首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Black spruce (Picea mariana), white spruce (Picea glauca), and jack pine (Pinus banksiana) seedlings were inoculated with Hebeloma crustuliniforme or Laccaria bicolor and subjected to NaCl and Na2SO4 treatments. The effects of ectomycorrhizas on salt uptake, growth, gas exchange, and needle necrosis varied depending on the tree and fungal species. In jack pine seedlings, ectomycorrhizal (ECM) fungi reduced shoot and root dry weights and in the ECM white spruce, there was a small increase in dry weights. Sodium chloride treatment reduced net photosynthesis and transpiration rates in the three studied tree species. However, NaCl-treated black spruce and jack pine colonized by H. crustuliniforme maintained relatively high photosynthetic and transpiration rates and needle necrosis of NaCl-treated black spruce seedlings was reduced by the ECM fungi. Higher concentrations of Na+ were found in shoots compared with roots of the three examined conifer species. ECM fungi reduced the concentrations of Na+ mainly in the shoots and this reduction was greater in plants treated with NaCl compared with Na2SO4. Shoots contained generally higher concentrations of Cl- compared with roots. In the NaCl-treated black spruce and white spruce, both ECM species significantly reduced Cl- concentrations. Our results point to overall greater phytotoxicity of NaCl compared with Na2SO4 and support our earlier findings which demonstrated beneficial effects of ECM fungi for woody plants exposed to NaCl stress.  相似文献   

2.
De-Wei Li 《Mycorrhiza》1996,6(2):137-143
 Japanese larch (Larix kaempferi), white spruce (Picea glauca), black spruce (Picea mariana), red spruce (Picea rubens), jack pine (Pinus banksiana), mugo pine (Pinus mugo), red pine (Pinus resinosa), Japanese black pine (Pinus thunbergii) and Douglas-fir (Pseudotsuga menziesii var. menziesii), were inoculated to test the effective host range of the ectomycorrhizal fungus Laccaria proxima and the possibility of utilizing pulp waste as a potting medium for containerized seedling production. Laccaria proxima tended to improve the container growth of Japanese black pine and white spruce, and significantly improved that of jack pine, mugo pine, black spruce, red spruce and Douglasfir. The growth of red pine and Japanese larch were only slightly improved with L. proxima. Pulp waste (33% by volume) had negative effects on tree seedling growth, except for Douglasfir (no significant effect). The interactions of Laccaria proxima and pulp waste varied; the hosts were significantly positive (P<0.01) in the case of jack pine and black spruce, but there was no significant effect for the rest. Negative effects were found with Japanese black pine. Use of pulp waste in seedling production of jack pine, black spruce, mugo pine, red spruce and Douglasfir inoculated with L. proxima and of Japanese black pine both with and without L. proxima is feasible, but further research is necessary to determine the optimal percentage of pulp waste that can be utilized in seedling production of tree species and the field performance of these seedlings. Accepted: 30 August 1995  相似文献   

3.
Black spruce ( Picea mariana ), white spruce ( Picea glauca ) and jack pine ( Pinus banksiana ) were inoculated with Suillus tomentosus and subjected to potassium fluoride (1 m M KF and 5 m M KF) in the presence and absence of 60 m M NaCl. The NaCl and KF treatments reduced total dry weights in jack pine and black spruce seedlings, but they did not affect total dry weights in white spruce seedlings. The addition of 60 m M NaCl to KF treatment solutions alleviated fluoride-induced needle injury in ectomycorrhizal (ECM) black spruce and white spruce, but had little effect in jack pine seedlings. Both KF and 60 m M NaCl treatments reduced E values compared with non-treated control seedlings. However, with the exception of small reductions of Kr by NaCl treatments in black spruce, the applied KF and NaCl treatments had little effect on Kr in ECM plants. Chloride tissue concentrations in NaCl-treated plants were not affected by the presence of KF in treatment solutions. However, shoot F concentrations in ECM black spruce and white spruce treated with 5 m M KF + 60 m M NaCl were significantly reduced compared with the 5 m M KF treatment. The results point to a possible competitive inhibition of F transport by Cl. We also suggest that the possibility that aquaporins may be involved in the transmembrane transport of F should be further investigated.  相似文献   

4.
Blake TJ  Li J 《Physiologia plantarum》2003,117(4):532-539
Drought adjustments were compared in black spruce ( Picea mariana [Mill] B.S.P), and jack pine ( Pinus banksiana [Lamb.]) by subjecting seedlings to five cycles of dehydration and rehydration. A computer-controlled root misting chamber system, supplied low (−1.5 MPa), moderate (−2.0 MPa), and severe (−2.5 MPa) dehydration, respectively, in cycles 1, 3 and 5. Although cell water relations failed to adjust to chronic dehydration, there was limited osmotic adjustment in black spruce (cycle 3), and water was re-allocated from the apoplast to the symplast in jack pine (cycles 1 and 3). Dehydration postponement was more important than dehydration tolerance. Jack pine was better able to postpone dehydration than black spruce. Specific conductivity, the hydraulic conductivity per unit stem cross-sectional area, was lower in jack pine and slower to decline during chronic dehydration. When specific conductivity was corrected for the greater leaf area in black spruce, the leaf-specific conductivity did not differ in the two species. There was no increase in needle leakage in jack pine and stomata in jack pine seedlings reopened fully after rehydration. Black spruce was more of a 'water spender', and less water stress (−2.0 MPa, cycle 3) was required to lower specific conductivity, compared to jack pine (−2.5 MPa, cycle 5). Leakage from needle membranes increased in black spruce, and stomata failed to reopen after rewatering (cycles 3 and 5). A greater needle area, smaller root system, and a higher specific conductivity lowered the water stress threshold for cavitation in black spruce, which is confined to moister sites in the boreal forest. Jack pine had a larger root system, smaller needle area and lower specific conductivity than black spruce. Because of these static features, jack pine is more drought tolerant and it is often found on sites that are too hot and dry for black spruce.  相似文献   

5.
《Dendrochronologia》2014,32(4):303-312
Mountain conifers in the Great Basin of North America have provided some of the longest, continuous, and annually resolved paleoclimate records. Climate-growth relationships at the cellular level, which help understand wood formation processes that underlie dendroclimatic reconstructions, are at present largely unexplored in the Great Basin. We analyzed 42 trees located in the Snake Range (eastern Nevada, USA) at three sites along an elevation gradient. Sampled species included white fir (Abies concolor), Douglas fir (Pseudotsuga menziesii), limber pine (Pinus flexilis), bristlecone pine (Pinus longaeva), and Engelmann spruce (Picea engelmannii). Wood anatomical features were quantified for two consecutive years, 2011 and 2012. Lumen area, cell wall thickness, lumen diameter, and wall-to-cell ratio were measured for the total ring as well as for earlywood and latewood. Mean standardized tracheidograms highlighted differences between 2011 and 2012, in particular concerning lumen area and wall-to-cell ratio. Most annual variation was due to earlywood, rather than latewood. Anatomical parameters of limber pine, the only species that could be tested at both the montane and subalpine sites, varied with elevation. Principal component analysis showed that the main axis of variability was related to dimensional parameters (e.g. lumen area), which reflected differences in water availability.  相似文献   

6.
Wood ash amendment to forest soils contributes to the sustainability of the growing bioenergy industry, not only through decreased wood ash waste disposal in landfills but also by increasing soil/site productivity and tree growth. However, tree growth studies to date have reported variable responses to wood ash, highlighting the need to identify proper application rates under various soil/site conditions to maximize their benefits. We explored the influence of tree species, wood ash nutrient application rates, time since application, stand development stage, and initial (i.e., before wood ash application) soil pH and N on short‐term tree growth response to wood ash amendment across eight unique study sites spanning five Canadian Provinces. Jack pine (Pinus banksiana Lamb) had the most positive response to wood ash amendment compared to white (Picea glauca Moench), hybrid (Picea engelmannii x glauca Parry), and black spruce (Picea mariana Miller), where increasing nutrient application rates increased height growth response. In comparison, black spruce had the most negative response to wood ash amendment, where increasing nutrient application rates slightly decreased height growth response. Site as a random effect explained additional variation, highlighting the importance of other unidentified site characteristics. By examining trends in short‐term growth response across multiple studies with variable site characteristics, we found growth response differed by tree species and nutrient application rates, and that jack pine is a promising candidate for wood ash amendment. These results contribute to our knowledge of optimal wood ash amendment practices and environmentally sustainable bioenergy production.  相似文献   

7.
Seed mass is an adaptive trait affecting species distribution, population dynamics and community structure. In widely distributed species, variation in seed mass may reflect both genetic adaptation to local environments and adaptive phenotypic plasticity. Acknowledging the difficulty in separating these two aspects, we examined the causal relationships determining seed mass variation to better understand adaptability and/or plasticity of selected tree species to spatial/climatic variation. A total of 504, 481 and 454 seed collections of black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss) and jack pine (Pinus banksiana Lamb) across the Canadian Boreal Forest, respectively, were selected. Correlation analyses were used to determine how seed mass vary with latitude, longitude, and altitude. Structural Equation Modeling was used to examine how geographic and climatic variables influence seed mass. Climatic factors explained a large portion of the variation in seed mass (34, 14 and 29%, for black spruce, white spruce and jack pine, respectively), indicating species-specific adaptation to long term climate conditions. Higher annual mean temperature and winter precipitation caused greater seed mass in black spruce, but annual precipitation was the controlling factor for white spruce. The combination of factors such as growing season temperature and evapotranspiration, temperature seasonality and annual precipitation together determined seed mass of jack pine. Overall, sites with higher winter temperatures were correlated with larger seeds. Thus, long-term climatic conditions, at least in part, determined spatial variation in seed mass. Black spruce and Jack pine, species with relatively more specific habitat requirements and less plasticity, had more variation in seed mass explained by climate than did the more plastic species white spruce. As traits such as seed mass are related to seedling growth and survival, they potentially influence forest species composition in a changing climate and should be included in future modeling of vegetation shifts.  相似文献   

8.
Summary The organization of microtubules during interphase and prophase in embryogenic cultures of black spruce (Picea mariana) was investigated by indirect immunofluorescence. Somatic embryos of black spruce possessed an extensively branched and interconnecting network of fine interphase cortical microtubules. The development of pre-prophase bands (PPBs) in embryogenic black spruce cultures was compared with that in non-embryogenic cell cultures of jack pine (Pinus banksiana). PPBs in both species were initially arranged as a very broad array of microtubules, later (early to mid-prophase) becoming narrower and more intensely fluorescent. The occurrence of pre-prophase bands in relation to the number of phragmoplasts (i.e. PPB index) of black spruce somatic embryos was significantly higher (p<0.01) than that found for jack pine cells.  相似文献   

9.
树木年龄和断面积对加拿大北方林树木死亡率的影响   总被引:1,自引:0,他引:1  
Chen Q  Zhang LF  Fu SL 《应用生态学报》2011,22(9):2477-2481
以加拿大北部的杨树(Populus spp.)、斑克松(Pinus banksiana)、黑云杉(Picea mariana)为对象,采用长期定位试验,对134块固定样地的活立木及枯死木进行调查,并运用线性回归的方法研究树木年龄、断面积和林分类型对3种树木死亡率的影响.结果表明:随着树龄和断面积的增加,林木的死亡率呈上升趋势.杨树在斑克松林中的死亡率较高,而在黑云杉林中死亡率较低.在黑云杉林中,树龄是影响斑克松死亡率的主要因子;而在杨树林中,断面积是影响斑克松死亡率的重要因子;不同林分类型中树龄对黑云杉死亡率的影响显著.树种组成对树种的死亡率有显著影响;树木年龄、断面积和林分类型之间的交互效应对各树种的死亡率均有显著影响;不同林分类型中同一树种的死亡状况有明显差异.  相似文献   

10.
Stem or branch failure is a recurrent problem in silviculture and arboriculture. The risk of rupture varies with species in relation to the inherent mechanical properties of the species and the presence of defects. In general, calculations of critical loads for breakage are based on mechanical properties determined from defect-free samples and adjustment factors that try to scale up to full trees that include defects. This study aims at developing an objective method to scale up mechanical resistance to breakage from defect-free samples to full trees, including different types of defects. It combines two approaches. In the first one, a correction factor is determined from a meta-analysis of various tree-pulling studies involving balsam fir [Abies balsamea (L.) Mill.], white spruce [Picea glauca (Moench) Voss], jack pine [Pinus banksiana Lamb.], and black spruce [Picea mariana (Mill.) B.S.P.]. The second approach consists in obtaining empirical data from three-point bending tests using 8-foot (2.44 m) logs with various amounts of decay. Results show that the correction required varies according to the species and the presence of some defects. For balsam fir, which was the species showing the most important difference between whole log and small sample values, differences in correction factors were found between tree-pulling tests and three-point bending tests. Data from winching tests tend to underestimate the stem’s resistance to breakage since they likely represent the weakest trees among those tested. No relationship was found between the adjustment factors and different indices used in arboriculture to account for decay, showing the complexity of mechanical resistance at the stem level.  相似文献   

11.
To examine the mechanisms of earlier reported alleviation of fluoride injury in ectomycorrhizal plants by NaCl, jack pine (Pinus banksiana) and white spruce (Picea glauca) seedlings were subjected to 1 mM and 5 mM KF in the presence of either 60 mM NaCl or 10% polyethylene glycol 3350 (PEG) for 2 weeks. Before the treatments, seedlings had either been inoculated with the ectomycorrhizal fungus Suillus tomentosus or remained non-inoculated. The inoculation with S. tomentosus reduced Na uptake by shoots and roots of jack pine seedling and by roots of white spruce that were treated with 60 mM NaCl. Mycorrhizal associations also drastically decreased fluoride uptake by jack pine seedlings, but did not affect shoot fluoride concentrations in white spruce. When NaCl was replaced by PEG in the 5 mM KF treatment solution, shoot fluoride concentrations were reduced by more than twofold without corresponding reductions in transpiration rates in mycorrhizal and non-mycorrhizal white spruce seedlings. When fluoride was present in the treatment solution, Na concentrations were lower in shoots and roots of both jack pine and white spruce mycorrhizal and non-mycorrhizal seedlings. The results suggest that Suillus tomentosus may help alleviate the effects of soil fluoride and salinity in jack pine and that fluoride uptake in white spruce is sensitive to osmotic stress.  相似文献   

12.
The elicitor activity of compounds extracted from the mycelia of six species of phytopathogenic fungi was assessed from the sizes of necrotic lesions on the external surface of the living trunk phloem of five coniferous species inhabiting Siberia: Siberian larch (Larix sibirica L.), Scotch pine (Pinus sylvestris L.), Siberian spruce (Picea obovata Ledeb.), Siberian fir (Abies sibirica L.), and cedar pine (Pinus sibirica (Rupr.) Mayr.). The compounds for inoculation were extracted from the mycelium of ascomycetes imperfect, and basidium fungi; the living mycelia of these fungi were also used. The fungal extract or mycelium was placed into the hollows 7 mm in diameter in the trunk bark. Infection triggered the formation of hypersensitivity necrotic lesions in the inner bark exceeding in size those appeared after control wounding of four tree species (larch, pine, spruce, and cedar); fir was an exclusion. In experiments with tree trunks and conifer calluses, a dependence of immune response parameters (the sizes of necrotic lesions and the content of lignin and bound proanthocyanidins) on the quantity of the fungal preparation was elucidated. The largest necrotic lesions appeared after injection of 500μg of the fungal preparation into the hollow in the trunk, and its higher quantities did not increase the indices measured. The size of the necrotic lesion on the trunk bark is supposed to be used as a promising index characterizing the level of tree immunity and tolerance under various ecological conditions.  相似文献   

13.
Ten conifer species were grown in an unshaded greenhouse at the University of Maryland under 3 levels of biologically effective ultraviolet-B radiation. Ultraviolet-B radiation was supplied by Westinghouse FS-40 sunlamps and effective daily doses were 0, 12.4, and 19.1 kJ m–2. During the irradiation period, seedling growth and the development of stress symptoms were monitored. After 22 weeks of irradiation, seedlings were harvested and morphological characteristics analyzed. Visual symptoms included needle discoloration and stunting in three of the ten species tested. Seedling height was significantly reduced by supplemental UV-B in Pinus contorta (lodgepole pine), Pinus resinosa (red pine), and Pinus taeda (loblolly pine). Biomass increased in Picea engelmannii (Engelmann spruce). Abies fraseri (Fraser fir), Pinus edulus (pinyon pine), and Pinus nigra (black pine) were unaffected by UV-B while biomass reductions exceeding 5% were observed in all other species tested. These deleterious effects occurred despite the presence of morphological characteristics which would tend to reduce UV-B effectiveness. Generally, the effects of supplemental UV-B dose were less for those species native to higher elevations, implying the presence of natural adaptations to UV-B.  相似文献   

14.
 Plant responses to saturation vapour pressure deficit (SVPD) were studied by subjecting black spruce [Picea mariana (Mill) B.S.P.] and jack pine seedlings (Pinus banksiana Lamb.) to humid (0.3 – 0.8 kPa) or dry (2.0 – 2.5 kPa SVPD) regimes for 4 weeks using a computer-controlled environmental system to control diurnal variation in SVPD. Dry matter accumulation in needles was not altered by increasing SVPD. However, root growth declined by 60% which increased shoot to root ratio and reduced total seedling dry weight in both black spruce and jack pine. Relative growth rate of jack pine also declined to about half the rate of plants grown under humid conditions. In situ root marking studies showed that the decline in root growth of jack pine under the high SVPD was the result of reduced lateral root initiation, whereas root elongation was unaffected by humidity. A 4-week exposure to dry air increased abscisic acid (ABA) levels in needles, but not roots, of jack pine whereas ABA levels in black spruce were not altered. A short (3-day) exposure failed to increase needle ABA levels in either species. These results suggest that the responses of conifers to dry air were not the result of ABA accumulation. Received: 24 March 1996 / Accepted: 30 May 1996  相似文献   

15.
Compared to the alpine regions of Austria, the eastern part of the country is overall warmer and drier with some tree species growing at the dry limit within their ecological range. This suggests that tree rings may be a valuable proxy for hydroclimatic variability. In this study, we develop ring-width, earlywood-width and latewood-width chronologies obtained from drought sensitive living trees and historical timber from one of the driest and warmest regions of Austria, the Weinviertel. For this, samples of four different tree species − fir (Abies alba Mill.), spruce (Picea abies (L.) Karst.), oak (Quercus petraea Liebl., Q. robur L., Q. cerris L.), and pine (Pinus sylvestris L., P. nigra Arnold) were collected from 88 sites (23 forest stands and 65 historical constructions). 1589 samples (oak: 592 samples, pine: 577, spruce: 212, fir: 208) were dated. Dendro-provenancing was required to ensure that only regional material has entered the chronologies. According to the analyses, historical pine and oak wood were nearly 100% regional, while spruce and fir wood were imported to a great extent with only 44% spruce and 35% fir confirmed to be regional. Because site conditions of historical wood samples are unknown but can have a significant influence on tree growth, changes to site replication over time were important in the assessment of chronology reliability. We also controlled for potential artificial increases in sample depth when more than one construction element is made from a single trunk.We assessed the pine (1584-2011 AD) and oak (1244-2011 AD) chronologies’ potential for reconstructing past hydroclimatic variability by means of response functions in a 17-months window from previous June to current October with climate data from three weather stations (Vienna, Retz, Brno) from 1897 to 2010 AD. The highest seasonal response coefficients are for oak and pine ring width (∼0.43) with respect to aggregated March to July precipitation totals and Thornthwaite climatic water balance. These chronologies reveal a high potential for estimating past changes in regional-scale moisture availability during the earlier growing season.  相似文献   

16.
Russian Journal of Bioorganic Chemistry - Essential oil from the spruce branches of Siberian pine (Pinus sibirica Du Tour) and Siberian fir (Abies sibirica Ledeb.) growing on the territory of...  相似文献   

17.
Extreme climatic events are key factors in initiating gradual or sudden changes in forest ecosystems through the promotion of severe, tree-killing disturbances such as fire, blowdown, and widespread insect outbreaks. In contrast to these climatically-incited disturbances, little is known about the more direct effect of drought on tree mortality, especially in high-elevation forests. Therefore projections of drought-induced mortality under future climatic conditions remain uncertain. For a subalpine forest landscape in the Rocky Mountains of northern Colorado (USA), we quantified lag effects of drought on mortality of Engelmann spruce Picea engelmannii , subalpine fir Abies lasiocarpa , and lodgepole pine Pinus contorta . For the period 1910–2004, we related death dates of 164 crossdated dead trees to early-season and late-season droughts. Following early-season droughts, spruce mortality increased over five years and fir mortality increased sharply over 11 years. Following late-season droughts, spruce showed a small increase in mortality within one year, whereas fir showed a consistent period of increased mortality over two years. Pine mortality was not affected by drought. Low pre-drought radial growth rates predisposed spruce and fir to drought-related mortality. Spruce and fir trees that died during a recent drought (2000–2004) had significantly lower pre-drought growth rates than live neighbour trees. Overall, we found large interspecific differences in drought-related mortality with fir showing the strongest effect followed by spruce and pine. This direct influence of climatic variability on differential tree mortality has the potential for driving large-scale changes in subalpine forests of the Rocky Mountains.  相似文献   

18.
 Drought simulation usually involves either soil drying or the use of an osmoticum, such as high molecular weight (>3000) polyethylene glycol (PEG). Although easy to apply, PEG absorption and toxicity remain a concern. This study compared the effects of soil drying and use of an osmoticum (PEG 3350). Osmotic stress and soil drought were applied to 5-month-old seedlings of jack pine (Pinus banksiana Lamb.) and black spruce [Picea mariana (Mill) B.S.P.] , which are both coniferous species from cold, boreal regions of North America, and flooded gum (Eucalyptus grandis W. Hill ex Maiden), a hardwood species growing in warmer, sub-tropical regions of Australia. Results showed that PEG 3350 was absorbed by roots, transported to shoots, and deposited on the leaves of both flooded gum and jack pine (but not black spruce). PEG lowered relative water content and damaged leaf tissues in both species, and also damaged stomata of flooded gum. Although 12 days of PEG-induced osmotic stress produced a decline in water potentials that was similiar to soil drying, it also caused significantly higher membrane injury and reduced net photosynthesis and stomatal conductance in leaves of all three species. Recovery of net photosynthesis and stomatal conductance in PEG-treated jack pine and black spruce was also slower after stress alleviation. Even a short exposure to PEG 3350 adversely affected seedlings compared to soil drought. These results confirmed that drought effects may vary, depending on the species and the method of stress induction. Received: 6 March 1996 / Accepted: 17 September 1996  相似文献   

19.
Six-week-old, mycorrhiza-free, bareroot jack pine and black spruce seedlings were outplanted in ten reforestation sites, situated between 45–48° latitude N and 69–74° longitude W, within the province of Quebec, representing diverse operational forestry disturbances and ecological conditions. Two months after outplanting, root systems of black spruce seedlings had fewer mycorrhizae than those of jack pine seedlings. Ectomycorrhizal colonization on black spruce seedlings did not vary significantly with the reforestation site. Percent mycorrhizal colonization for these seedlings was positively correlated with seedling dry weight while with the jack pine seedlings, mycorrhizal colonization varied significantly with the outplanting site and there was no correlation between mycorrhizal formation and seedling dry weight. Multiple linear regressions showed pH to be a determinant soil factor for mycorrhizal colonization for the two species. Drainage was the other influential factor affecting colonization of black spruce while organic matter accumulation was more important for jack pine. Inoculation with selected ectomycorrhizal fungi could be more important for black spruce than for jack pine seedlings.  相似文献   

20.
To predict the long‐term effects of climate change – global warming and changes in precipitation – on the diameter (radial) growth of jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana [Mill.] B.S.P.) trees in boreal Ontario, we modified an existing diameter growth model to include climate variables. Diameter chronologies of 927 jack pine and 1173 black spruce trees, growing in the area from 47°N to 50°N and 80°W to 92°W, were used to develop diameter growth models in a nonlinear mixed‐effects approach. Our results showed that the variables long‐term average of mean growing season temperature, precipitation during wettest quarter, and total precipitation during growing season were significant (alpha = 0.05) in explaining variation in diameter growth of the sample trees. Model results indicated that higher temperatures during the growing season would increase the diameter growth of jack pine trees, but decrease that of black spruce trees. More precipitation during the wettest quarter would favor the diameter growth of both species. On the other hand, a wetter growing season, which may decrease radiation inputs, increase nutrient leaching, and reduce the decomposition rate, would reduce the diameter growth of both species. Moreover, our results indicated that future (2041–2070) diameter growth rate may differ from current (1971–2000) growth rates for both species, with conditions being more favorable for jack pine than black spruce trees. Expected future changes in the growth rate of boreal trees need to be considered in forest management decisions. We recommend that knowledge of climate–growth relationships, as represented by models, be combined with learning from adaptive management to reduce the risks and uncertainties associated with forest management decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号