首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Casey JL 《Journal of virology》2002,76(15):7385-7397
RNA editing at the amber/W site plays a central role in the replication scheme of hepatitis delta virus (HDV), allowing the virus to produce two functionally distinct forms of the sole viral protein, hepatitis delta antigen (HDAg), from the same open reading frame. Editing is carried out by a cellular activity known as ADAR (adenosine deaminase), which acts on RNA substrates that are at least partially double stranded. In HDV genotype I, editing requires a highly conserved base-paired structure that occurs within the context of the unbranched rod structure characteristic of HDV RNA. This base-paired structure is disrupted in the unbranched rod of HDV genotype III, which is the most distantly related of the three known HDV genotypes and is associated with the most severe disease. Here I show that RNA editing in HDV genotype III requires a branched double-hairpin structure that deviates substantially from the unbranched rod structure, involving the rearrangement of nearly 80 bp. The structure includes a UNCG RNA tetraloop, a highly stable structural motif frequently involved in the folding of large RNAs such as rRNA. The double-hairpin structure is required for editing, and hence for virion formation, but not for HDV RNA replication, which requires the unbranched rod structure. HDV genotype III thus relies on a dynamic conformational switch between the two different RNA structures: the unbranched rod characteristic of HDV RNA and a branched double-hairpin structure that is required for RNA editing. The different mechanisms of editing in genotypes I and III underscore their functional differences and may be related to pathogenic differences as well.  相似文献   

2.
RNA editing plays a critical role in the life cycle of hepatitis delta virus (HDV). The host editing enzyme ADAR1 recognizes specific RNA secondary structure features around the amber/W site in the HDV antigenome and deaminates the amber/W adenosine. A previous report suggested that a branched secondary structure is necessary for editing in HDV genotype III. This branched structure, which is distinct from the characteristic unbranched rod structure required for HDV replication, was only partially characterized, and knowledge concerning its formation and stability was limited. Here, we examine the secondary structures, conformational dynamics, and amber/W site editing of HDV genotype III RNA using a miniaturized HDV genotype III RNA in vitro. Computational analysis of this RNA using the MPGAfold algorithm indicated that the RNA has a tendency to form both metastable and stable unbranched secondary structures. Moreover, native polyacrylamide gel electrophoresis demonstrated that this RNA forms both branched and unbranched rod structures when transcribed in vitro. As predicted, the branched structure is a metastable structure that converts readily to the unbranched rod structure. Only branched RNA was edited at the amber/W site by ADAR1 in vitro. The structural heterogeneity of HDV genotype III RNA is significant because not only are both conformations of the RNA functionally important for viral replication, but the ratio of the two forms could modulate editing by determining the amount of substrate RNA available for modification.  相似文献   

3.
Jayan GC  Casey JL 《Journal of virology》2005,79(17):11187-11193
RNA editing of the hepatitis delta virus (HDV) antigenome at the amber/W site by the host RNA adenosine deaminase ADAR1 is a critical step in the HDV replication cycle. Editing is required for production of the viral protein hepatitis delta antigen long form (HDAg-L), which is necessary for viral particle production but can inhibit HDV RNA replication. The RNA secondary structural features in ADAR1 substrates are not completely defined, but base pairing in the 20-nucleotide (nt) region 3' of editing sites is thought to be important. The 25-nt region 3' of the HDV amber/W site in HDV genotype I RNA consists of a conserved secondary structure that is mostly base paired but also has asymmetric internal loops and single-base bulges. To understand the effect of this 3' region on the HDV replication cycle, mutations that either increase or decrease base pairing in this region were created and the effects of these changes on amber/W site editing, RNA replication, and virus production were studied. Increased base pairing, particularly in the region 15 to 25 nt 3' of the editing site, significantly increased editing; disruption of base pairing in this region had little effect. Increased editing resulted in a dramatic inhibition of HDV RNA synthesis, mostly due to excess HDAg-L production. Although virus production at early times was unaffected by this reduced RNA replication, at later times it was significantly reduced. Therefore, it appears that the conserved RNA secondary structure around the HDV genotype I amber/W site has been selected not for the highest editing efficiency but for optimal viral replication and secretion.  相似文献   

4.
For some time it has been known that the RNA genome of human hepatitis delta virus (HDV) undergoes a specific RNA editing event. This review describes the editing phenomenon and its potential biological significance, and evaluates the data regarding the mechanism involved, including the possible relationship to other RNA editing phenomena.  相似文献   

5.
6.
Hepatitis delta virus (HDV) is a subviral human pathogen that uses specific RNA editing activity of the host to produce two essential forms of the sole viral protein, hepatitis delta antigen (HDAg). Editing at the amber/W site of HDV antigenomic RNA leads to the production of the longer form (HDAg-L), which is required for RNA packaging but which is a potent trans-dominant inhibitor of HDV RNA replication. Editing in infected cells is thought to be catalyzed by one or more of the cellular enzymes known as adenosine deaminases that act on RNA (ADARs). We examined the effects of increased ADAR1 and ADAR2 expression on HDV RNA editing and replication in transfected Huh7 cells. We found that both ADARs dramatically increased RNA editing, which was correlated with strong inhibition of HDV RNA replication. While increased HDAg-L production was the primary mechanism of inhibition, we observed at least two additional means by which ADARs can suppress HDV replication. High-level expression of both ADAR1 and ADAR2 led to extensive hyperediting at non-amber/W sites and subsequent production of HDAg variants that acted as trans-dominant inhibitors of HDV RNA replication. Moreover, we also observed weak inhibition of HDV RNA replication by mutated forms of ADARs defective for deaminase activity. Our results indicate that HDV requires highly regulated and selective editing and that the level of ADAR expression can play an important role: overexpression of ADARs inhibits HDV RNA replication and compromises virus viability.  相似文献   

7.
It has previously been shown that human hepatitis virus delta antigen has an RNA-binding activity (Chang et al., J. Virol. 62:2403-2410, 1988). In the present study, the specificity of such an RNA-protein interaction was demonstrated by expressing various domains of the delta antigen in Escherichia coli as TrpE fusion proteins and testing their RNA-binding activities in a Northwestern protein-RNA immunoblot assay and RNA gel mobility shift assay. Hepatitis delta virus (HDV) RNA bound specifically to the delta antigen in the presence of an excess amount of unrelated RNAs and a relatively high salt concentration. Both genome- and antigenome-sense HDV RNAs and at least two different regions of HDV genomic RNA bound to the delta antigen. Surprisingly, these two different regions of HDV genomic RNA could compete with each other for delta antigen binding, although they do not have common nucleotide sequences. In contrast, this binding could not be competed with by other viral or cellular RNA. Since both the genomic and antigenomic HDV RNAs had strong intramolecular complementary sequences, these results suggest that the binding of delta antigen is probably specific for a secondary structure unique to the HDV RNA. By expressing different subdomains of the delta antigen, we found that the middle one-third of delta antigen was responsible for binding HDV RNA. Neither the N-terminal nor the C-terminal domain bound HDV RNA. Binding between the delta antigen and HDV RNA was also demonstrated within the HDV particles isolated from the plasma of a human delta hepatitis patient. This in vivo binding resisted treatment with 0.1% sodium dodecyl sulfate and 0.5% Nonidet P-40. In addition, we showed that the antiserum from a human patient with delta hepatitis reacted with all three subdomains of the delta antigen, indicating that all of the domains are immunogenic in vivo. These studies demonstrated the specific interaction between delta antigen and HDV RNA.  相似文献   

8.
Jayan GC  Casey JL 《Journal of virology》2002,76(23):12399-12404
Hepatitis delta virus (HDV) requires host RNA editing at the viral RNA amber/W site. Of the two host genes responsible for RNA editing via deamination of adenosines in double-stranded RNAs, short inhibitory RNA-mediated knockdown of host ADAR1 expression but not that of ADAR2 led to decreased HDV amber/W editing and virus production. Despite substantial sequence and structural variation among the amber/W sites of the three HDV genotypes, ADAR1a was primarily responsible for editing all three. We conclude that ADAR1 is primarily responsible for editing HDV RNA at the amber/W site during HDV infection.  相似文献   

9.
Moderation of hepatitis delta virus (HDV) replication is a likely prerequisite in the establishment of chronic infections and is thought to be mediated by the intracellular accumulation of large hepatitis delta antigen (L-HDAg). The regulatory role of this protein was suggested from several studies showing that cotransfection of plasmid cDNAs expressing both L-HDAg and HDV RNA results in a potent inhibition of HDV RNA replication. However, since this approach differs significantly from natural HDV infections, where HDV RNA replication is initiated from an RNA template, and L-HDAg appears only late in the replication cycle, it remains unclear whether L-HDAg can modulate HDV RNA replication in the natural HDV replication cycle. In this study, we investigated the effect of L-HDAg, produced as a result of the natural HDV RNA editing event, on HDV RNA replication. The results showed that following cDNA-free HDV RNA transfection, a steady-state level of RNA was established at 3 to 4 days posttransfection. The same level of HDV RNA was reached when a mutant HDV genome unable to make L-HDAg was used, suggesting that L-HDAg did not play a role. The rates of HDV RNA synthesis, as measured by metabolic labeling experiments, were identical at 4 and 8 days posttransfection and in the wild type and the L-HDAg-deficient mutant. We further examined the effect of overexpression of L-HDAg at various stages of the HDV replication cycle, showing that HDV RNA synthesis was resistant to L-HDAg when it was overexpressed 3 days after HDV RNA replication had initiated. Finally, we showed that, contrary to conventional thinking, L-HDAg alone, at a certain molar ratio with HDV RNA, can initiate HDV RNA replication. Thus, L-HDAg does not inherently inhibit HDV RNA synthesis. Taken together, these results indicated that L-HDAg affects neither the rate of HDV RNA synthesis nor the final steady-state level of HDV RNA and that L-HDAg is unlikely to act as an inhibitor of HDV RNA replication in the natural HDV replication cycle.  相似文献   

10.
RNA interference (RNAi) mediated inhibition of virus-specific genes has emerged as a potential therapeutic strategy against virus induced diseases. Human hepatitis B virus (HBV) surface antigen (HBsAg) has proven to be a significant risk factor in HBV induced liver diseases, and an increasing number of mutations in HBsAg are known to enhance the difficulty in therapeutic interventions. The key challenge for achieving effective gene silencing in particular for the purpose of the therapeutics is primarily based on the effectiveness and specificity of the RNAi targeting sequence. To explore the therapeutic potential of RNAi on HBV induced diseases in particular resulted from aberrant or persistent expression of HBsAg, we have especially screened and identified the most potent and specific RNAi targeting sequence that directly mediated inhibition of the HBsAg expression. Using an effective DNA vector-based shRNA expression system, we have screened 10 RNAi targeting sequences (HBsAg-1 to 10) that were chosen from HBsAg coding region, in particular the major S region, and have identified four targeting sequences that could mediate sequence specific inhibition of the HBsAg expression. Among these four shRNAs, an extremely potent and highly sequence specific HBsAg-3 shRNA was found to inhibit HBsAg expression in mouse HBV model. The inhibition was not only preventive in cotransfection experiments, but also had therapeutic effect as assessed by post-treatment protocols. Moreover, this HBsAg-3 shRNA also exhibited a great potency of inhibition in transgenic mice that constitutively expressed HBsAg. These results indicate that HBsAg-3 shRNA can be considered as a powerful therapeutic agent on HBsAg induced diseases.  相似文献   

11.
12.
Hepatitis delta virus (HDV) contains two RNA species (HDV-S and HDV-L), which encode the small and large forms of hepatitis delta antigens (S- and L-HDAg), respectively. HDV-L RNA is a result of an RNA editing event occurring at an amber/W site of HDV-S RNA. RNA editing must be regulated to prevent premature and excessive accumulation of HDV-L RNA in the viral life cycle. In this study, we used an RNA transfection procedure to study the replication abilities of HDV-L and HDV-S RNA. While HDV-S led to robust RNA replication, HDV-L could not replicate even after 6 days following transfection. The failure of HDV-L to replicate was not due to insufficient amounts of S-HDAg, as identical results were obtained in a cell line that stably overexpresses S-HDAg. Also, it was not due to possible inhibition by L-HDAg, as HDV-S RNA replication was not affected when both HDV-L and HDV-S RNA were cotransfected. Further, when L-HDAg expression from HDV-L RNA was abolished by site-directed mutagenesis, the mutant HDV-L RNA also failed to replicate. Unexpectedly, when the kinetics of RNA replication was examined daily, HDV-L was found to replicate at a low level at the early time points (1 to 2 days posttransfection) but then lose this capability at later time points. Sequence analysis of the replicated HDV-L RNA at day 1 posttransfection showed that it had undergone multiple nucleotide changes, particularly in the region near the putative promoter region of HDV RNA replication. In contrast, very few mutations were found in HDV-S RNA. These results suggest that the editing at the amber/W site triggers a series of additional mutations which rapidly reduce the replication efficiency of the resultant HDV genome and thus help regulate the amount of HDV-L RNA in infected cells. They also explain why L-HDAg is not produced early in HDV infection, despite the fact that HDV-L RNA is present in the virion.  相似文献   

13.
M F Chang  C Y Sun  C J Chen    S C Chang 《Journal of virology》1993,67(5):2529-2536
The functions of delta antigens (HDAgs) in the replication of hepatitis delta virus (HDV) have been identified previously. The small HDAg acts as a transactivator, whereas the large HDAg has a negative effect on replication. To understand the molecular mechanisms involved in the control of HDV replication, we have established a replication system in Huh-7 cells by cotransfecting a monomeric cDNA genome of HDV and a plasmid encoding the small HDAg. We demonstrate that a leucine repeat in the middle domain of the small HDAg is involved in binding to the HDV genome and transactivation of HDV replication. When the leucine repeat was disrupted by a substitution of valine for leucine at position 115, both RNA-binding and transactivation activity of the small HDAg were abolished. In contrast, the binding and transactivation activities were not affected when Leu-37 and Leu-44 of the small HDAg were replaced by valines. In addition, small and large HDAgs can interact with each other to form protein complexes in vitro. The complex formation that may lead to the trans-dominant negative regulation of large HDAg in HDV replication is mediated by a cryptic signal located between amino acid residues 35 and 65 other than the putative N-terminal leucine zipper motif. Furthermore, an extra 21-amino-acid extension near the N terminus converts the small HDAg into a pseudo-large HDAg with negative regulation activity of HDV replication even though the extreme C-terminal residue is unchanged.  相似文献   

14.
C Z Lee  J H Lin  M Chao  K McKnight    M M Lai 《Journal of virology》1993,67(4):2221-2227
Hepatitis delta antigen (HDAg) is an RNA-binding protein with binding specificity for hepatitis delta virus (HDV) RNA (J. H. Lin, M. F. Chang, S. C. Baker, S. Govindarajan, and M. M. C. Lai, J. Virol. 64:4051-4058, 1990). By amino acid sequence homology search, we have identified within its RNA-binding domain two stretches of an arginine-rich motif (ARM), which is present in many prokaryotic and eukaryotic RNA-binding proteins. The first one is KERQDHRRRKA and the second is EDEKRERRIAG, and they are separated by 29 amino acids. Deletion of either one of these ARM sequences resulted in the total loss of the in vitro RNA-binding activity of HDAg. Thus, HDAg is different from other RNA-binding proteins in that it requires two ARM-like sequences for its RNA-binding activity. Replacement of the spacer sequence between the two ARMs with a shorter stretch of sequence also reduced RNA binding in vitro. Furthermore, site-specific mutations of the basic amino acid residues in both ARMs resulted in the total loss or reduction of RNA-binding activity. The biological significance of the RNA-binding activity was studied by examining the trans-activating activity of the RNA-binding mutants. The plasmids expressing HDAgs with various mutations in the RNA-binding motifs were cotransfected with a replication-defective HDV dimer cDNA construct into COS cells. It was found that all the HDAg mutants which had lost the in vitro RNA-binding activity also lost the ability to complement the defect of HDV RNA replication. We conclude that the trans-activating function of HDAg requires its binding to HDV RNA.  相似文献   

15.
16.
17.
The small hepatitis delta virus (HDV) antigen (SHDAg) plays an essential role in HDV RNA double-rolling-circle replication. Several posttranslational modifications (PTMs) of HDAgs, including phosphorylation, acetylation, and methylation, have been characterized. Among the PTMs, the serine 177 residue of SHDAg is a phosphorylation site, and its mutation preferentially abolishes HDV RNA replication from antigenomic RNA to genomic RNA. Using coimmunoprecipitation analysis, the cellular kinases extracellular signal-related kinases 1 and 2 (ERK1/2) are found to be associated with the Flag-tagged SHDAg mutant (Ser-177 replaced with Cys-177). In an in vitro kinase assay, serine 177 of SHDAg was phosphorylated directly by either Flag-ERK1 or Flag-ERK2. Activation of endogenous ERK1/2 by a constitutively active MEK1 (hemagglutinin-AcMEK1) increased phosphorylation of SHDAg at Ser-177; this phosphorylation was confirmed by immunoblotting using an antibody against phosphorylated S177 and mass spectrometric analysis. Interestingly, we found an increase in the HDV replication from antigenomic RNA to genomic RNA but not in that from genomic RNA to antigenomic RNA. The Ser-177 residue was critical for SHDAg interaction with RNA polymerase II (RNAPII), the enzyme proposed to regulate antigenomic RNA replication. These results demonstrate the role of ERK1/2-mediated Ser-177 phosphorylation in modulating HDV antigenomic RNA replication, possibly through RNAPII regulation. The results may shed light on the mechanisms of HDV RNA replication.  相似文献   

18.
Analysis of hepatitis delta virus (HDV) genome sequences has revealed multiple genotypes with different geographical distributions and associated disease patterns. To date, replication-competent cDNA clones of HDV genotypes I, II, and III have been reported. HDV genotypes I, II, and IIb have been found in Taiwan. Although full-length sequences of genotype IIb have been published, its replication competence in cultured cells has yet to be reported. In order to examine this, we obtained a full-length cDNA clone, Taiwan-IIb-1, from a Taiwanese HDV genotype IIb isolate. Comparison of the complete nucleic acid sequence of Taiwan-IIb-1 with previously published genotype IIb isolates indicated that Taiwan-IIb-1 shares 98% identity with another Taiwanese isolate and 92% identity with a Japanese isolate. Transfection of Taiwan-IIb-1 into COS7 cells resulted in accumulation of the HDV genome and appearance of delta antigens, showing that cloned HDV genotype IIb can replicate in cultured cells.  相似文献   

19.
Mu JJ  Wu HL  Chiang BL  Chang RP  Chen DS  Chen PJ 《Journal of virology》1999,73(12):10540-10545
Hepatitis delta virus (HDV) replication requires both the cellular RNA polymerase and one virus-encoded protein, small delta antigen (S-HDAg). S-HDAg has been shown to be a phosphoprotein, but its phosphorylation status is not yet clear. In this study, we employed three methods to address this question. A special two-dimensional gel electrophoresis, namely, nonequilibrium pH gradient electrophoresis, was used to separate the very basic S-HDAg. By carefully adjusting the pH of solubilization solution, the ampholyte composition, and the appropriate electrophoresis time periods, we were able to clearly resolve S-HDAg into two phosphorylated isoforms and one unphosphorylated form. In contrast, the viral large delta antigen (L-HDAg) can only be separated into one phosphorylated and one unphosphorylated form. By metabolic (32)P labeling, both immunoprecipitated S-HDAg and L-HDAg were found to incorporate radioactive phosphate. The extent of S-HDAg phosphorylation was increased upon 12-O-tetradecanoylphorbol-13-acetate treatment, while that of L-HDAg was not affected. Finally, phosphoamino acid analysis identified serine and threonine as the phospho residues in the labeled S-HDAg and only serine in the L-HDAg. Therefore, HDV S- and L-HDAgs differ in their phosphorylation patterns, which may account for their distinct biological functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号