首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long‐standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence‐carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture.  相似文献   

2.
蛋白质跨线粒体膜的运送   总被引:6,自引:1,他引:6  
线粒体约含1000种左右蛋白质,其中98%以上系由细胞核编码,在细胞质核酸体上以前体形式合成之后再运至线粒体并选分定位于各部分,现对定位于基持和内膜的蛋白质的运送途径研究的新进展作一扼要介绍,脱血红素细胞色素c是细胞色素c的前体,它既不含导肽,在线粒体外膜迄今也未发现共受体,对其转运的研究概况也作了评述。  相似文献   

3.
The majority of mitochondrial proteins are synthesized with amino-terminal signal sequences. The presequence translocase of the inner membrane (TIM23 complex) mediates the import of these preproteins. The essential TIM23 core complex closely cooperates with partner protein complexes like the presequence translocase-associated import motor and the respiratory chain. The inner mitochondrial membrane also contains a large number of metabolite carriers, but their association with preprotein translocases has been controversial. We performed a comprehensive analysis of the TIM23 interactome based on stable isotope labeling with amino acids in cell culture. Subsequent biochemical studies on identified partner proteins showed that the mitochondrial ADP/ATP carrier associates with the membrane-embedded core of the TIM23 complex in a stoichiometric manner, revealing an unexpected connection of mitochondrial protein biogenesis to metabolite transport. Our data indicate that direct TIM23-AAC coupling may support preprotein import into mitochondria when respiratory activity is low.  相似文献   

4.
《Journal of molecular biology》2019,431(15):2835-2851
Mitochondrial membrane proteins with internal targeting signals are inserted into the inner membrane by the carrier translocase (TIM22 complex). For this, precursors have to be initially directed from the TOM complex in the outer mitochondrial membrane across the intermembrane space toward the TIM22 complex. How these two translocation processes are topologically coordinated is still unresolved. Using proteomic approaches, we find that the human TIM22 complex associates with the mitochondrial contact site and cristae organizing system (MICOS) complex. This association does not appear to be conserved in yeast, whereby the yeast MICOS complex instead interacts with the presequence translocase. Using a yeast mic10Δ strain and a HEK293T MIC10 knockout cell line, we characterize the role of MICOS for protein import into the mitochondrial inner membrane and matrix. We find that a physiological cristae organization promotes efficient import via the presequence pathway in yeast, while in human mitochondria, the MICOS complex is dispensable for protein import along the presequence pathway. However, in human mitochondria, the MICOS complex is required for the efficient import of carrier proteins into the mitochondrial inner membrane. Our analyses suggest that in human mitochondria, positioning of the carrier translocase at the crista junction, and potentially in vicinity to the TOM complex, is required for efficient transport into the inner membrane.  相似文献   

5.
Functions of outer membrane receptors in mitochondrial protein import   总被引:10,自引:0,他引:10  
Most mitochondrial proteins are synthesized in the cytosol as precursor proteins and are imported into mitochondria. The targeting signals for mitochondria are encoded in the presequences or in the mature parts of the precursor proteins, and are decoded by the receptor sites in the translocator complex in the mitochondrial outer membrane. The recently determined NMR structure of the general import receptor Tom20 in a complex with a presequence peptide reveals that, although the amphiphilicity and positive charges of the presequence is essential for the import ability of the presequence, Tom20 recognizes only the amphiphilicity, but not the positive charges. This leads to a new model that different features associated with the mitochondrial targeting sequence of the precursor protein can be recognized by the mitochondrial protein import system in different steps during the import.  相似文献   

6.
This review is focused on the import of processable precursor proteins into the mitochondrial matrix; the import of carrier proteins into the inner mitochondrial membrane is also briefly discussed. Post- and cotranslational theories of the import, specific features of the presequence structures, and effects of some cytosolic factors on the import of precursor proteins are reviewed. The data on the structure of the protein translocases of the outer (TOM complex) and the inner (TIM complex) membranes of mitochondria and the current models of the precursor protein import by these translocases are also summarized.  相似文献   

7.
Only a few mitochondrial proteins are encoded by the organellar genome. The majority of mitochondrial proteins are nuclear encoded and thus have to be transported into the organelle from the cytosol. Within the mitochondrion proteins have to be sorted into one of the four sub-compartments: the outer or inner membranes, the intermembrane space or the matrix. These processes are mediated by complex protein machineries within the different compartments that act alone or in concert with each other. The translocation machinery of the outer membrane is formed by a multi-subunit protein complex (TOM complex), that is built up by signal receptors and the general import pore (GIP). The inner membrane houses two multi-subunit protein complexes that each handles special subsets of mitochondrial proteins on their way to their final destination. According to their primary function these two complexes have been termed the pre-sequence translocase (or TIM23 complex) and the protein insertion complex (or TIM22 complex). The identification of components of these complexes and the analysis of the molecular mechanisms underlying their function are currently an exciting and fast developing field of molecular cell biology.  相似文献   

8.
线粒体含有约1000种蛋白质,其中99%由细胞核DNA编码,在细胞质核糖体上合成后被分别转运至线粒体的内膜或外膜上、基质或膜间隙中。由众多分子机器组成的线粒体蛋白质转运系统参与了该生物学过程的执行。线粒体DNA编码的13种蛋白质也由该系统转运至线粒体内膜。本文就线粒体蛋白质转运系统中线粒体前体蛋白质的定位分选信号、转运复合物和转运途径作简要介绍。  相似文献   

9.
The evolution of mitochondria from ancestral bacteria required that new protein transport machinery be established. Recent controversy over the evolution of these new molecular machines hinges on the degree to which ancestral bacterial transporters contributed during the establishment of the new protein import pathway. Reclinomonas americana is a unicellular eukaryote with the most gene-rich mitochondrial genome known, and the large collection of membrane proteins encoded on the mitochondrial genome of R. americana includes a bacterial-type SecY protein transporter. Analysis of expressed sequence tags shows R. americana also has components of a mitochondrial protein translocase or "translocase in the inner mitochondrial membrane complex." Along with several other membrane proteins encoded on the mitochondrial genome Cox11, an assembly factor for cytochrome c oxidase retains sequence features suggesting that it is assembled by the SecY complex in R. americana. Despite this, protein import studies show that the RaCox11 protein is suited for import into mitochondria and functional complementation if the gene is transferred into the nucleus of yeast. Reclinomonas americana provides direct evidence that bacterial protein transport pathways were retained, alongside the evolving mitochondrial protein import machinery, shedding new light on the process of mitochondrial evolution.  相似文献   

10.
Most mitochondrial proteins are nuclear encoded and have to be transported into the organelle after synthesis on cytosolic ribosomes. Three multimeric protein complexes have been identified that import precursor proteins destined for the mitochondria: the TOM complex in the outer membrane and two TIM complexes in the inner membrane. Recent work has provided a detailed view of the different mechanisms operating during the import of the two major classes of mitochondrial proteins--hydrophilic proteins with cleavable presequences and hydrophobic proteins with multiple internal signals.  相似文献   

11.
Modular structure of the TIM23 preprotein translocase of mitochondria   总被引:1,自引:0,他引:1  
The TIM23 complex mediates import into mitochondria of nuclear encoded preproteins with a matrix-targeting signal. It is composed of the integral membrane proteins Tim17 and Tim23 and the peripheral membrane protein Tim44, which recruits mitochondrial Hsp70 to the sites of protein import. We have analyzed the functions of these constituents using a combined genetic and biochemical approach. Depletion of either Tim17 or Tim23 led to loss of import competence of mitochondria and to a reduction in the number of preprotein-conducting channels. Upon depletion of Tim44, mitochondria also lost their ability to import proteins but maintained normal numbers of import channels. In the absence of Tim44 precursor protein was specifically recognized. The presequence was translocated in a Delta psi-dependent manner across the inner membrane and cleaved by matrix-processing peptidase. However, the preprotein did not move further into the matrix but rather underwent retrograde sliding out of the TIM23 complex. Thus, the TIM23 complex is composed of functionally independent modules. Tim17 and Tim23 are necessary for initiating translocation, whereas Tim44 and mitochondrial Hsp70 are indispensable for complete transport of preproteins and for unfolding of folded domains of preproteins.  相似文献   

12.
beta-hydroxybutyrate dehydrogenase (BDH), a major protein located in the inner mitochondrial membrane is encoded, as most of mitochondrial proteins, in the nuclear genome. It is synthetized on the free polysomes and post-translationally imported into the mitochondria. The neosynthesized protein is a higher molecular weight precursor. The presequence is cleaved by the matrix protease to give the mature protein. The translocation across the mitochondrial membranes needs energy. The results also indicate that cytosolic factors with low molecular weight are essential in the recognition of precursor by mitochondria and to sort out newly synthetized nuclear encoded mitochondrial proteins from others nuclear encoded proteins.  相似文献   

13.
N-terminal targeting signals (presequences) direct proteins across the TOM complex in the outer mitochondrial membrane and the TIM23 complex in the inner mitochondrial membrane. Presequences provide directionality to the transport process and regulate the transport machineries during translocation. However, surprisingly little is known about how presequence receptors interact with the signals and what role these interactions play during preprotein transport. Here, we identify signal-binding sites of presequence receptors through photo-affinity labeling. Using engineered presequence probes, photo cross-linking sites on mitochondrial proteins were mapped mass spectrometrically, thereby defining a presequence-binding domain of Tim50, a core subunit of the TIM23 complex that is essential for mitochondrial protein import. Our results establish Tim50 as the primary presequence receptor at the inner membrane and show that targeting signals and Tim50 regulate the Tim23 channel in an antagonistic manner.  相似文献   

14.
Mitochondria have many different functions, the most important one of which is oxidative phosphorylation. They originated from an endosymbiotic event between a bacterium and an archaeal host cell. It was the evolution of a protein import system that marked the boundary between the endosymbiotic ancestor of the mitochondrion and a true organelle that is under the control of the nucleus. In present day mitochondria more than 95% of all proteins are imported from the cytosol in a proces mediated by hetero‐oligomeric protein complexes in the outer and inner mitochondrial membranes. In this review we compare mitochondrial protein import in the best studied model system yeast and the parasitic protozoan Trypanosoma brucei. The 2 organisms are phylogenetically only remotely related. Despite the fact that mitochondrial protein import has the same function in both species, only very few subunits of their import machineries are conserved. Moreover, while yeast has 2 inner membrane protein translocases, one specialized for presequence‐containing and one for mitochondrial carrier proteins, T. brucei has a single inner membrane translocase only, that mediates import of both types of substrates. The evolutionary implications of these findings are discussed.   相似文献   

15.
The majority of multispanning inner mitochondrial membrane proteins utilize internal targeting signals, which direct them to the carrier translocase (TIM22 complex), for their import. MPV17 and its Saccharomyces cerevisiae orthologue Sym1 are multispanning inner membrane proteins of unknown function with an amino-terminal presequence that suggests they may be targeted to the mitochondria. Mutations affecting MPV17 are associated with mitochondrial DNA depletion syndrome (MDDS). Reconstitution of purified Sym1 into planar lipid bilayers and electrophysiological measurements have demonstrated that Sym1 forms a membrane pore. To address the biogenesis of Sym1, which oligomerizes in the inner mitochondrial membrane, we studied its import and assembly pathway. Sym1 forms a transport intermediate at the translocase of the outer membrane (TOM) complex. Surprisingly, Sym1 was not transported into mitochondria by an amino-terminal signal, and in contrast to what has been observed in carrier proteins, Sym1 transport and assembly into the inner membrane were independent of small translocase of mitochondrial inner membrane (TIM) and TIM22 complexes. Instead, Sym1 required the presequence of translocase for its biogenesis. Our analyses have revealed a novel transport mechanism for a polytopic membrane protein in which internal signals direct the precursor into the inner membrane via the TIM23 complex, indicating a presequence-independent function of this translocase.  相似文献   

16.
The rat liver mitochondrial phosphate transporter contains a 44-amino acid presequence. The role of this presequence is not clear since the ADP/ATP carrier and the brown fat uncoupling protein, related members of a family of inner membrane anion transporters, lack a presequence and contain targeting information within the mature protein. Here, we present evidence that the rat liver mitochondrial phosphate transporter can be synthesized in vitro, imported into mitochondria, and processed to a protein of Mr 33,000. Import requires the membrane potential and external nucleotide triphosphate. The presequence inserts into the outer mitochondrial membrane, and import proceeds via a process similar to other proteins destined for the inner membrane or matrix. A mutant phosphate transporter lacking 35 amino acids at the NH2 terminus of the presequence has little capacity for mitochondrial import. The rat liver phosphate transporter is also imported and processed by rat kidney mitochondria and by mitochondria from the yeast Saccharomyces cerevisiae. A site-directed mutation of the N-ethyl-maleimide reactive cysteine 41 does not affect import or processing. The results presented show that optimal import of the mitochondrial phosphate transporter, unlike the ADP/ATP carrier and the brown fat uncoupling protein, is dependent on a presequence. As these carriers are believed to have evolved from a single gene, it seems likely that the H+/Pi carrier, known to be present in prokaryotes, appeared first and that subsequent evolutionary events leading to the other anion carriers eliminated the presequence.  相似文献   

17.
Most chloroplast and mitochondrial proteins are synthesized with N-terminal presequences that direct their import into the appropriate organelle. In this report we have analyzed the specificity of standard in vitro assays for import into isolated pea chloroplasts and mitochondria. We find that chloroplast protein import is highly specific because mitochondrial proteins are not imported to any detectable levels. Surprisingly, however, pea mitochondria import a range of chloroplast protein precursors with the same efficiency as chloroplasts, including those of plastocyanin, the 33-kDa photosystem II protein, Hcf136, and coproporphyrinogen III oxidase. These import reactions are dependent on the Deltaphi across the inner mitochondrial membrane, and furthermore, marker enzyme assays and Western blotting studies exclude any import by contaminating chloroplasts in the preparation. The pea mitochondria specifically recognize information in the chloroplast-targeting presequences, because they also import a fusion comprising the presequence of coproporphyrinogen III oxidase linked to green fluorescent protein. However, the same construct is targeted exclusively into chloroplasts in vivo indicating that the in vitro mitochondrial import reactions are unphysiological, possibly because essential specificity factors are absent in these assays. Finally, we show that disruption of potential amphipathic helices in one presequence does not block import into pea mitochondria, indicating that other features are recognized.  相似文献   

18.
Biogenesis of mitochondria requires import of several hundreds of different nuclear-encoded preproteins needed for mitochondrial structure and function. Import and sorting of these preproteins is a multistep process facilitated by complex proteinaceous machineries located in the mitochondrial outer and inner membranes. The translocase of the mitochondrial outer membrane, the TOM complex, comprises receptors which specifically recognize mitochondrial preproteins and a protein conducting channel formed by TOM40. The TOM complex is able to insert resident proteins into the outer membrane and to translocate proteins into the intermembrane space. For import of inner membrane or matrix proteins, the TOM complex cooperates with translocases of the inner membrane, the TIM complexes. During the past 30 years, intense research on fungi enabled the identification and mechanistic characterization of a number of different proteins involved in protein translocation. This review focuses on the contributions of the filamentous fungus Neurospora crassa to our current understanding of mitochondrial protein import, with special emphasis on the structure and function of the TOM complex.  相似文献   

19.
Most proteins involved in mitochondrial biogenesis are encoded by the genome of the nucleus.They are synthesized in the cytosol and have to be transported toward and, subsequently,imported into the organelle. This targeting and import process is initiated by the specificmitochondrial targeting signal, which differs pending on the final localization of the protein.The preprotein will be recognized by cytosolic proteins, which function in transport towardthe mitochondria and in maintaining the import competent state of the preprotein. The precursorwill be transferred onto a multicomponent complex on the outer mitochondrial membrane,formed by receptor proteins and the general insertion pore (GIP). Some proteins are directlysorted into the outer membrane whereas the majority will be transported over the outermembrane through the import channel followed by further distribution of those proteins.  相似文献   

20.
In most eukaryotic organisms, cytochrome c(1) is encoded in the nucleus, translated on cytosolic ribosomes, and directed to its final destination in the mitochondrial inner membrane by a bipartite, cleaved, amino-terminal presequence. However, in the kinetoplastids and euglenoids, the cytochrome c(1) protein has been shown to lack a cleaved presequence; a single methionine is removed from the amino terminus upon maturation, and the sequence upstream of the heme-binding site is generally shorter than that of the other eukaryotic homologs. We have used a newly developed mitochondrial protein import assay system from Trypanosoma brucei to demonstrate that the T. brucei cytochrome c(1) protein is imported along a non-conservative pathway similar to that described for the inner membrane carrier proteins of other organisms. This pathway requires external ATP and an external protein receptor but is not absolutely dependent on a membrane potential or on ATP hydrolysis in the mitochondrial matrix. We propose the cytochrome c(1) import in T. brucei is a two-step process first involving a membrane potential independent translocation across the outer mitochondrial membrane followed by heme attachment and a membrane potential-dependent insertion into the inner membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号