首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Conventional kinesin, a dimeric molecular motor, uses ATP-dependent conformational changes to move unidirectionally along a row of tubulin subunits on a microtubule. Two models have been advanced for the major structural change underlying kinesin motility: the first involves an unzippering/zippering of a small peptide (neck linker) from the motor catalytic core and the second proposes an unwinding/rewinding of the adjacent coiled-coil (neck coiled-coil). Here, we have tested these models using disulfide cross-linking of cysteines engineered into recombinant kinesin motors. When the neck linker motion was prevented by cross-linking, kinesin ceased unidirectional movement and only showed brief one-dimensional diffusion along microtubules. Motility fully recovered upon adding reducing agents to reverse the cross-link. When the neck linker motion was partially restrained, single kinesin motors showed biased diffusion towards the microtubule plus end but could not move effectively against a load imposed by an optical trap. Thus, partial movement of the neck linker suffices for directionality but not for normal processivity or force generation. In contrast, preventing neck coiled-coil unwinding by disulfide cross-linking had relatively little effect on motor activity, although the average run length of single kinesin molecules decreased by 30-50%. These studies indicate that conformational changes in the neck linker, not in the neck coiled-coil, drive processive movement by the kinesin motor.  相似文献   

2.
We have previously shown that the mitotic motor centrosome protein E (CENP-E) is capable of walking for more than 250 steps on its microtubule track without dissociating. We have examined the kinetics of this molecular motor to see if its enzymology explains this remarkable degree of processivity. We find that like the highly processive transport motor kinesin 1, the enzymatic cycle of CENP-E is characterized by rapid ATP binding, multiple enzymatic turnovers per diffusive encounter, and gating of nucleotide binding. These features endow CENP-E with a high duty cycle, a prerequisite for processivity. However, unlike kinesin 1, neck linker docking in CENP-E is slow, occurring at a rate closer to that for Eg5, a mitotic kinesin that takes only 5–10 steps per processive run. These results suggest that like kinesin 1, features outside of the catalytic domain of CENP-E may also play a role in regulating the processive behavior of this motor.  相似文献   

3.
Role of the Kinesin Neck Region in Processive Microtubule-based Motility   总被引:8,自引:3,他引:5  
Kinesin is a dimeric motor protein that can move along a microtubule for several microns without releasing (termed processive movement). The two motor domains of the dimer are thought to move in a coordinated, hand-over-hand manner. A region adjacent to kinesin's motor catalytic domain (the neck) contains a coiled coil that is sufficient for motor dimerization and has been proposed to play an essential role in processive movement. Recent models have suggested that the neck enables head-to-head communication by creating a stiff connection between the two motor domains, but also may unwind during the mechanochemical cycle to allow movement to new tubulin binding sites. To test these ideas, we mutated the neck coiled coil in a 560-amino acid (aa) dimeric kinesin construct fused to green fluorescent protein (GFP), and then assayed processivity using a fluorescence microscope that can visualize single kinesin–GFP molecules moving along a microtubule. Our results show that replacing the kinesin neck coiled coil with a 28-aa residue peptide sequence that forms a highly stable coiled coil does not greatly reduce the processivity of the motor. This result argues against models in which extensive unwinding of the coiled coil is essential for movement. Furthermore, we show that deleting the neck coiled coil decreases processivity 10-fold, but surprisingly does not abolish it. We also demonstrate that processivity is increased by threefold when the neck helix is elongated by seven residues. These results indicate that structural features of the neck coiled coil, although not essential for processivity, can tune the efficiency of single molecule motility.  相似文献   

4.
Conventional kinesin is capable of long-range, processive movement along microtubules, a property that has been assumed to be important for its role in membrane transport. Here we have investigated whether the Caenorhabditis elegans monomeric kinesin unc104 and the sea urchin heteromeric kinesin KRP85/95, two other members of the kinesin superfamily that function in membrane transport, are also processive. Both motors were fused to green fluorescent protein, and the fusion proteins were tested for processive ability using a single-molecule fluorescence imaging microscope. Neither unc104-GFP nor KRP85/95-GFP exhibited processive movement (detection limit approximately 40 nm), although both motors were functional in multiple motor microtubule gliding assays (v = 1760 +/- 540 and 202 +/- 37 nm/s, respectively). Moreover, the ATP turnover rates (5.5 and 3.1 ATPs per motor domain per second, respectively) are too low to give rise to the observed microtubule gliding velocities, if only a single motor were driving transport with an 8 nm step per ATPase cycle. Instead, the results suggest that these motors have low duty cycles and that high processivity may not be required for efficient vesicle transport. Conventional kinesin's unusual processivity may be required for efficient transport of protein complexes that cannot carry multiple motors.  相似文献   

5.
Kinesin-1 is a dimeric motor protein that moves stepwise along microtubules. A two-stranded alpha-helical coiled-coil formed by the neck domain links the two heads of the molecule, and forces the motor heads to alternate. By exchanging the particularly soft neck region of the conventional kinesin from the fungus Neurospora crassa with an artificial, highly stable coiled-coil we investigated how this domain affects motor kinetics and motility. Under unloaded standard conditions, both motor constructs developed the same gliding velocity. However, in a force-feedback laser trap the mutant showed increasing motility defects with increasing loads, and did not reach wild-type velocities and run lengths. The stall force dropped significantly from 4.1 to 3.0 pN. These results indicate the compliance of kinesin's neck is important to sustain motility under load, and reveal a so far unknown constrain on the imperfect coiled-coil heptad pattern of Kinesin-1. We conclude that coiled-coil structures, a motif encountered in various types of molecular motors, are not merely a clamp for linking two heavy chains to a functional unit but may have specifically evolved to allow motor progression in a viscous, inhomogeneous environment or when several motors attached to a transported vesicle are required to cooperate efficiently.  相似文献   

6.
Yildiz A  Tomishige M  Gennerich A  Vale RD 《Cell》2008,134(6):1030-1041
Kinesin advances 8 nm along a microtubule per ATP hydrolyzed, but the mechanism responsible for coordinating the enzymatic cycles of kinesin's two identical motor domains remains unresolved. Here, we have tested whether such coordination is mediated by intramolecular tension generated by the "neck linkers," mechanical elements that span between the motor domains. When tension is reduced by extending the neck linkers with artificial peptides, the coupling between ATP hydrolysis and forward stepping is impaired and motor's velocity decreases as a consequence. However, speed recovers to nearly normal levels when external tension is applied by an optical trap. Remarkably, external load also induces bidirectional stepping of an immotile kinesin that lacks its mechanical element (neck linker) and fuel (ATP). Our results indicate that the kinesin motor domain senses and responds to strain in a manner that facilitates its plus-end-directed stepping and communication between its two motor domains.  相似文献   

7.
The ability of Tau to act as a potent inhibitor of kinesin's processive run length in vitro suggests that it may actively participate in the regulation of axonal transport in vivo. However, it remains unclear how kinesin-based transport could then proceed effectively in neurons, where Tau is expressed at high levels. One potential explanation is that Tau, a conformationally dynamic protein, has multiple modes of interaction with the microtubule, not all of which inhibit kinesin's processive run length. Previous studies support the hypothesis that Tau has at least two modes of interaction with microtubules, but the mechanisms by which Tau adopts these different conformations and their functional consequences have not been investigated previously. In the present study, we have used single molecule imaging techniques to demonstrate that Tau inhibits kinesin's processive run length in an isoform-dependent manner on GDP-microtubules stabilized with either paclitaxel or glycerol/DMSO but not guanosine-5'-((α,β)-methyleno)triphosphate (GMPCPP)-stabilized microtubules. Furthermore, the order of Tau addition to microtubules before or after polymerization has no effect on the ability of Tau to modulate kinesin motility regardless of the stabilizing agent used. Finally, the processive run length of kinesin is reduced on GMPCPP-microtubules relative to GDP-microtubules, and kinesin's velocity is enhanced in the presence of 4-repeat long Tau but not the 3-repeat short isoform. These results shed new light on the potential role of Tau in the regulation of axonal transport, which is more complex than previously recognized.  相似文献   

8.
Conventional kinesin is a highly processive motor that converts the chemical energy of ATP hydrolysis into the unidirectional motility along microtubules. The processivity is thought to depend on the coordination between ATPase cycles of two motor domains and their neck linkers. Here we have used site-directed spin labeling electron spin resonance (SDSL-ESR) to determine the conformation of the neck linker in kinesin dimer in the presence and absence of microtubules. The spectra show that the neck linkers co-exist in both docked and disordered conformations, which is consistent with the results of monomeric kinesin. In all nucleotide states, however, the neck linkers are well ordered when dimeric kinesin is bound to the microtubule. This result suggests that the orientation of each neck linker that is fixed rigidly controls the kinesin motion along microtubule tracks.  相似文献   

9.
Seitz A  Surrey T 《The EMBO journal》2006,25(2):267-277
Kinesin-1 is a processive molecular motor transporting cargo along microtubules. Inside cells, several motors and microtubule-associated proteins compete for binding to microtubules. Therefore, the question arises how processive movement of kinesin-1 is affected by crowding on the microtubule. Here we use total internal reflection fluorescence microscopy to image in vitro the runs of single quantum dot-labelled kinesins on crowded microtubules under steady-state conditions and to measure the degree of crowding on a microtubule at steady-state. We find that the runs of kinesins are little affected by high kinesin densities on a microtubule. However, the presence of high densities of a mutant kinesin that is not able to step efficiently reduces the average speed of wild-type kinesin, while hardly changing its processivity. This indicates that kinesin waits in a strongly bound state on the microtubule when encountering an obstacle until the obstacle unbinds and frees the binding site for kinesin's next step. A simple kinetic model can explain quantitatively the behaviour of kinesin under both crowding conditions.  相似文献   

10.
Microtubule based motors like conventional kinesin (Kinesin-1) and Unc104 (Kinesin-3), and classical microtubule associated proteins (MAPs), including MAP2, are intimately involved in neurite formation and organelle transport. The processive motility of both these kinesins involves weak microtubule interactions in the ADP-bound states. Using cosedimentation assays, we have investigated these weak interactions and characterized their inhibition by MAP2c. We show that Unc104 binds microtubules with five-fold weaker affinity and two-fold higher stoichiometry compared with conventional kinesin. Unc104 and conventional kinesin binding affinities are primarily dependent on positively charged residues in the Unc104 K-loop and conventional kinesin neck coiled-coil and removal of these residues affects Unc104 and conventional kinesin differently. We observed that MAP2c acts primarily as a competitive inhibitor of Unc104 but a mixed inhibitor of conventional kinesin. Our data suggest a specific model in which MAP2c differentially interferes with each kinesin motor by inhibiting its weak attachment to the tubulin C-termini. This is reminiscent of the defects we have observed in Unc104 and kinesin mutants in which the positively charged residues in K-loop and neck coiled-coil domains were removed.  相似文献   

11.
We have used cryo-electron microscopy of kinesin-decorated microtubules to resolve the structure of the motor protein kinesin's crucial nucleotide response elements, switch I and the switch II helix, in kinesin's poorly understood nucleotide-free state. Both of the switch elements undergo conformational change relative to the microtubule-free state. The changes in switch I suggest a role for it in "ejecting" adenosine diphosphate when kinesin initially binds to the microtubule. The switch II helix has an N-terminal extension, apparently stabilized by conserved microtubule contacts, implying a microtubule activation mechanism that could convey the state of the bound nucleotide to kinesin's putative force-delivering element (the "neck linker"). In deriving this structure, we have adapted an image-processing technique, single-particle reconstruction, for analyzing decorated microtubules. The resulting reconstruction visualizes the asymmetric seam present in native, 13-protofilament microtubules, and this method will provide an avenue to higher-resolution characterization of a variety of microtubule- binding proteins, as well as the microtubule itself.  相似文献   

12.
In an effort to understand how specific structural features within the kinesin neck, a region of the heavy chain located between the catalytic core and stalk domains, may contribute to motor processivity (an ability to remain attached to the microtubule filament), we have prepared several synthetic peptides corresponding to the neck region of human conventional kinesin and determined their secondary structure content and stability by CD spectroscopy. Our results show that the coiled-coil dimerization domain within the human kinesin neck region corresponds to residues 337 to 369 in solution, and thus is in excellent agreement with the recent X-ray crystallographic structures of rat brain kinesin. Further, we show that the first and last heptads of this region are absolutely critical for creating the high stability and association of the dimeric structure. Interestingly, addition of the 7 N-terminal neck-linker residues (330-336) to the coiled-coil domain significantly increased its stability (Delta GdnHCl midpoint of 1 M or an increase of approximately 1.5 kcal/mol), indicating that a strong structural link exists between the neck-linker and coiled-coil region. Subsequent high-resolution structural analysis of the residues located at the junction of the neck-linker and coiled-coil revealed the presence of the two helix capping motifs, the capping box (a reciprocal interaction of Thr 336 with Gln 339) and the hydrophobic staple (a hydrophobic packing interaction of Leu 335 with Trp 340). Substitution of Leu 335 and Thr 336 (the capping residues) with Gly completely eliminated the increased stability of the coiled-coil region observed in the presence of the neck-linker residues. Correspondingly, substitution of Trp 340, the first hydrophobic core d position residue of the coiled-coil, with an Ala residue resulted in a greater than expected decrease in stability and helicity of the coiled-coil structure. Subsequent analysis of the X-ray structure and substitution analysis of Lys 341 revealed that Trp 340 makes an important interchain hydrophobic interaction with Lys 341 of the opposite chain. Taken together these results reveal that a set of strong intra- and inter-chain interactions made up of the helix "capping box," "hydrophobic staple," and the newly identified "Leu-Trp-Lys sandwich" motifs stabilize the kinesin neck coiled-coil structure, thus preventing it from fraying and unfolding.  相似文献   

13.
Kinesins are dimeric motor proteins that move processively along microtubules. It has been proposed that the processivity of conventional kinesins is increased by electrostatic interactions between the positively charged neck of the motor and the negatively charged C-terminus of tubulin (E-hook). In this report we challenge this anchoring hypothesis by studying the motility of a fast fungal kinesin from Neurospora crassa (NcKin). NcKin is highly processive despite lacking the positive charges in the neck. We present a detailed analysis of how proteolytic removal of the E-hook affects truncated monomeric and dimeric constructs of NcKin. Upon digestion we observe a strong reduction of the processivity and speed of dimeric motor constructs. Monomeric motors with truncated or no neck display the same reduction of microtubule gliding speed as dimeric constructs, suggesting that the E-hook interacts with the head only. The E-hook has no effect on the strongly bound states of NcKin as microtubule digestion does not alter the stall forces produced by single dimeric motors, suggesting that the E-hook affects the interaction site of the kinesin.ADP-head and the microtubule. In fact, kinetic and binding experiments indicate that removal of the E-hook shifts the binding equilibrium of the weakly attached kinesin.ADP-head toward a more strongly bound state, which may explain reduced processivity and speed on digested microtubules.  相似文献   

14.
Endow SA 《Nature cell biology》1999,1(6):E163-E167
Work over the past two years has led to a breakthrough in our understanding of the molecular basis of the directionality of the kinesin motor proteins. This breakthrough has come first from the reversal of directionality of the kinesin-related motor Ncd, followed closely by the reversal of kinesin's directionality and the finding that the Ncd 'neck' can convert Ncd or kinesin, which are intrinsically plus-end-directed microtubule motors, into a minus-end motor. These findings raise several outstanding questions, foremost, how does the neck function in motor directionality?  相似文献   

15.
Kinesin-1 dimerizes via the coiled-coil neck domain. In contrast to animal kinesins, neck dimerization of the fungal kinesin-1 NcKin requires additional residues from the hinge. Using chimeric constructs containing or lacking fungal-specific elements, the proximal part of the hinge was shown to stabilize the neck coiled-coil conformation in a complex manner. The conserved fungal kinesin hinge residue W384 caused neck coiled-coil formation in a chimeric NcKin construct, including parts of the human kinesin-1 stalk. The stabilizing effect was retained in a NcKinW384F mutant, suggesting important pi-stacking interactions. Without the stalk, W384 was not sufficient to induce coiled-coil formation, indicating that W384 is part of a cluster of several residues required for neck coiled-coil folding. A W384-less chimera of NcKin and human kinesin possessed a non-coiled-coil neck conformation and showed inhibited activity that could be reactivated when artificial interstrand disulfide bonds were used to stabilize the neck coiled-coil conformation. On the basis of yeast two-hybrid data, we propose that the proximal hinge can bind kinesin's cargo-free tail domain and causes inactivation of kinesin by disrupting the neck coiled-coil conformation.  相似文献   

16.
Conventional kinesin is a molecular motor consisting of an N-terminal catalytic motor domain, an extended stalk and a small globular C-terminus. Whereas the structure and function of the catalytic motor domain has been investigated, little is known about the function of domains outside the globular head. A short coiled-coil region adjacent to the motor domain, termed the neck, is known to be important for dimerization and may be required for kinesin processivity. We now provide evidence that a helix-disrupting hinge region (hinge 1) that separates the neck from the first extended coiled-coil of the stalk plays an essential role in basic motor activity. A fast fungal kinesin from Syncephalastrum racemosum was used for these studies. Deletion, substitution by a coiled-coil and truncation of the hinge 1 region all reduce motor speed and uncouple ATP turnover from gliding velocity. Insertion of hinge 1 regions from two conventional kinesins, Nkin and DmKHC, fully restores motor activity, whereas insertion of putative flexible linkers of other proteins does not, suggesting that hinge 1 regions of conventional kinesins can functionally replace each other. We suggest that this region is essential for kinesin movement in its promotion of chemo-mechanical coupling of the two heads and therefore the functional motor domain should be redefined to include not only the catalytic head but also the adjacent neck and hinge 1 domains.  相似文献   

17.
Inside cells, a multitude of molecular motors and other microtubule-associated proteins are expected to compete for binding to a limited number of binding sites available on microtubules. Little is known about how competition for binding sites affects the processivity of molecular motors and, therefore, cargo transport, organelle positioning, and microtubule organization, processes that all depend on the activity of more or less processive motors. Very few studies have been performed in the past to address this question directly. Most studies reported only minor effects of crowding on the velocity of motors. However, a controversy appears to exist regarding the effect of crowding on motor processivity. Here, we use single-molecule imaging of mGFP-labeled minimal dimeric kinesin-1 constructs in vitro to study the effects of competition on kinesin's processivity. For competitors, we use kinesin rigor mutants as static roadblocks, minimal wild-type kinesins as motile obstacles, and a cell extract as a complex mixture of microtubule-associated proteins. We find that mGFP-labeled kinesin-1 detaches prematurely from microtubules when it encounters obstacles, leading to a strong reduction of its processivity, a behavior that is largely independent of the type of obstacle used here. Kinesin has a low probability to wait briefly when encountering roadblocks. Our data suggest, furthermore, that kinesin can occasionally pass obstacles on the protofilament track.  相似文献   

18.
Mather WH  Fox RF 《Biophysical journal》2006,91(7):2416-2426
A physically motivated model of kinesin's motor function is developed within the framework of rectified Brownian motion. The model explains how the amplification of neck linker zippering arises naturally through well-known formulae for overdamped dynamics, thereby providing a means to understand how weakly-favorable zippering leads to strongly favorable plus-directed binding of a free kinesin head to microtubule. Additional aspects of kinesin's motion, such as head coordination and rate-limiting steps, are directly related to the force-dependent inhibition of ATP binding to a microtubule bound head. The model of rectified Brownian motion is presented as an alternative to power stroke models and provides an alternative interpretation for the significance of ATP hydrolysis in the kinesin stepping cycle.  相似文献   

19.
CENP-E is a large kinesin motor protein which plays pivotal roles in mitosis by facilitating chromosome capture and alignment, and promoting microtubule flux in the spindle. So far, it has not been possible to obtain active human CENP-E to study its molecular properties. Xenopus CENP-E motor has been characterized in vitro and is used as a model motor; however, its protein sequence differs significantly from human CENP-E. Here, we characterize human CENP-E motility in vitro. Full-length CENP-E exhibits an increase in run length and longer residency times on microtubules when compared to CENP-E motor truncations, indicating that the C-terminal microtubule-binding site enhances the processivity when the full-length motor is active. In contrast with constitutively active human CENP-E truncations, full-length human CENP-E has a reduced microtubule landing rate in vitro, suggesting that the non-motor coiled-coil regions self-regulate motor activity. Together, we demonstrate that human CENP-E is a processive motor, providing a useful tool to study the mechanistic basis for how human CENP-E drives chromosome congression and spindle organization during human cell division.  相似文献   

20.
Processive kinesin motors often contain a coiled-coil neck that controls the directionality and processivity. However, the neck coil (NC) of kinesin-3 is too short to form a stable coiled-coil dimer. Here, we found that the coiled-coil (CC1)-forkhead-associated (FHA) tandem (that is connected to NC by Pro-390) of kinesin-3 KIF13A assembles as an extended dimer. With the removal of Pro-390, the NC-CC1 tandem of KIF13A unexpectedly forms a continuous coiled-coil dimer that can be well aligned into the CC1-FHA dimer. The reverse introduction of Pro-390 breaks the NC-CC1 coiled-coil dimer but provides the intrinsic flexibility to couple NC with the CC1-FHA tandem. Mutations of either NC, CC1, or the FHA domain all significantly impaired the motor activity. Thus, the three elements within the NC-CC1-FHA tandem of KIF13A are structurally interrelated to form a stable dimer for activating the motor. This work also provides the first direct structural evidence to support the formation of a coiled-coil neck by the short characteristic neck domain of kinesin-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号