首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TRPV1 receptor agonists such as the vanilloid capsaicin and the potent analog resiniferatoxin are well known potent analgesics. Depending on the vanilloid, dose, and administration site, nociceptor refractoriness may last from minutes up to months, suggesting the contribution of different cellular mechanisms ranging from channel receptor desensitization to Ca(2+) cytotoxicity of TRPV1-expressing neurons. The molecular mechanisms underlying agonist-induced TRPV1 desensitization and/or tachyphylaxis are still incompletely understood. Here, we report that prolonged exposure of TRPV1 to agonists induces rapid receptor endocytosis and lysosomal degradation in both sensory neurons and recombinant systems. Agonist-induced receptor internalization followed a clathrin- and dynamin-independent endocytic route, triggered by TRPV1 channel activation and Ca(2+) influx through the receptor. This process appears strongly modulated by PKA-dependent phosphorylation. Taken together, these findings indicate that TRPV1 agonists induce long-term receptor down-regulation by modulating the expression level of the channel through a mechanism that promotes receptor endocytosis and degradation and lend support to the notion that cAMP signaling sensitizes nociceptors through several mechanisms.  相似文献   

2.
Cardiovascular pharmacology of anandamide   总被引:6,自引:0,他引:6  
The fatty acid amide anandamide produces hypotension and a decrease in systemic vascular resistance in vivo. A drop in blood pressure is also seen with synthetic cannabinoid (CB) receptor agonists. The hypotensive responses to anandamide and synthetic cannabinoids are absent in CB1 receptor gene knockout mice. In isolated arteries and perfused vascular beds, anandamide induces vasodilator responses, which cannot be mimicked by synthetic cannabinoids. Instead, vanilloid receptors on perivascular sensory nerves play a key role in these effects of anandamide. Activation of vanilloid receptors by anandamide triggers the release of sensory neuropeptides such as the vasodilator calcitonin gene-related peptide (CGRP). Anandamide is detected in blood and in many cells of the cardiovascular system, and macrophage-derived anandamide may be involved in several hypotensive clinical conditions. Interestingly, cannabinoid and vanilloid receptors display an overlap in ligand recognition properties, and the frequently used CB1 receptor antagonist SR141716A also inhibits vanilloid receptor-mediated responses. The presence of anandamide in endothelial cells, neurones and activated macrophages (monocytes), and its ability to activate CB and vanilloid receptors make this lipid a potential bioregulator in the cardiovascular system.  相似文献   

3.
The cloned vanilloid receptor 1 (VR1) is a ligand-gated calcium channel that is believed to be the capsaicin-activated vanilloid receptor found in native tissues, based on similarities regarding molecular mass, tissue distribution, and electrophysiological properties. Using a Fluorescent Imaging Plate Reader (FLIPR), along with Fluo-3 to signal intracellular calcium levels ([Ca(++)](i)), rat VR1 (rVR1) and a human orthologue (hVR1) were pharmacologically characterized with various VR1 ligands. HEK-293 cells, stably expressing rVR1 or hVR1, exhibited dose-dependent increases in [Ca(++)](i) when challenged with capsaicin (EC(50)s congruent with 10 nM). Responses to capsaicin were blocked by the VR1 antagonist capsazepine and were dependent on VR1 expression. Potencies for 10 structurally diverse VR1 agonists revealed rVR1 potencies highly correlated to that of hVR1 (R(2) = 0.973). However, a subset of agonists (tinyatoxin, gingerol, and zingerone) was approximately 10-fold more potent for rVR1 compared to hVR1. Schild analysis for blockade of capsaicin-induced responses by capsazepine was consistent with competitive antagonism, whereas ruthenium red displayed noncompetitive antagonism. Compared to rVR1, hVR1 was more sensitive to blockade by both antagonists. For both rVR1 and hVR1, time-response waveforms elicited by resiniferatoxin increased more gradually compared to other agonists. Tinyatoxin also displayed slow responses with hVR1 but showed rapid responses with rVR1. Thus, FLIPR technology can be used to readily reveal differences between rVR1 and hVR1 pharmacology with respect to potencies, efficacies, and kinetics for several VR1 ligands.  相似文献   

4.
A series of N-(3-acyloxy-2-benzylpropyl)-N'-(4-hydroxy-3-methoxybenzyl) thiourea derivatives were investigated as vanilloid receptor ligands in an effort to discover a novel class of analgesics. The proposed pharmacophore model of resiniferatoxin. which includes the C20 homovanillic moiety, the C3-carbonyl and the orthoester phenyl ring as key pharmacophoric groups, was utilized as a guide for drug design. The compounds were synthesized after several steps from diethylmalonate and evaluated in vitro in a receptor binding assay and in a capsaicin-activated channel assay. Additional evaluation of analgesic activity, anti-inflammatory activity and pungency was conducted in animal models by the writhing test, the ear edema assay, and the eye-wiping test, respectively. Among the new compounds, 23 and 28 were found to be the most potent receptor agonists of the series with Ki values of 19 nM and 11 nM, respectively. Their strong in vitro potencies were also reflected by an excellent analgesic profile in animal tests with ED50 values of 0.5 microg kg for 23 and 1.0 microg/kg for 28. Relative to capsaicin these compounds appear to be ca. 600 and 300 times more potent. Both 23 and 28 were found to be less pungent than capsaicin based on the eye-wiping test. However, the compounds did not show significant anti-inflammatory activity. A molecular modeling study comparing the energy-minimized structures of resiniferatoxin and 35 demonstrated a good correlation in the spatial disposition of the corresponding key pharmacophores. The thioureas described in this investigation, which were designed as simplified resiniferatoxin surrogates, represent a novel class of potent vanilloid receptor agonists endowed with potent analgesic activity and reduced pungency.  相似文献   

5.
Tóth A  Wang Y  Kedei N  Tran R  Pearce LV  Kang SU  Jin MK  Choi HK  Lee J  Blumberg PM 《Life sciences》2005,76(25):2921-2932
The vanilloid receptor subtype 1 (TRPV1 or VR1) is expressed in nociceptive primary afferents of the C-fiber 'pain' pathway and has attracted considerable attention as a therapeutic target. Here, using rat TRPV1 heterologously expressed in Chinese hamster ovary cells, we show that different agonists show different patterns of modulation of the intracellular Ca2+ concentration, monitored in individual cells by fura-2 Ca2+ imaging. We identified 5 parameters (potency, maximal response, latency of response, variability of latency of response among individual cells, and desensitization) which behaved differently for different compounds. The potencies of the compounds examined ranged from EC50 values of 80 pM to 9 microM. Peak levels of induced [Ca2+]i were observed either higher (RTX) or lower (anandamide) than for capsaicin. Significant latencies of response were observed for some (e.g. RTX) but not other derivatives, with great variation among individual cells in this latency. Marked desensitization after stimulation was detected in some cases (e.g. anandamide, capsaicin); for others, no desensitization was observed. We conclude that structurally diverse vanilloid agonists induce marked diversity in the patterns of Ca2+ response. This diversity of response may provide opportunities for pharmacological exploitation.  相似文献   

6.
In order to improve the analgesic activity and pharmacokinetics of thioureas 2 and 3, which we previously developed as potent vanilloid receptor (VR) agonists, we prepared and characterized phenolic modifications of them and of their amide surrogates (7, 8). The aminoethyl analogue of the amide template 13 was a potent analgesic with an EC50=0.96 microg/kg in the AA-induced writhing test and with better in vivo stability than the parent phenol.  相似文献   

7.
The vanilloid receptor represents a promising target for drug development. Building on our previous strategies which have generated potent agonists for VR1, we now describe a series of novel N-(3-acyloxy-2-benzylpropyl)-N'-dihydroxytetrahydrobenzazepine and tetrahydroisoquinoline thiourea analogues, several of which are potent VR1 antagonists. We report here the rationale for the design, the synthesis, and the in vitro characterization of activity in assays for [(3)H]resiniferatoxin binding and (45)Ca influx using heterologously expressed rat VR1.  相似文献   

8.
We previously showed that the duodenal hyperemic response to acid occurs through activation of capsaicin-sensitive afferent nerves with subsequent release of vasodilatory substances such as calcitonin gene-related peptide (CGRP) and nitric oxide. We then tested the hypothesis that similar factors regulate duodenal mucus gel thickness. Gel thickness was optically measured using in vivo microscopy in anesthetized rats. Duodenal mucosae were superfused with pH 7.0 buffer with vanilloid receptor agonist capsaicin, bradykinin, or PGE(2) injection or were challenged with pH 2.2 solution, with or without the vanilloid antagonist capsazepine, human CGRP-(8-37), N(G)-nitro-L-arginine methyl ester, and indomethacin. Other rats underwent sensory ablation with high-dose capsaicin pretreatment. Acid, bradykinin, capsaicin, and PGE(2) all quickly thickened the gel. Antagonism of vanilloid and CGRP receptors, inhibition of nitric oxide synthase, and sensory deafferentation delayed gel thickening, suggesting that the capsaicin pathway mediated the initial burst of mucus secretion that thickened the gel. Indomethacin abolished gel thickening due to acid, bradykinin, and capsaicin. Inhibition of gel thickening by indomethacin in response to multiple agonists suggests that cyclooxygenase activity is essential for duodenal gel thickness regulation. Duodenal afferent neural pathways play an important role in the modulation of cyclooxygenase-mediated physiological control of gel thickness.  相似文献   

9.
A series of N-4-substituted-benzyl-N'-tert-butylbenzyl thioureas were prepared for the study of their agonistic/antagonistic activities to the vanilloid receptor in rat DRG neurons. Their structure-activity relationship reveals that not only the two oxygens and amide hydrogen of sulfonamido group, but also the optimal size of methyl in methanesulfonamido group play an integral role for the antagonistic activity on vanilloid receptor.  相似文献   

10.
Baroreceptor inputs to nucleus of the tractus solitarius medialis (mNTS) neurons can be differentiated, among other features, by their response to vanilloid or purinergic agonists, active only on C- or A-fibers, respectively. A major aim of this study was to examine whether neurons of NTS centralis (cNTS), a subnucleus dominated by esophageal inputs, exhibit a similar dichotomy. Since it has been suggested that cholecystokinin (CCK), exerts its gastrointestinal (GI)-related effects via paracrine activation of vagal afferent C-fibers, we tested whether CCK-sensitive fibers impinging upon cNTS neurons are responsive to vanilloid but not purinergic agonists. Using whole cell patch-clamp recordings from cNTS, we recorded miniature excitatory postsynaptic currents (mEPSCs) to test the effects of the vanilloid agonist capsaicin, the purinergic agonist α,β-methylene-ATP (α,β-Met-ATP), and/or CCK-octapeptide (CCK-8s). α,β-Met-ATP, capsaicin; and CCK-8s increased EPSC frequency in 37, 71, and 46% of cNTS neurons, respectively. Approximately 30% of cNTS neurons were responsive to both CCK-8s and α,β-Met-ATP, to CCK-8s and capsaicin, or to α,β-Met-ATP and capsaicin, while 32% of neurons were responsive to all three agonists. All neurons responding to either α,β-Met-ATP or CCK-8s were also responsive to capsaicin. Perivagal capsaicin, which is supposed to induce a selective degeneration of C-fibers, decreased the number of cNTS neurons responding to capsaicin or CCK-8s but not those responding to α,β-Met-ATP. In summary, GI inputs to cNTS neurons cannot be distinguished on the basis of their selective responses to α,β-Met-ATP or capsaicin. Our data also indicate that CCK-8s increases glutamate release from purinergic and vanilloid responsive fibers impinging on cNTS neurons.  相似文献   

11.
GPR35, previously an orphan G-protein coupled receptor, is a receptor for kynurenic acid. Here we examine the distribution of GPR35 in the rat dorsal root ganglion (DRG) and the effects of its selective activation. GPR35 was expressed predominantly by small- to medium-diameter neurons of the DRG. Many of these same neurons also expressed the transient receptor potential vanilloid 1 channel, a nociceptive neuronal marker. The GPR35 agonists kynurenic acid and zaprinast inhibited forskolin-stimulated cAMP production by cultured rat DRG neurons. Inhibition required Gi/o proteins as the effect was completely abolished by pretreatment with pertussis toxin. This is the first study to report the expression and function of GPR35 in rat nociceptive DRG neurons. We propose that GPR35 modulates nociception and that continued study of this receptor will provide additional insight into the role of kynurenic acid in pain perception.  相似文献   

12.
A series of N-4-methansulfonamidobenzyl-N'-2-substituted-4-tert-butylbenzyl thioureas were prepared for the study of their agonistic/antagonistic activities to the vanilloid receptor in rat DRG neurons. Their structure-activity relationship reveals that there is a space for another hydrophobic binding interaction around 2-position in 4-tert-butylbenzyl region. Among the prepared derivatives, 6n show the highest antagonistic activity against the vanilloid receptor (IC(50)=15 nM).  相似文献   

13.
Transient receptor potential vanilloid 4 (TRPV4) has been implicated in many disease conditions also in the lung. Its activation leads to an increase endothelial permeability in an intracellular calcium-influx dependent manner. We investigated its function in vitro on primary human endothelial cells using two TRPV4 agonists, GSK1016790A and 4α-Phorbol 12,13-didecanoate (4α-PDD) and a selective TRPV4 blocker GSK2193874. Both TRPV4 agonists leaded to a reduction in transendothelial electrical resistance (TER) which was mediated however by differential cytotoxic effects. 4α-PDD induced apoptosis that could not be blocked by TRPV4 inhibition in HUVECs, whereas GSK1016790A selectively activated TRPV4 and reduced TER as a consequence of cellular necrosis. TRPV4 mediated cytotoxicity is poorly described and may provide significant context to the role of TRPV4 in barrier-function.  相似文献   

14.
Cannabinoid receptors and their ligands   总被引:12,自引:0,他引:12  
There are at least two types of cannabinoid receptors, CB(1) and CB(2), both coupled to G proteins. CB(1) receptors exist primarily on central and peripheral neurons, one of their functions being to modulate neurotransmitter release. CB(2) receptors are present mainly on immune cells. Their roles are proving more difficult to establish but seem to include the modulation of cytokine release. Endogenous agonists for cannabinoid receptors (endocannabinoids) have also been discovered, the most important being arachidonoyl ethanolamide (anandamide), 2-arachidonoyl glycerol and 2-arachidonyl glyceryl ether. Other endocannabinoids and cannabinoid receptor types may also exist. Although anandamide can act through CB(1) and CB(2) receptors, it is also a vanilloid receptor agonist and some of its metabolites may possess yet other important modes of action. The discovery of the system of cannabinoid receptors and endocannabinoids that constitutes the "endocannabinoid system" has prompted the development of CB(1)- and CB(2)-selective agonists and antagonists/inverse agonists. CB(1)/CB(2) agonists are already used clinically, as anti-emetics or to stimulate appetite. Potential therapeutic uses of cannabinoid receptor agonists include the management of multiple sclerosis/spinal cord injury, pain, inflammatory disorders, glaucoma, bronchial asthma, vasodilation that accompanies advanced cirrhosis, and cancer. Following their release onto cannabinoid receptors, endocannabinoids are removed from the extracellular space by membrane transport and then degraded by intracellular enzymic hydrolysis. Inhibitors of both these processes have been developed. Such inhibitors have therapeutic potential as animal data suggest that released endocannabinoids mediate reductions both in inflammatory pain and in the spasticity and tremor of multiple sclerosis. So too have CB(1) receptor antagonists, for example for the suppression of appetite and the management of cognitive dysfunction or schizophrenia.  相似文献   

15.
The vanilloid receptor 1(VR1) is a nonselective cation channel that is activated by pungent vanilloid compound, extracellular protons, or noxious heat. mRNA of VR1 and vanilloid receptor 1-like receptor (VRL1) were expressed in PC12 cells, and only VRI mRNA was detected in glioma and A10 cell lines. VRI protein was demonstrated in PC12 cells by immunocytochemistry and Western blotting. Capsaicin (CPS), the VRI receptor agonist, led to an increase in intracellular calcium ion, and this effect was blocked by pretreatment with VR1 receptor antagonist capsazepin (CPZ). Treatment of PC12 cells with low concentration of CPS (5-50 microM) increased reactive oxygen species (ROS) production, and inducible nitric oxide synthase (iNOS) was expressed after CPS treatment for 24 h. These CPS-induced changes are inhibited by pretreatment of CPZ. These findings suggest that CPS-induced iNOS expression through the VR1 and/or VRL1-mediated pathway, and this may explain the CPS-mediated physiological and pathological effects in neuron system.  相似文献   

16.
Molecular basis for species-specific sensitivity to "hot" chili peppers   总被引:19,自引:0,他引:19  
Jordt SE  Julius D 《Cell》2002,108(3):421-430
Chili peppers produce the pungent vanilloid compound capsaicin, which offers protection from predatory mammals. Birds are indifferent to the pain-producing effects of capsaicin and therefore serve as vectors for seed dispersal. Here, we determine the molecular basis for this species-specific behavioral response by identifying a domain of the rat vanilloid receptor that confers sensitivity to capsaicin to the normally insensitive chicken ortholog. Like its mammalian counterpart, the chicken receptor is activated by heat or protons, consistent with the fact that both mammals and birds detect noxious heat and experience thermal hypersensitivity. Our findings provide a molecular basis for the ecological phenomenon of directed deterence and suggest that the capacity to detect capsaicin-like inflammatory substances is a recent acquisition of mammalian vanilloid receptors.  相似文献   

17.
A lowered threshold to the cough response frequently accompanies chronic airway inflammatory conditions. However, the mechanism(s) that from chronic inflammation results in a lowered cough threshold is poorly understood. Irritant agents, including capsaicin, resiniferatoxin, and citric acid, elicit cough in humans and in experimental animals through the activation of the transient receptor potential vanilloid 1 (TRPV1). Protease-activated receptor-2 (PAR2) activation plays a role in inflammation and sensitizes TRPV1 in cultured sensory neurons by a PKC-dependent pathway. Here, we have investigated whether PAR2 activation exaggerates TRPV1-dependent cough in guinea pigs and whether protein kinases are involved in the PAR2-induced cough modulation. Aerosolized PAR2 agonists (PAR2-activating peptide and trypsin) did not produce any cough per se. However, they potentiated citric acid- and resiniferatoxin-induced cough, an effect that was completely prevented by the TRPV1 receptor antagonist capsazepine. In contrast, cough induced by hypertonic saline, a stimulus that provokes cough in a TRPV1-independent manner, was not modified by aerosolized PAR2 agonists. The PKC inhibitor GF-109203X, the PKA inhibitor H-89, and the cyclooxygenase inhibitor indomethacin did not affect cough induced by TRPV1 agonists, but abated the exaggeration of this response produced by PAR2 agonists. In conclusion, PAR2 stimulation exaggerates TRPV1-dependent cough by activation of diverse mechanism(s), including PKC, PKA, and prostanoid release. PAR2 activation, by sensitizing TRPV1 in primary sensory neurons, may play a role in the exaggerated cough observed in certain airways inflammatory diseases such as asthma and chronic obstructive pulmonary disease.  相似文献   

18.
The amiloride-sensitive epithelial Na+ channel (ENaC) regulates Na+ homeostasis into cells and across epithelia. So far, four homologous subunits of mammalian ENaC have been isolated and are denoted as alpha, beta, gamma, and delta. The chemical agents acting on ENaC are, however, largely unknown, except for amiloride and benzamil as ENaC inhibitors. In particular, there are no agonists currently known that are selective for ENaCdelta, which is mainly expressed in the brain. Here we demonstrate that capsazepine, a competitive antagonist for transient receptor potential vanilloid subfamily 1, potentiates the activity of human ENaCdeltabetagamma (hENaCdeltabetagamma) heteromultimer expressed in Xenopus oocytes. The inward currents at a holding potential of -60 mV in hENaCdeltabetagamma-expressing oocytes were markedly enhanced by the application of capsazepine (> or =1 microM), and the capsazepine-induced current was mostly abolished by the addition of 100 microM amiloride. The stimulatory effects of capsazepine on the inward current were concentration-dependent with an EC50 value of 8 microM. Neither the application of other vanilloid compounds (capsaicin, resiniferatoxin, and olvanil) nor a structurally related compound (dopamine) modulated the inward current. Although hENaCdelta homomer was also significantly activated by capsazepine, unexpectedly, capsazepine had no effect on hENaCalpha and caused a slight decrease on the hENaCalphabetagamma current. In conclusion, capsazepine acts on ENaCdelta and acts together with protons. Other vanilloids tested do not have any effect. These findings identify capsazepine as the first known chemical activator of ENaCdelta.  相似文献   

19.
Recently a cDNA clone, vanilloid receptor subtype-1 (VR1), was isolated and found to encode an ion channel that is activated by both capsaicin, the pain producing compound in chili peppers, and by noxious thermal stimuli. Subsequently, two related cDNAs have been isolated, a stretch inactivating channel with mechanosensitive properties and a vanilloid receptor-like protein that is responsive to high temperatures (52-53 degrees C). Here, we report the isolation of a vanilloid receptor 5'-splice variant (VR.5'sv) which differs from VR1 by elimination of the majority of the intracellular N-terminal domain and ankyrin repeat elements. Both VR.5'sv and VR1 mRNA were shown to be expressed in tissues reportedly responsive to capsaicin including dorsal root ganglion, brain, and peripheral blood mononuclear cells. Functional expression of VR.5'sv in Xenopus oocytes and mammalian cells showed no sensitivity to capsaicin, the potent vanilloid resiniferatoxin, hydrogen ions (pH 6.2), or noxious thermal stimuli (50 degrees C). Since VR.5'sv is otherwise identical to VR1 throughout its transmembrane spanning domains and C-terminal region, these results support the hypothesis that the N-terminal intracellular domain is essential for the formation of functional receptors activated by vanilloid compounds and noxious thermal stimuli.  相似文献   

20.
In human embryonic kidney cells over-expressing the human vanilloid receptor type 1 (VR1), palmitoylethanolamide (PEA, 0.5-10 microM) enhanced the effect of arachidonoylethanolamide (AEA, 50 nM) on the VR1-mediated increase of the intracellular Ca2+ concentration. PEA (5 microM) decreased the AEA half-maximal concentration for this effect from 0.44 to 0.22 microM. The PEA effect was not due to inhibition of AEA hydrolysis or adhesion to non-specific sites, since bovine serum albumin (0.01-0.25%) potently inhibited AEA activity, and PEA also enhanced the effect of low concentrations of the VR1 agonists resiniferatoxin and capsaicin. PEA (5 microM) enhanced the affinity of AEA for VR1 receptors as assessed in specific binding assays. These data suggest that PEA might be an endogenous enhancer of VR1-mediated AEA actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号