首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of buffer and ionic strength upon the enthalpy of binding between plasmid DNA and a variety of cationic lipids used to enhance cellular transfection were studied using isothermal titration calorimetry at 25.0 degrees C and pH 7.4. The cationic lipids DOTAP (1,2-dioleoyl-3-trimethyl ammonium propane), DDAB (dimethyl dioctadecyl ammonium bromide), DOTAP:cholesterol (1:1), and DDAB:cholesterol (1:1) bound endothermally to plasmid DNA with a negligible proton exchange with buffer. In contrast, DOTAP: DOPE (L-alpha-dioleoyl phosphatidyl ethanolamine) (1:1) and DDAB:DOPE (1:1) liposomes displayed a negative enthalpy and a significant uptake of protons upon binding to plasmid DNA at neutral pH. These findings are most easily explained by a change in the apparent pKa of the amino group of DOPE upon binding. Complexes formed by reverse addition methods (DNA into lipid) produced different thermograms, sizes, zeta potentials, and aggregation behavior, suggesting that structurally different complexes were formed in each titration direction. Titrations performed in both directions in the presence of increasing ionic strength revealed a progressive decrease in the heat of binding and an increase in the lipid to DNA charge ratio at which aggregation occurred. The unfavorable binding enthalpy for the cationic lipids alone and with cholesterol implies an entropy-driven interaction, while the negative enthalpies observed with DOPE-containing lipid mixtures suggest an additional contribution from changes in protonation of DOPE.  相似文献   

2.
The purpose of the present paper was to assess the ability of genistein benzyl derivatives to interact with lipid bilayers. Calorimetric and fluorescence spectroscopic measurements revealed that, depending on the details of chemical structure, the studied compounds penetrated bilayers and affected their polar as well as hydrophobic regions. It was also found that physical state of bilayer played some role in flavonoid–lipid interactions.  相似文献   

3.
The partition of the amphiphile sodium dodecyl sulfate (SDS) between an aqueous solution and a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer was followed by isothermal titration calorimetry (ITC) as a function of the total concentration of SDS. It was found that the obtained partition coefficient is strongly affected by the ligand concentration, even after correction for the charge imposed in the bilayer by the bound SDS. The partition coefficient decreased as the total concentration of SDS increased, with this effect being significant for local concentrations of SDS in the lipid bilayer above 5 molar%. At those high local concentrations, the properties of the lipid bilayer are strongly affected, leading to nonideal behavior and concentration-dependent apparent partition coefficients. It is shown that with the modern ITC instruments available, the concentrations of SDS can be drastically reduced while maintaining a good signal-to-noise ratio. The intrinsic parameters of the interaction with unperturbed membranes can be obtained from the asymptotic behavior of the apparent parameters as a function of the ligand concentration for both nonionic and ionic solutes. A detailed analysis is performed, and a spreadsheet is provided to obtain the interaction parameters with and without correction for electrostatics.  相似文献   

4.
Bovine alpha-lactalbumin has been studied by differential scanning calorimetry with various concentrations of calcium to elucidate the effect of this ligand on its thermal properties. In the presence of excess calcium, alpha-lactalbumin unfolds upon heating with a single heat-absorption peak and a significant increase of heat capacity. Analysis of the observed heat effect shows that this temperature-induced process closely approximates a two-state transition. The transition temperature increases in proportion with the logarithm of the calcium concentration, which results in an increase in the transition enthalpy as expected from the observed heat capacity increment of denaturation. As the total concentration of free calcium in solution is decreased below that of the proteins, there are two temperature-induced heat absorption peaks whose relative area depends on the calcium concentration, such that further decrease of calcium concentration results in a increase of the low-temperature peak and a decrease of the high-temperature one. The high-temperature peak occurs at the same temperature as the unfolding of the holo-protein, while the low-temperature peak is within the temperature range associated with the unfolding of the apo-protein. Statistical thermodynamic modeling of this process shows that the bimodal character of the thermal denaturation of bovine alpha-lactalbumin at non-saturated calcium concentrations is due to a high affinity of Ca2+ for alpha-lactalbumin and a low rate of calcium exchange between the holo- and apo-forms of this protein. Using calorimetric data, the calcium-binding constant for alpha-lactalbumin has been determined to be 2.9 x 10(8) M-1.  相似文献   

5.
Determination of binding parameters for metal ion binding to proteins usually requires preceding steps to remove protein-bound metal ions. Removal of bound metal ions from protein is often associated with decreased stability and inactivation. We present two simple isothermal titration calorimetric procedures that eliminate separate metal ion removal steps and directly monitor the exchange of metal ions between buffer, protein, and chelator. The concept is to add either excess chelator or metal ion to the protein under investigation and subsequently titrate with metal ion or chelator, respectively. It is thereby possible in the same experimental trial to obtain both chelator-metal ion and protein-metal ion binding parameters due to the different thermodynamic "fingerprints" of chelator and protein. The binding models and regression routines necessary to analyze the corresponding binding isotherms have been constructed. Verifications of the models have been done by titrations of mixtures of calcium chelators (BAPTA, HEDTA, and EGTA) and calcium ions and they were both able to account satisfactorily for the observed binding isotherms. Therefore, it was possible to determine stoichiometric and thermodynamic binding parameters. In addition, the concept has been tested on a recombinant alpha-amylase from Bacillus halmapalus where it proved to be a consistent procedure to obtain calcium binding parameters.  相似文献   

6.
Anion-induced fluorescence quenching of lipid probes incorporated into the liposomal membrane was used to study the binding of anions to the lipid membrane. Lipid derivatives bearing nonpolar fluorophore located either in the proximity of the polar headgroups (anthrylvinyl-labelled phosphatidylcholine, ApPC; methyl 4-pyrenylbutyrate, MPB) or in the polar region (rhodamine 19 oleyl ester, OR19) of the bilayer were used as probes. The binding of iodide to the bilayers of different compositions was studied. Based on the anion-induced quenching of the fluorescence, the isotherm of adsorption of the quencher (iodide) to the membrane was plotted. For anions, which are non-quenchers or weak quenchers (thiocyanate, perchlorate or trichloroacetate), the binding parameters were obtained from the data of the competitive displacement of iodide by these anions. The association constants of the anion binding to the bilayer (Ka) were determined for the stoichiometry of 1 ion/1 lipid and also for the case of independent anion binding. At the physiological concentration of the salt, which does not bind noticeably to the membrane (150 mM NaCl), anion binding could be satisfactorily described by the Langmuir isotherm. The approach applied here offers new possibilities for the studies of ion-membrane interactions using fluorescent probes.  相似文献   

7.
Monotopic proteins make up a class of membrane proteins that bind tightly to, but do not span, cell membranes. We examine and compare how two monotopic proteins, monoamine oxidase B (MAO-B) and cyclooxygenase-2 (COX-2), interact with a phospholipid bilayer using molecular dynamics simulations. Both enzymes form between three and seven hydrogen bonds with the bilayer in our simulations with basic side chains accounting for the majority of these interactions. By analyzing lipid order parameters, we show that, to a first approximation, COX-2 disrupts only the upper leaflet of the bilayer. In contrast, the top and bottom halves of the lipid tails surrounding MAO-B are more and less ordered, respectively, than in the absence of the protein. Finally, we identify which residues are important in binding individual phospholipids by counting the number and type of lipid atoms that come close to each amino acid residue. The existing models that explain how these proteins bind to bilayers were proposed following inspection of the X-ray crystallographic structures. Our results support these models and suggest that basic residues contribute significantly to the binding of these monotopic proteins to bilayers through the formation of hydrogen bonds with phospholipids.  相似文献   

8.
We have studied the effect of ergosterol, an important component of fungal plasma membranes, on the physical properties of dipalmitoylphosphatidylcholine (DPPC) multibilayers using deuterium nuclear magnetic resonance ((2)H NMR) and differential scanning calorimetry (DSC). For the (2)H NMR experiments the sn-1 chain of DPPC was perdeuterated and NMR spectra were taken as a function of temperature and ergosterol concentration. The phase diagram, constructed from the NMR spectra and the DSC thermograms, exhibits both solid-ordered (so) + liquid-ordered (lo) and liquid-disordered (ld) + lo phase coexistence regions with a clear three-phase line. This is the first demonstration that lo domains exist in liquid crystalline membranes containing ergosterol. The domain sizes in the ld+lo phase coexistence region were estimated by analyzing the exchange of labeled DPPC between the two regions, and depend on ergosterol concentration. The DPPC-ergosterol phase diagram is similar to that of the DPPC-cholesterol multibilayer system except that the so+lo and ld+lo phase coexistence regions are considerably broader.  相似文献   

9.
Solid state NMR techniques have been used to investigate the effect that two serotonin receptor 1a agonists (quipazine and LY-165,163) have on the phase behavior of, and interactions within, cholesterol/phosphocholine lipid bilayers. The presence of agonist, and particularly LY-165,163, appears to widen the phase transitions, an effect that is much more pronounced in the presence of cholesterol. It was found that both agonists locate close to the cholesterol, and their interactions with the lipids are modulated by the lipid phases. As the membrane condenses into mixed liquid-ordered/disordered phases, quipazine is pushed up toward the surface of the bilayer, whereas LY-165,163 moves deeper into the lipid chain region. In light of our results, we discuss the role of lipid/drug interactions on drug efficacy.  相似文献   

10.
Rani PG  Bachhawat K  Reddy GB  Oscarson S  Surolia A 《Biochemistry》2000,39(35):10755-10760
The carbohydrate binding specificity of the seed lectin from Artocarpus integrifolia, artocarpin, has been elucidated by the enzyme-linked lectin absorbent assay [Misquith, S., et al (1994) J. Biol. Chem. 269, 30393-30401], wherein it was demonstrated to be a Man/Glc specific lectin with high affinity for the trisaccharide present in the core of all N-linked oligosaccharide chains of glycoproteins. As a consequence of this characterization, the binding epitopes of this trisaccharide, 3, 6-di(alpha-D-mannopyranosyl)-D-mannose, for artocarpin were investigated by isothermal titration calorimetry using its monodeoxy as well as Glc and Gal analogues. The thermodynamic data presented here implicate 2-, 3-, 4-, and 6-hydroxyl groups of the alpha(1-3) Man and alpha(1-6) Man residues, and the 2- and 4-OH groups of the central Man residue, in binding to artocarpin. Nevertheless, alpha(1-3) Man is the primary contributor to the binding affinity, unlike other Man/Glc binding lectins which exhibit a preference for alpha(1-6) Man. In addition, unlike the binding reactions of most lectins reported so far, the interaction of mannotriose involves all of its hydroxyl groups with the combining site of the lectin. Moreover, the free energy and enthalpy contributions to binding of individual hydroxyl groups of the trimannoside estimated from the corresponding monodeoxy analogues show nonlinearity, suggesting differential contributions of the solvent and protein to the thermodynamics of binding of the analogues. Thus, this study not only provides evidence for the extended site recognition of artocarpin for the trimannoside epitope but also suggests that its combining site is best described as a deep cleft as opposed to shallow indentations implicated in other lectins.  相似文献   

11.
Quinoline-containing drugs such as chloroquine and quinine have had a long and successful history in antimalarial chemotherapy. Identification of ferriprotoporphyrin IX ([Fe(III)PPIX], haematin) as the drug receptors for these antimalarials called for investigations of the binding affinity, mode of interaction, and the conditions affecting the interaction. The parameters obtained are significant in recent times with the emergence of chloroquine resistant strains of the malaria parasites. This has underlined the need to unravel the molecular mechanism of their action so as to meet the requirement of an alternative to the existing antimalarial drugs. The isothermal titration calorimetric studies on the interaction of chloroquine with haematin lead us to propose an altered mode of binding. The initial recognition is ionic in nature mediated by the propionyl group of haematin with the quaternary nitrogen on CQ. This ionic interaction induces a conformational change, such as to favour binding of subsequent CQ molecules. On the contrary, conditions emulating the cytosolic environment (pH 7.4 and 150 mM salt) reveal the hydrophobic force to be the sole contributor driving the interaction. Interaction of a carefully selected panel of quinoline antimalarial drugs with monomeric ferriprotoporphyrin IX has also been investigated at pH 5.6 mimicking the acidic environment prevalent in the food vacuoles of parasite, the center of drug activity, which are consistent with their antimalarial activity.  相似文献   

12.
The family 6 carbohydrate-binding module (CBM) of Clostridium thermocellum XynA was expressed, and the binding equilibria of the CBM with xylooligosaccharides (degree of polymerization DP = 2-8) were observed by isothermal titration calorimetry (ITC) at pH 8. The association constant, Ka, increased with increasing DP from 5 x 10(3) M(-1) (DP = 2) to approximately 5 x 10(5) M(-1) (DP = 5-8) at 20 degrees C. The Ka values at 60 degrees C were about 1/10 of those at 20 degrees C. The binding was found to be an enthalpy-driven reaction. The DP dependence of the thermodynamic parameters of the binding reaction suggested the size of the ligand-binding site to be 5 xylose units long.  相似文献   

13.
14.
Extensive microscopic molecular dynamics simulations have been performed to study the effects of short-chain alcohols, methanol and ethanol, on two different fully hydrated lipid bilayer systems (POPC and DPPC) in the fluid phase at 323 K. It is found that ethanol has a stronger effect on the structural properties of the membranes. In particular, the bilayers become more fluid and permeable: ethanol molecules are able to penetrate through the membrane in typical timescales of approximately 200 ns, whereas for methanol that timescale is considerably longer, at least of the order of microseconds. A closer examination exposes a number of effects due to ethanol. Hydrogen-bonding analysis reveals that a large fraction of ethanols is involved in hydrogen bonds with lipids. This in turn is intimately coupled to the ordering of hydrocarbon chains: we find that binding to an ethanol decreases the order of the chains. We have also determined the dependence of lipid-chain ordering on ethanol concentration and found that to be nonmonotonous. Overall, we find good agreement with NMR and micropipette studies.  相似文献   

15.
Radiation-induced lipid peroxidation in phospholipid liposomes was investigated in terms of its dependence on lipid composition and oxygen concentration. Non-peroxidizable lipid incorporated in the liposomes reduced the rate of peroxidation of the peroxidizable phospholipid acyl chains, possibly by restricting the length of chain reactions. The latter effect is believed to be caused by interference of the non-peroxidizable lipids in the bilayer. At low oxygen concentration lipid peroxidation was reduced. The cause of this limited peroxidation may be a reduced number of radical initiation reactions possibly involving oxygen-derived superoxide radicals. Killing of proliferating mammalian cells, irradiated at oxygen concentrations ranging from 0 to 100 per cent, appeared to be independent of the concentration of peroxidizable phospholipids in the cell membranes. This indicates that lipid peroxidation is not the determining process in radiation-induced reproductive cell death.  相似文献   

16.
Hammann C  Cooper A  Lilley DM 《Biochemistry》2001,40(5):1423-1429
The hammerhead ribozyme undergoes a well-defined two-stage conformational folding process, induced by the binding of magnesium ions. In this study, we have used isothermal titration calorimetry to analyze the thermodynamics of magnesium binding and magnesium ion-induced folding of the ribozyme. Binding to the natural sequence ribozyme is strongly exothermic and can be analyzed in terms of sequential interaction at two sites with association constants K(A) = 480 and 2840 M(-1). Sequence variants of the hammerhead RNA give very different isothermal titration curves. An A14G variant that cannot undergo ion-induced folding exhibits endothermic binding. By contrast, a deoxyribose G5 variant that can undergo only the first of the two folding transitions gives a complex titration curve. However, despite these differences the ITC data for all three species can be analyzed in terms of the sequential binding of magnesium ions at two sites. While the binding affinities are all in the region of 10(3) M(-1), corresponding to free energies of Delta G degrees = -3.5 to -4 kcal mol(-1), the enthalpic and entropic contributions show much greater variation. The ITC experiments are in good agreement with earlier conformational studies of the folding of the ion-induced folding of the hammerhead ribozyme.  相似文献   

17.
Alpha-crystallin, composed of two subunits, alphaA and alphaB, has been shown to function as a molecular chaperone that prevents aggregation of other proteins under stress conditions. The exposed hydrophobic surfaces of alpha-crystallins have been implicated in this process, but their exact role has not been elucidated. In this study, we quantify the hydrophobic surfaces of alphaA- and alphaB-crystallins by isothermal titration calorimetry using 8-anilino-1-napthalenesulfonic acid (ANS) as a hydrophobic probe and analyze its correlation to the chaperone potential of alphaA- and alphaB-crystallins under various conditions. Two ANS binding sites, one with low and another with high affinity, were clearly detected, with alphaB showing a higher number of sites than alphaA at 30 degrees C. In agreement with the higher number of hydrophobic sites, alphaB-crystallin demonstrated higher chaperone activity than alphaA at this temperature. Thermodynamic analysis of ANS binding to alphaA- and alphaB-crystallins indicates that high affinity binding is driven by both enthalpy and entropy changes, with entropy dominating the low affinity binding. Interestingly, although the number of ANS binding sites was similar for alphaA and alphaB at 15 degrees C, alphaA was more potent than alphaB in preventing aggregation of the insulin B-chain. Although there was no change in the number of high affinity binding sites of alphaA and alphaB for ANS upon preheating, there was an increase in the number of low affinity sites of alphaA and alphaB. Preheated alphaA, in contrast to alphaB, exhibited remarkably enhanced chaperone activity. Our results indicate that although hydrophobicity appears to be a factor in determining the chaperone-like activity of alpha-crystallins, it does not quantitatively correlate with the chaperone function of alpha-crystallins.  相似文献   

18.
To measure the interaction between two lipid bilayers with an atomic force microscope one solid supported bilayer was formed on a planar surface by spontaneous vesicle fusion. To spontaneously adsorb lipid bilayers also on the atomic force microscope tip, the tips were first coated with gold and a monolayer of mercapto undecanol. Calculations indicate that long-chain hydroxyl terminated alkyl thiols tend to enhance spontaneous vesicle fusion because of an increased van der Waals attraction as compared to short-chain thiols. Interactions measured between dioleoylphosphatidylcholine, dioleoylphosphatidylserine, and dioleoyloxypropyl trimethylammonium chloride showed the electrostatic double-layer force plus a shorter-range repulsion which decayed exponentially with a decay length of 0.7 nm for dioleoylphosphatidylcholine, 1.2 nm for dioleoylphosphatidylserine, and 0.8 nm for dioleoyloxypropyl trimethylammonium chloride. The salt concentration drastically changed the interaction between dioleoyloxypropyl trimethylammonium chloride bilayers. As an example for the influence of proteins on bilayer-bilayer interaction, the influence of the synaptic vesicle-associated, phospholipid binding protein synapsin I was studied. Synapsin I increased membrane stability so that the bilayers could not be penetrated with the tip.  相似文献   

19.
The interaction of the major bovine seminal plasma protein, PDC-109 with lipid membranes was investigated by isothermal titration calorimetry. Binding of the protein to model membranes made up of diacyl phospholipids was found to be endothermic, with positive values of binding enthalpy and entropy, and could be analyzed in terms of a single type of binding sites on the protein. Enthalpies and entropies for binding to diacylphosphatidylcholine membranes increased with increase in temperature, although a clear-cut linear dependence was not observed. The entropically driven binding process indicates that hydrophobic interactions play a major role in the overall binding process. Binding of PDC-109 with dimyristoylphosphatidylcholine membranes containing 25 mol% cholesterol showed an initial increase in the association constant as well as enthalpy and entropy of binding with increase in temperature, whereas the values decreased with further increase in temperature. The affinity of PDC-109 for phosphatidylcholine increased at higher pH, which is physiologically relevant in view of the basic nature of the seminal plasma. Binding of PDC-109 to Lyso-PC could be best analysed in terms of two types of binding interactions, a high affinity interaction with Lyso-PC micelles and a low-affinity interaction with the monomeric lipid. Enthalpy-entropy compensation was observed for the interaction of PDC-109 with phospholipid membranes, suggesting that water structure plays an important role in the binding process.  相似文献   

20.
Biological membranes are constantly exposed to forces. The stress-strain relation in membranes determines the behavior of many integral membrane proteins or other membrane related-proteins that show a mechanosensitive behavior. Here, we studied by force spectroscopy the behavior of supported lipid bilayers (SLBs) subjected to forces perpendicular to their plane. We measured the lipid bilayer mechanical properties and the force required for the punch-through event characteristic of atomic force spectroscopy on SLBs as a function of the interleaflet coupling. We found that for an uncoupled bilayer, the overall tip penetration occurs sequentially through the two leaflets, giving rise to two penetration events. In the case of a bilayer with coupled leaflets, penetration of the atomic force microscope tip always occurred in a single step. Considering the dependence of the jump-through force value on the tip speed, we also studied the process in the context of dynamic force spectroscopy (DFS). We performed DFS experiments by changing the temperature and cantilever spring constant, and analyzed the results in the context of the developed theories for DFS. We found that experiments performed at different temperatures and with different cantilever spring constants enabled a more effective comparison of experimental data with theory in comparison with previously published data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号