首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Procathepsins B and L in the hepatic endoplasmic lumen were identified as having a molecular weight of 39,000 by immunoblot analysis. The proenzymes were then purified to remove the mature enzymes by concanavalin A-Sepharose chromatography. The concanavalin A-adsorbed fractions containing the proenzymes showed no appreciable activities of cathepsins B and L. When those fractions were incubated at pH 3.0, the enzymatic activities markedly increased: the activities of cathepsins B and L after 36 h incubation were 60 and 210 times those of the controls, respectively. Immunoblot analysis showed that after 36 h incubation the proenzymes disappeared and the mature enzymes increased. Thus the proenzymes were processed to the mature enzymes under acidic conditions of pH 3.0. The marked increases of enzymatic activities and the conversion of the proenzymes to the mature forms were completely blocked with pepstatin, which is a potent inhibitor of aspartic proteases. The results strongly suggested that a processing protease for procathepsins B and L might be cathepsin D, a major lysosomal aspartic protease. Indeed, lysosomal cathepsin D could convert microsomal procathepsin B to the mature enzyme in vitro. Therefore, procathepsins B and L seem first to be synthesized as enzymatically inactive forms in endoplasmic reticulum and successively may be converted into active forms by cathepsin D in lysosomal compartments.  相似文献   

2.
Endosomal and lysosomal fractions of human monocytes/macrophages prepared from buffy coats were analyzed for activities of cathepsins B, L and S, and expression of cathepsin proteins along with major histocompatibility complex class I and class II molecules under control and immunomodulatory conditions. While the total activity of cathepsins B, L, and S together remained unchanged in lysates of control cells during culture for 72 h, the subcellular distribution of cathepsin activities underwent a shift from a predominantly endosomal localization in freshly isolated cells to a lysosomal pattern after 72 h of culture. Interferon-gamma treatment for 72 h resulted in an upregulation of both major histocompatibility complex proteins and cathepsins with differential changes in cathepsin B, L and S activities in endosomes versus lysosomes. These changes suggest a remodeling of the endocytic machinery and imply different functions of cathepsins B, L and S during monocyte differentiation.  相似文献   

3.
E Dufour  A Ouali  A Obled  C Deval  C Valin 《Biochimie》1989,71(5):625-632
We investigated the limited proteolysis of fast and slow myosins purified from rabbit psoas major and semimembranosus proprius muscles, respectively, by the main lysosomal proteinases: cathepsins B, H, L, and D. In EDTA containing buffer, cathepsin D cleaved both myosins only at the rod-S1 junction leading to the formation of two S1 fragments of slightly higher Mr than the three forms obtained with chymotrypsin. On addition of MgCl2 instead of EDTA, myosin hydrolysis was markedly reduced. In contrast, irrespective of the presence of either MgCl2 or EDTA, cathepsin B hydrolysed both myosins into HMM and LMM. Cathepsin L digested myosins more extensively than cathepsins B and D and the main fragments generated were, in decreasing order of importance, rod, S1, S2, HMM, and LMM. In the incubation conditions tested, cathepsin H displayed nondetectable action on myosins. As fast and slow myosin digest patterns were compared, the main differences observed concerned the size of the proteolytic products and the rate of hydrolysis, which was about 4-fold higher for the fast than for the slow isoform. This appeared consistent whatever enzyme was considered.  相似文献   

4.
A cathepsin B-like enzyme from the white muscle of common mackerel Scomber japonicus was a cysteine protease that hydrolyzed Z-Arg-Arg-MCA, the substrate for cathepsin B. In a partial purified cathepsin B-like enzyme preparation at 4 degrees C left over time, a converted enzyme that hydrolyzes Z-Arg-Arg-MCA and Z-Phe-Arg-MCA appeared in the preparation. The converted enzyme was purified from the cathepsin B-like enzyme, characterized and was identified as mackerel cathepsin B. These results suggested that the mackerel cathepsin B-like enzyme was a precursor of cathepsin B. Mackerel cathepsin B formed in the purified cathepsin B-like enzyme preparation by adding of a small amount of the purified cathepsin B to the preparation. Therefore, mackerel cathepsin B-like enzyme was converted to the mature form of cathepsin B by autoactivation. The conversion of the cathepsin B-like enzyme (molecular mass 60 kDa) to cathepsin B (molecular mass 23 kDa) was detected by immunoblotting by using human anti-(cathepsin B) antibody. The intermediate forms of 40 kDa and 38 kDa were also detected during the conversion.  相似文献   

5.
A cystatin alpha-sensitive cysteine proteinase that plays an important role in the lysosomal inactivation and degradation of L-lactate dehydrogenase (LDH) was purified by column chromatography from an ammonium sulfate precipitate of lysosome extract prepared from rat livers. It was eluted with marked delay from cathepsins B and H in a Sephacryl S-200 column by its specific interaction with the gel, and then effectively separated from cathepsins B and H and other proteins. It was eluted with 0.5 M NaCl after washing with 0.2 M NaCl in a CM-Sephadex column, indicating that it showed the same elution behavior as cathepsin L from the CM-Sephadex column. It had activity to hydrolyze z-Phe-Arg-NH-Mec, a synthetic substrate for cysteine proteinases, including cathepsins B and L. The N-terminal sequences of the final preparation of LDH-inactivating enzyme were identical with those of rat cathepsin L. Inactivation and degradation of LDH by the final preparation were observed and effectively inhibited by a low level of cystatin alpha as well as a general cysteine proteinase inhibitor, leupeptin or (L-3-trans-carboxyoxirane-2-carbonyl)-L-leucine (3-methylbutyl)amide (E-64-c). From these results, it is concluded that cathepsin L plays a critical role in the lysosomal degradation of native LDH.  相似文献   

6.
Lysosomal proteinases are translated as preproforms, transported through the Golgi apparatus as proforms, and localized in lysosomes as mature forms. In this study, we analyzed which subclass of proteinases participates in the processing of lysosomal proteinases using Bafilomycin A1, a vacuolar ATPase inhibitor. Bafilomycin A1 raises lysosomal pH resulting in the degradation of lysosomal proteinases such as cathepsins B, D, and L. Twenty-four hours after the withdrawal of Bafilomycin A1, NIH3T3 cells possess these proteinases in amounts and activities similar to those in cells cultured in DMEM and 5% BCS. In the presence of various proteinase inhibitors, procathepsin processing is disturbed by E-64-d, resulting in abnormal processing of cathepsins D and L, but not by APMSF, Pepstatin A, or CA-074. In the presence of Helicobacter pylori Vac A toxin, which prevents vesicular transport from late endosomes to lysosomes, the processing of procathepsins B and D occurs, while that of procathepsin L does not. Thus, procathepsins B and D are converted to their mature forms in late endosomes, while procathepsin L is processed to the mature form after its arrival in lysosomes by some cysteine proteinase other than cathepsin B.  相似文献   

7.
Cathepsins B and L were purified from human kidney. SDS/polyacrylamide-gel electrophoresis demonstrated that cathepsins B and L, Mr 27000-30000, consist of disulphide-linked dimers, subunit Mr values 22000-25000 and 5000-7000. The pH optimum for the hydrolysis of methylcoumarylamide (-NHMec) substrates (see below) is approx. 6.0 for each enzyme. Km and kcat. are 252 microM and 364s-1 and 2.2 microM and 25.8 s-1 for the hydrolysis of Z-Phe-Arg-NHMec (where Z- represents benzyloxycarbonyl-) by cathepsins B and L respectively, and 184 microM and 158 s-1 for the hydrolysis of Z-Arg-Arg-NHMec by cathepsin B. A 10 min preincubation of cathepsin B (40 degrees C) or cathepsin L (30 degrees C) with E-64 (2.5 microM) results in complete inhibition. Under identical conditions Z-Phe-Phe-CHN2 (0.56 microM) completely inhibits cathepsin L but has little effect on cathepsin B. Incubation of glomerular basement membrane (GBM) with purified human kidney cathepsin L resulted in dose-dependent (10-40 nM) GBM degradation. In contrast, little degradation of GBM (less than 4.0%) was observed with cathepsin B. The pH optimum for GBM degradation by cathepsin L was 3.5. Cathepsin L was significantly more active in degrading GBM than was pancreatic elastase, trypsin or bacterial collagenase. These data suggest that cathepsin L may participate in the lysosomal degradation of GBM associated with normal GBM turnover in vivo.  相似文献   

8.
Autophagy is a lysosomal degradative pathway that plays an important role in maintaining cellular homeostasis. We previously showed that the inhibition of autophagy causes pancreatic β-cell apoptosis, suggesting that autophagy is a protective mechanism for the survival of pancreatic β-cells. The current study demonstrates that treatment with inhibitors and knockdown of the lysosomal cysteine proteases such as cathepsins B and L impair autophagy, enhancing the caspase-dependent apoptosis of INS-1 cells and islets upon exposure to high concentration of glucose. Interestingly, treatment with cathepsin B and L inhibitors prevented the proteolytic processing of cathepsins B, D and L, as evidenced by gradual accumulation of the respective pro-forms. Of note, inhibition of aspartic cathepsins had no effect on autophagy and cell viability, suggesting the selective role of cathepsins B and L in the regulation of β-cell autophagy and apoptosis. Lysosomal localization of accumulated pro-cathepsins in the presence of cathepsin B and L inhibitors was verified via immunocytochemistry and lysosomal fractionation. Lysotracker staining indicated that cathepsin B and L inhibitors led to the formation of severely enlarged lysosomes in a time-dependent manner. The abnormal accumulation of pro-cathepsins following treatment with inhibitors of cathepsins B and L suppressed normal lysosomal degradation and the processing of lysosomal enzymes, leading to lysosomal dysfunction. Collectively, our findings suggest that cathepsin defects following the inhibition of cathepsin B and L result in lysosomal dysfunction and consequent cell death in pancreatic β-cells.  相似文献   

9.
We established a novel protocol for lithium dodecyl sulfate (LDS) gelatin zymography, which operates under reducing conditions and at a slightly acidic pH value (6.5). This zymographic assay is based on polyacrylamide gel electrophoresis and facilitates the electrophoretic separation of human cathepsins in an active state. By this technique, activity of purified human liver cathepsin B was detected at a concentration as low as 50 ng and was blocked only in the presence of the cysteine protease inhibitor E-64 and the specific cathepsin B inhibitor CA-074 but not by aspartate, serine, or matrix metalloprotease inhibitors. The method was applied to analyze cathepsin activities in cell culture supernatants of the high-invasive melanoma cell line MV3. Interestingly, LDS zymography of MV3 cell supernatants in combination with specific inhibitors of cathepsins B and L identified three forms of extracellularly active cathepsin B and two forms of proteolytically active cathepsin L. We herein describe the generation and biochemical significance of acidic LDS zymography. This novel method permits not only the enzymatic analysis of purified cysteine proteases but also the identification and discrimination of different cathepsin activities in biological fluids, cell lysates, or supernatants, especially of cathepsins B and L, which are closely linked to major inflammatory and malignant processes.  相似文献   

10.
Role of thiols in degradation of proteins by cathepsins.   总被引:2,自引:1,他引:1       下载免费PDF全文
The effects of thiols on the breakdown of 125I-labelled insulin, albumin and formaldehyde-treated albumin by highly purified rat liver cathepsins B, D, H and L at pH 4.0 and 5.5 were studied. At both pH values degradation was strongly activated by the thiols cysteamine, cysteine, dithiothreitol, glutathione and 2-mercaptoethanol, and its rate increased with increasing thiol concentration. Preincubation of the protein substrates with 5 mM-glutathione did not affect concentration. Preincubation of the protein substrates with 5 mM-glutathione did not affect the rate of degradation by cathepsin D or L, and determination of free thiol groups after incubation of the proteins in the presence of glutathione but without cathepsin showed that their disulphide bonds were stable under the incubation conditions. Sephadex G-75 chromatography of the acid-soluble products of insulin digestion by cathepsin D or L suggested that thiols can reduce disulphide bonds in proteins after limited proteolysis. The resultant opening-up of the protein structure would lead to further proteolysis, so that the two processes (proteolysis and reduction) may act synergistically. By using the osmotic protection method it was shown that, at a physiological pH, cysteamine, and its oxidized form cystamine, can cross the lysosome membrane and thus may well be the physiological hydrogen donor for the reduction of disulphides in lysosomes. The results are discussed in relation to the lysosomal storage disease cystinosis.  相似文献   

11.
Human cathepsin H.   总被引:12,自引:7,他引:5       下载免费PDF全文
Cathepsin H was purified from human liver by a method involving autolysis and acetone fractionation, and chromatography on DEAE-cellulose, Ultrogel AcA 54, hydroxyapatite and concanavalin A-Sepharose. The procedure allowed for the simultaneous isolation of cathepsin B and cathepsin D. Cathepsin H was shown to consist of a single polypeptide chain of 28 000 mol.wt., and affinity for concanavalin A-Sepharose indicated that it was a glycoprotein. The enzyme existed in multiple isoelectric forms, the two major forms having pI values of 6.0 and 6.4; it hydrolysed azocasein (pH optimum 5.5), benzoylarginine 2-naphthylamide (Ba-Arg-NNap), leucyl 2-naphthylamide (Arg-NNap), (pH optimum 6.8). Arg-NNap and Arg-NMec, unlike Bz-Arg-NNap-, were not hydrolysed by human cathepsin B. Cathepsin H was similar to cathepsin B in being irreversibly inactivated by exposure to alkaline pH. Sensitivity to chemical inhibitors by 1 microM-leupeptin, which gave essentially complete inhibition of the other lysosomal cysteine proteinases, cathepsins B and L.  相似文献   

12.
Singlet oxygen is a causal factor in light-induced skin photoaging and the cytotoxic process of tumor cells in photodynamic chemotherapy. To develop a better understanding of the functional consequences of protein modification by singlet oxygen, the effects of naphthalene endoperoxide on lysosomal protease, cathepsin, were examined. When the soluble fraction of normal human fetal skin fibroblast cells was treated with the endoperoxide, the activities of cysteine proteases, cathepsins B and L/S, were inhibited, but that of aspartate protease, cathepsin D/E, was not. The reduction of the endoperoxide-treated soluble fractions by treatment with dithiothreitol barely recovered the activities. Cathepsin B, purified from normal human liver, exhibited similar profiles to that in cytosol. These data suggest that singlet oxygen oxidatively modifies an amino acid residue essential for catalysis and consequently results in the irreversible inactivation of cysteine protease-type cathepsin.  相似文献   

13.
The lysosomal cysteine proteinases, cathepsins B, H, and L, were all shown to bind to alpha 2-macroglobulin. The bound enzymes remained active against low-molecular-weight synthetic substrates and bound the active-site-directed inhibitor, benzyloxycarbonyl-125I-Tyr-Ala-diazomethane. Binding of the radiolabeled inhibitor to high-molecular-weight protein on sodium dodecyl sulfate polyacrylamide gels indicated that a proportion of the enzymes was covalently bound to alpha 2-macroglobulin. Cleavage fragments of alpha 2-macroglobulin of Mr 92,000 and 86,000 were seen for cathepsins B, H, and L, indicating cleavage in the bait region. Binding and cleavage were observed for both single-chain and two-chain forms of cathepsin B from human, ox, and pig livers, showing that all active forms of cathepsins B, H, and L are endopeptidases.  相似文献   

14.
Toll-like receptors (TLR) recognize a variety of microbial products and activate defense responses. Pathogen sensing by TLR2/4 requires accessory molecules, whereas little is known about a molecule required for DNA recognition by TLR9. After endocytosis of microbes, microbial DNA is exposed and recognized by TLR9 in lysosomes. We here show that cathepsins, lysosomal cysteine proteases, are required for TLR9 responses. A cell line Ba/F3 was found to be defective in TLR9 responses despite enforced TLR9 expression. Functional cloning with Ba/F3 identified cathepsin B/L as a molecule required for TLR9 responses. The protease activity was essential for the complementing effect. TLR9 responses were also conferred by cathepsin S or F, but not by cathepsin H. TLR9-dependent B cell proliferation and CD86 upregulation were apparently downregulated by cathepsin B/L inhibitors. Cathepsin B inhibitor downregulated interaction of CpG-B with TLR9 in 293T cells. These results suggest roles for cathepsins in DNA recognition by TLR9.  相似文献   

15.
K Hara  E Kominami  N Katunuma 《FEBS letters》1988,231(1):229-231
The effects of various proteinase inhibitors on the processing of lysosomal cathepsins B, H and L were investigated in cultured rat peritoneal macrophages. The processing of newly synthesized pro-cathepsins B, H and L to the mature single-chain enzymes was sensitive to a metal chelator,1,10-phenanthroline, and a synthetic metalloendopeptidase substrate, Z-Gly-Leu-NH2, and insensitive to inhibitors of serine proteinases, aspartic proteinases and cysteine proteinases. Inhibitors of cysteine proteinases, E-64-d and leupeptin, inhibited the processing of the single-chain forms of cathepsins B, H and L to the two-chain forms. These results suggest that (a) metal endopeptidase(s) is (are) involved in the propeptide processing of cathepsin B, H and L, and that proteolytic cleavages of the mature single-chain cathepsins are accomplished by cysteine proteinases in lysosomes.  相似文献   

16.
Met-Lys-双C肽人胰岛素原基因的构建表达及分离纯化   总被引:2,自引:0,他引:2  
应用 P C R 定点突变方法构建编码 M et Lys 双 C 肽人胰岛素原基因,并在大肠杆菌中以包含体方式获得表达 表达产物经还原、重组、 Sephadex G 75 分离纯化,获得 M et Lys 双 C 肽人胰岛素原,经胰蛋白酶与羧肽酶 B的酶解, Resource T M Q 阴离子交换柱层析分离制备得人胰岛素,其放免活性、受体结合活性均与猪胰岛素相同   相似文献   

17.
A cystatin α-sensitive cysteine proteinase that plays an important role in the lysosomal inactivation and degradation of L-lactate dehydrogenase (LDH) was purified by column chromatography from an ammonium sulfate precipitate of lysosome extract prepared from rat livers. It was eluted with marked delay from cathepsins B and H in a Sephacryl S-200 column by its specific interaction with the gel, and then effectively separated from cathepsins B and H and other proteins. It was eluted with 0.5 M NaCl after washing with 0.2 M NaCl in a CM-Sephadex column, indicating that it showed the same elution behavior as cathepsin L from the CM-Sephadex column. It had activity to hydrolyze z-Phe-Arg-NH-Mec, a synthetic substrate for cysteine proteinases, including cathepsins B and L. The N-terminal sequences of the final preparation of LDH-inactivating enzyme were identical with those of rat cathepsin L. Inactivation and degradation of LDH by the final preparation were observed and effectively inhibited by a low level of cystatin α as well as a general cysteine proteinase inhibitor, leupeptin or (L-3-trans-carboxyoxirane-2-carbonyl)-L-leucine (3-methylbutyl)amide (E-64-c). From these results, it is concluded that cathepsin L plays a critical role in the lysosomal degradation of native LDH.  相似文献   

18.
New derivatives of E-64 (compound CA-030 and CA-074) were tested in vitro and in vivo for selective inhibition of cathepsin B. They exhibited 10000–30000 times greater inhibitory effects on purified rat cathepsin B than on cathepsin H and L; their initial K1 values for cathepsin B were about 2–5 nM, like that of E-64-c, whereas their initial K1 values for cathepsins H and L were about 40–200 μM. In in vivo conditions, such us intraperitoneal injection of compound CA-030 or CA-074 into rats, compound CA-074 is an especially potent selective inhibitor of cathepsin B, whereas compound CA-030 does not show selectivity for cathepsin B, although both compounds CA-030 and CA-074 show complete selectivity for cathepsin B in vitro.  相似文献   

19.
In the present study, we used mitochondrial DNA-depleted Jurkat subclones (rho0 cells) to demonstrate that Fas agonistic Ab (CH-11), at the concentrations that evoke apoptotic death of the parental Jurkat cells, induced necrosis mainly through generation of excess reactive oxygen species, lysosomal rupture, and sequential activation of cathepsins B and D, and in minor part through activation of receptor-interacting protein (RIP). In the rho0 cells treated with CH-11, ATP supplementation converted necrosis into apoptosis by the formation of the apoptosome and subsequent activation of procaspase-3. In these ATP-supplemented rho0 cells (ATP-rho0), generation of excess ROS and lysosomal rupture were still seen, yet cathepsins B and D were inactivated and RIP was degraded. The conversion of necrosis to apoptosis, RIP degradation, and cathepsin inactivation in ATP- rho0 cells were blocked by caspase-3 inhibitors. Activities of cathepsins B and D in the lysate of necrotic rho0 cells were inhibited by the addition of apoptotic parental Jurkat cell lysate. Thus, apoptosis may supercede necrosis.  相似文献   

20.
Cathepsin B1. A lysosomal enzyme that degrades native collagen   总被引:26,自引:11,他引:15  
1. Experiments were made to determine whether the purified lysosomal proteinases, cathepsins B1 and D, degrade acid-soluble collagen in solution, reconstituted collagen fibrils, insoluble collagen or gelatin. 2. At acid pH values cathepsin B1 released (14)C-labelled peptides from collagen fibrils reconstituted at neutral pH from soluble collagen. The purified enzyme required activation by cysteine and EDTA and was inhibited by 4-chloromercuribenzoate, by the chloromethyl ketones derived from tosyl-lysine and acetyltetra-alanine and by human alpha(2)-macroglobulin. 3. Cathepsin B1 degraded collagen in solution, the pH optimum being pH4.5-5.0. The initial action was cleavage of the non-helical region containing the cross-link; this was seen as a decrease in viscosity with no change in optical rotation. The enzyme also attacked the helical region of collagen by a mechanism different from that of mammalian neutral collagenase. No discrete intermediate products of a specific size were observed in segment-long-spacing crystalloids (measured as native collagen molecules aligned with N-termini together along the long axis) or as separate peaks on gel filtration chromatography. This suggests that once an alpha-chain was attacked it was rapidly degraded to low-molecular-weight peptides. 4. Cathepsin B1 degraded insoluble collagen with a pH optimum below 4; this value is lower than that found for the soluble substrate, and a possible explanation is given. 5. The lysosomal carboxyl proteinase, cathepsin D, had no action on collagen or gelatin at pH3.0. Neither cathepsin B1 nor D cleaved Pz-Pro-Leu-Gly-Pro-d-Arg. 6. Cathepsin B1 activity was shown to be essential for the degradation of collagen by lysosomal extracts. 7. Cathepsin B1 may provide an alternative route for collagen breakdown in physiological and pathological situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号