DOR M4/5/6, which lacks all three G protein-coupled receptor kinase 2 (GRK2) phosphorylation sites, could also internalize upon agonist challenge although in a reduced level as compared with the wild type counterpart. However, the internalized mutant DOR could not recycle back to the cell surface and all mutant DOR was degraded after internalization. Inhibition of GRK2 expression by GRK2 RNAi also strongly attenuated recycling of DOR. Furthermore, overexpression of GRK2, which significantly increased receptor phosphorylation and internalization, also targeted more internalized receptors to the recycling pathway. These data suggest that GRK2-catalyzed receptor phosphorylation is critically involved in DOR internalization and recycling, and the phosphorylation-independent internalization leads to receptor degradation. Data obtained from beta-arrestin1 and beta-arrestin2 RNAi experiments indicated that both beta-arrestin1 and beta-arrestin2 participate in phosphorylation-dependent internalization and the subsequent recycling of DOR. However, phosphorylation-independent internalization and degradation of DOR were strongly blocked by beta-arrestin2 RNAi, but not beta-arrestin1 RNAi. Taken together, these data demonstrate for the first time that GRK2 phosphorylation-dependent internalization mediated by both beta-arrestin1 and beta-arrestin2 leads DOR to recycle, whereas GRK2-independent internalization mediated by beta-arrestin2 alone leads to receptor degradation. Thus, the post-endocytic fate of internalized DOR can be regulated by GRK2-catalyzed receptor phosphorylation as well as distinct beta-arrestin isoforms.  相似文献   

13.
Agonist stimulation of G protein-coupled receptors causes receptor activation, phosphorylation, beta-arrestin binding and receptor internalization. Angiotensin II (AngII) causes rapid internalization of the AT1 receptors, whereas AngII-bound AT2 receptors do not internalize. Although the activation of the rat AT1A receptor with AngII causes translocation of beta-arrestin2 to the receptor, no association of this molecule with the AT2 receptor can be detected after AngII treatment with confocal microscopy or bioluminescence resonance energy transfer. These data demonstrate that the two subtypes of angiotensin receptors have different mechanisms of regulation.  相似文献   

14.
Resensitization of G protein-coupled receptors (GPCRs) following agonist-mediated desensitization is a necessary step for maintaining physiological responsiveness. However, the molecular mechanisms governing the nature of GPCR resensitization are poorly understood. Here, we examine the role of beta-arrestin in the resensitization of the beta(2) adrenergic receptor (beta(2)AR), known to recycle and resensitize rapidly, and the vasopressin V2 receptor (V2R), known to recycle and resensitize slowly. Upon agonist activation, both receptors recruit beta-arrestin to the plasma membrane and internalize in a beta-arrestin- and clathrin-dependent manner. However, whereas beta-arrestin dissociates from the beta(2)AR at the plasma membrane, it internalizes with the V2R into endosomes. The differential trafficking of beta-arrestin and the ability of these two receptors to dephosphorylate, recycle, and resensitize is completely reversed when the carboxyl-terminal tails of these two receptors are switched. Moreover, the ability of beta-arrestin to remain associated with desensitized GPCRs during clathrin-mediated endocytosis is mediated by a specific cluster of phosphorylated serine residues in the receptor carboxyl-terminal tail. These results demonstrate that the interaction of beta-arrestin with a specific motif in the GPCR carboxyl-terminal tail dictates the rate of receptor dephosphorylation, recycling, and resensitization, and thus provide direct evidence for a novel mechanism by which beta-arrestins regulate the reestablishment of GPCR responsiveness.  相似文献   

15.
There is considerable evidence for the role of carboxyl-terminal serines 355, 356, and 364 in G protein-coupled receptor kinase (GRK)-mediated phosphorylation and desensitization of beta(2)-adrenergic receptors (beta(2)ARs). In this study we used receptors in which these serines were changed to alanines (SA3) or to aspartic acids (SD3) to determine the role of these sites in beta-arrestin-dependent beta(2)AR internalization and desensitization. Coupling efficiencies for epinephrine activation of adenylyl cyclase were similar in wild-type and mutant receptors, demonstrating that the SD3 mutant did not drive constitutive GRK desensitization. Treatment of wild-type and mutant receptors with 0.3 nm isoproterenol for 5 min induced approximately 2-fold increases in the EC(50) for agonist activation of adenylyl cyclase, consistent with protein kinase A (PKA) site-mediated desensitization. When exposed to 1 mum isoproterenol to trigger GRK site-mediated desensitization, only wild-type receptors showed significant further desensitization. Using a phospho site-specific antibody, we determined that there is no requirement for these GRK sites in PKA-mediated phosphorylation at high agonist concentration. The rates of agonist-induced internalization of the SD3 and SA3 mutants were 44 and 13%, respectively, relative to that of wild-type receptors, but the SD3 mutant recruited enhanced green fluorescent protein (EGFP)-beta-arrestin 2 to the plasma membrane, whereas the SA3 mutant did not. EGFP-beta-Arrestin2 overexpression triggered a significant increase in the extent of SD3 mutant desensitization but had no effect on the desensitization of wild-type receptors or the SA3 mutant. Expression of a phosphorylation-independent beta-arrestin 1 mutant (R169E) significantly rescued the internalization defect of the SA3 mutant but inhibited the phosphorylation of serines 355 and 356 in wild-type receptors. Our data demonstrate that (i) the lack of GRK sites does not impair PKA site phosphorylation, (ii) the SD3 mutation inhibits GRK-mediated desensitization although it supports some agonist-induced beta-arrestin binding and receptor internalization, and (iii) serines 355, 356, and 364 play a pivotal role in the GRK-mediated desensitization, beta-arrestin binding, and internalization of beta(2)ARs.  相似文献   

16.
Prolonged or repeated agonist activation of G-protein-coupled receptors (GPCRs) initiates their desensitization and internalization, rendering them unresponsive to agonist activation. We analyzed how gangliosides and chondroitin sulfate affect B2 bradykinin (BK) receptors (B2Rs). Gangliosides and chondroitin sulfate did not stimulate intracellular Ca(2+) release from B2R-expressing CHO-K1 cells, but repeated exposure desensitized B2Rs to BK stimulation. Microscopic observation of DsRed-fused B2Rs revealed that several gangliosides and chondroitin sulfate C (CSC) effectively internalized B2Rs. Ganglioside-CSC treatment of B2R mutant-expressing cells failed to desensitize and internalize the mutant receptors. As this mutant lacks the first extracellular domain and cannot activate GPCR kinase (GRK), gangliosides and CSC likely initiate B2R desensitization and endocytosis through GRK-mediated B2R phosphorylation.  相似文献   

17.
The trafficking of lymphocyte populations is a complex process controlled by a vast array of molecules. In this process, cells must be able to sense small changes in chemoattractant gradients. Migration through a chemotactic gradient probably employs an on-off mechanism in which chemokine receptor desensitization, internalization, and recycling may be important steps. This multistep process requires the coordinated action of many factors, including G protein-coupled receptor kinases, arrestins, clathrin, and GTP-hydrolyzing proteins such as dynamin. In this report, we show that RANTES and its derivative, aminooxypentane (AOP)-RANTES, a potent RANTES antagonist as well as an inhibitor of HIV-1 infection, both promote CCR5 desensitization involving G protein-coupled receptor kinases-2 and beta-arrestin equally well. An important difference between the two molecules is that (AOP)-RANTES is more efficient than RANTES in promoting Ser/Thr phosphorylation of the receptor and association of G protein-coupled receptor kinases-2, beta-arrestin, and clathrin to the CCR5. After stimulation with either ligand, we observe rapid, transient association of dynamin to CCR5, implicating this protein in receptor sensitization, but this association is faster and longer-lasting following (AOP)-RANTES stimulation. In summary, we show that chemokine receptor internalization takes place through the formation of clathrin vesicles and involves dynamin activity. We provide compelling evidence that the differences between RANTES and (AOP)-RANTES in G alpha i activation condition subsequent signaling events, including internalization and receptor recycling.  相似文献   

18.
Desensitization of G protein-coupled receptors (GPCRs) involves receptor phosphorylation and reduction in the number of receptors at the cell surface. The neuropeptide Y (NPY) Y(1) receptor undergoes fast desensitization. We examined agonist-induced signaling and internalization using NPY Y(1) receptors fused to green fluorescent protein (EGFP). When expressed in HEK293 cells, EGFP-hNPY Y(1) receptors were localized at the plasma membrane, desensitized rapidly as assessed using calcium responses, and had similar properties compared to hNPY Y(1) receptors. Upon agonist challenge, the EGFP signal decreased rapidly (t(1/2) = 107 +/- 3 s) followed by a slow recovery. This decrease was blocked by BIBP3226, a Y(1) receptor antagonist, or by pertussis toxin, in agreement with Y(1) receptor activation. Internalization of EGFP-hNPY Y(1) receptors to acidic endosomal compartments likely accounts for the decrease in the EGFP signal, being absent after pretreatment with monensin. Concanavalin A and hypertonic sucrose, which inhibit clathrin-mediated endocytosis, blocked the decrease in fluorescence. After agonist, intracellular EGFP signals were punctate and co-localized with transferrin-Texas Red, a marker of clathrin-associated internalization and recycling, but not with LysoTracker Red, a lysosomal pathway marker, supporting receptor trafficking to recycling endosomes rather than the late endosomal/lysosomal pathway. Pulse-chase experiments revealed no receptor degradation after internalization. The slow recovery of fluorescence was unaffected by cycloheximide or actinomycin D, indicating that de novo synthesis of receptors was not limiting. Use of a multicompartment model to fit our fluorescence data allows simultaneous determination of internalization and recycling rate constants. We propose that rapid internalization of receptors via the clathrin-coated pits recycling pathway may largely account for the rapid desensitization of NPY Y(1) receptors.  相似文献   

19.
Somatostatin (SS) is a widely distributed polypeptide that exerts inhibitory effects on hormone secretion and cell proliferation by interacting with five different receptors (SST1-SST5). Beta-arrestins have been implicated in regulating SST internalization, but the structural domains mediating this effect are largely unknown. The aim of this study was to characterize the intracellular mechanisms responsible for internalization of human SST5 in the rat pituitary cell line GH3 and to identify the SST5 structural domains involved in this process. To this purpose we evaluated, by fluorescence microscopy and biochemical assay, the ability of wild-type, progressive C-terminal truncated and third cytoplasmatic loop mutants SST5-DsRed to associate with beta-arrestin-enhanced green fluorescent protein and to internalize under SS28 stimulation. The truncated mutants were comparable to the wild-type receptor with respect to recruitment of beta-arrestin-2 and internalization, whereas the third loop mutants R240W, S242A, and T247A showed the abolishment or reduction of arrestin association and a significant reduction of receptor internalization (14.4%, 29%, and 30.9% vs. 52.4% of wild type) and serine phosphorylation upon SS28 stimulation. Moreover, we evaluated the ability of simultaneous mutation of these three residues (R240, S242, and T247) and C-terminal truncated receptors to internalize. The progressive truncation of the C-terminal tail resulted in a progressive increased internalization (21.6%, 36.7%, and 41%, respectively) with respect to the full-length total third-loop mutant (15%). In conclusion, our results indicate the SST5 third intracellular loop as an important mediator of beta-arrestin/receptor interaction and receptor internalization, whereas they suggest that residues 328-347 within the C terminus may play an inhibitory role in receptor internalization.  相似文献   

20.
The corticotropin releasing factor receptor 1 (CRFR1) belongs to the superfamily of G-protein coupled receptors. Though CRF is involved in the aetiology of several stress-related disorders, including depression and anxiety, details of CRFR1 regulation such as internalization remain uncharacterized. In the present study, agonist-induced internalization of CRFR1 in HEK293 cells was visualized by confocal microscopy and quantified using the radioligand 125I-labelled sauvagine. Recruitment of beta-arrestin 1 in response to receptor activation was demonstrated by confocal microscopy. The extent of 125I-labelled sauvagine stimulated internalization was significantly impaired by sucrose, indicating the involvement of clathrin-coated pits. No effect on the extent of internalization was observed in the presence of the second messenger dependent kinase inhibitors H-89 and staurosporine, indicating that cAMP-dependent protein kinase and protein kinase C are not prerequisites for CRFR1 internalization. Surprisingly, deletion of all putative phosphorylation sites in the C-terminal tail, as well as a cluster of putative phosphorylation sites in the third intracellular loop, did not affect receptor internalization. However, these mutations almost abolished the recruitment of beta-arrestin 1 following receptor activation. In conclusion, we demonstrate that CRFR1 internalization is independent of phosphorylation sites in the C-terminal tail and third intracellular loop, and the degree of beta-arrestin 1 recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号