首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 68 毫秒
1.
细胞外基质在植物发育中的作用   总被引:5,自引:1,他引:5  
植物细胞壁是由纤维素和果胶交联的多糖和蛋白质构成的既彼此独立,又相互作用的三维动力学网络。和动物的细胞外基质一样,植物细胞壁中的许多成分积极地参与植物细胞发育过程的调节,它们以某种方式将信息传递给细胞,调节细胞的行为,以便对各种外界环境作出相应的反应。因此细胞壁不再是一种环绕植物细胞的惰性结构,比起细胞壁,植物细胞外基质这一名词更能反映出这一动力学的特性。  相似文献   

2.
质外体—决定植物细胞发育命运的重要信号源   总被引:7,自引:0,他引:7  
  相似文献   

3.
在生物体里除了细胞以外,还存在着非细胞成份的基质,可能对细胞起着支撑作用。直到五十年代,对细胞外基质的认识还很简单,只知道它是由胶原蛋白和胶体溶液组成的物质。经过四十多年的研究,现在已经知道细胞外基质(extracellular matrix ECM)是由糖蛋白、蛋白多糖、糖氨聚糖等生物大分子(如胶原蛋白、纤维蛋白等等)所组成。这些分子相互交联,形成精细复杂的网状结构,存在于细胞外的微环境里。在受精卵第一次分裂形成的两个裂球之间,就发现有ECM成份的存在,并且在随  相似文献   

4.
近几年研究细胞外基质促进神经纤维生长的作用有惊人的发展。施旺细胞、未分化的神经胶质细胞,以及胚胎非神经细胞和神经细胞所形成细胞外基质中,层粘连蛋白分子(或它的亚单位、或它与其他分子结合的复合物等不溶性物质)与生长锥相互作用的结果对刺激和诱导神经纤维的生长起重要的作用。其他分子或可溶性物质对纤维生长也有一定的作用。以基膜形式存在的细胞外基质是促神经纤维生长最好的基底,并为脑损伤修复提供了应用前景。  相似文献   

5.
细胞外基质研究的某些进展   总被引:5,自引:0,他引:5  
细胞外基质研究的某些进展周同,宋长玲(上海第二医科大学附属瑞金医院上海200025)汤雪明(上海第二医科大学细胞生物学实验室上海200025)近年,对细胞外基质(Extracellularmatrix,ECM)及其受体细胞粘附分子(Celladhes...  相似文献   

6.
细胞外基质对体外培养心肌细胞铺展作用的影响   总被引:2,自引:0,他引:2  
本研究用分离的新生大鼠心肌细胞,观察不同的细胞外基质,在培养不同时间对心肌细胞铺展的影响。结果表明,不同的细胞外基质影响心肌细胞铺展,在培养8小时即出现差别,48小时差异明显,其中FN促进心肌细胞铺展,而FN的片段延缓心肌细胞的铺展。  相似文献   

7.
基质金属蛋白酶与血管壁细胞外基质重建   总被引:8,自引:0,他引:8  
温进坤  韩梅 《生命的化学》2002,22(5):461-463
细胞外基质(ECM)不仅维持血管壁的完整性,而且还为血管细胞传递增殖,迁移,分化和凋亡的调控信号,基质金属蛋白酶(MMP)及其内源性抑制剂(TIMP)通过调节ECM合成与降解之间的动态平衡,使ECM维持正常的结构与功能。在高血压,动脉粥样硬化与血管再狭窄的发生与发展过程中,MMP和TIMP的合成与分泌出现异常,由此所引起的ECM合成与降解失调使ECM迅速发生重建。  相似文献   

8.
细胞外基质与基质金属蛋白酶   总被引:24,自引:0,他引:24  
细胞外基质(ECM)是存在于细胞之间的动态网状结构,由胶原、蛋白聚糖及糖蛋白等大分子物质组成.这些大分子物质可与细胞表面上的特异性受体结合,通过受体与细胞骨架结构直接发生联系或触发细胞内的一系列信号传导而引起不同的基因表达,从而导致细胞的生长和分化.作为降解ECM成分最重要的酶-基质金属蛋白酶(MMPs)及其组织抑制因子(TIMPs)在这一过程中起着非常重要的作用.MMPs是一类依赖金属离子锌并以ECM成分为水解底物的蛋白水解酶.其在转录水平的表达受到生长因子、细胞因子及激素等因素的严格调控,在蛋白质水平其活性也受到其激活剂和抑制剂的调节. MMPs通过对ECM成分的水解来影响其降解与重组的动态平衡而参与多种细胞的生理和病理过程.  相似文献   

9.
探讨肝细胞癌 (hepatocellular carcinoma,HCC)细胞外基质 (extracellular m atrix,ECM)层粘蛋白 (laminin,L N)、胶原蛋白 (collagen ,Col )的分布表达及其临床意义。利用免疫组化结合计算机图像分析技术观察 5 4例 HCC组织中 L N、 Col 的分布特点和表达水平。结果表明 L N和 Col 的分布方式相似。低分化、侵袭性和伴肝内转移的 HCC其 ECM分布呈中断的索周型和血管型 ,而高分化、非侵袭性及无肝内转移的 HCC的 ECM分布主要是连续的索周型 (P<0 .0 1)。低分化 HCC的 L N、Col 表达水平均低于高分化 HCC(P<0 .0 5和 P<0 .0 1)。侵袭性和伴肝内转移的 HCC其 L N、Col 表达水平分别低于非侵袭性和不伴肝内转移的 HCC (P<0 .0 1)。提示 HCC组织 ECM的分布和表达与肿瘤的侵袭转移密切相关 ,ECM作为结构屏障可能在防止肿瘤侵袭和转移方面起重要作用  相似文献   

10.
细胞外基质与细胞周期调控   总被引:3,自引:0,他引:3  
细胞外基质(ECM)主要包括胶原蛋白,蛋白多糖,糖蛋白和弹性蛋白等,细胞经整合素介导与ECM粘附,则ECM各成分对细胞的增殖周期产生影响ECM主要通过调节细胞形状和细胞骨架结构张力,p53-p21^waf1,pRb/E2F,FAK,SPARC,JAK/STAT等胞内信号途径调节细胞周期进程。  相似文献   

11.
Androgenic plant regeneration from wheat anther callus was accompanied by the formation of a conspicuous extracellular matrix surface network (ECMSN) around the induced callus cells and young embryo-like structures. Microscopic observations at the onset of regeneration revealed the presence of two distinct types of cells on the callus surface: large, loosely attached parenchymatous cells and small tightly packed meristematic cells arranged in multicellular clusters. Parenchyma cells of the callus had smooth surface, while on the surface and between the cells of multicellular clusters numerous fine fibrils of ECMSN were observed. The structural arrangement of the ECMSN changed during culture. On the surface of globular embryo-like structures, before protoderm formation, the ECMSN was the most abundant and arranged as a compact layer of secretion with wide strands visible at the cell junctions. Further development of globular embryos was disturbed, giving rise to branched structures outlined by continuous epidermis. The development of such regenerants was accompanied by gradual degradation of the extracellular network and finally its complete disappearance. Digestion with protease did not destroy the network. Treatment of the calluses with chloroform and washing with ether–methanol led to partial destruction of the network, while digestion with pectinase removed the network completely and resulted in the collapse of surface embryo cells.  相似文献   

12.
细胞外间质   总被引:11,自引:0,他引:11  
细胞外间质由四大家族组成,胶原蛋白,蛋白多糖。弹性蛋白和细胞外间质糖蛋白。细胞外间质成分不仅仅是细胞的惰性支持物,它具有活性的生物功能,例如细胞粘附及迁移,甚至涉及基因表达。细胞外间质研究是一个十分活跃的生物学领域。  相似文献   

13.
钙调蛋白在植物发育中的功能   总被引:3,自引:0,他引:3  
钙调蛋白(CaM)在植物生长和发育中有着多种功能,它参与了一系列的发育过程如细胞分裂、细胞代谢、胁迫、花药和雌蕊以及胚胎的发育等.对钙调蛋白功能的了解将有助于更深入研究钙/钙调蛋白介导的信号网络,为研究植物体内各类代谢的信号转导奠定基础.  相似文献   

14.
The extracellular matrix (ECM) serves diverse functions and is a major component of the cellular microenvironment. The ECM is a highly dynamic structure, constantly undergoing a remodeling process where ECM components are deposited, degraded, or otherwise modified. ECM dynamics are indispensible during restructuring of tissue architecture. ECM remodeling is an important mechanism whereby cell differentiation can be regulated, including processes such as the establishment and maintenance of stem cell niches, branching morphogenesis, angiogenesis, bone remodeling, and wound repair. In contrast, abnormal ECM dynamics lead to deregulated cell proliferation and invasion, failure of cell death, and loss of cell differentiation, resulting in congenital defects and pathological processes including tissue fibrosis and cancer. Understanding the mechanisms of ECM remodeling and its regulation, therefore, is essential for developing new therapeutic interventions for diseases and novel strategies for tissue engineering and regenerative medicine.The extracellular matrix (ECM) forms a milieu surrounding cells that reciprocally influences cellular function to modulate diverse fundamental aspects of cell biology (Hynes 2009). The diversity and sophistication of ECM components and their respective cell surface receptors are among the most salient features during metazoan evolution (Har-el and Tanzer 1993; Hutter et al. 2000; Whittaker et al. 2006; Engler et al. 2009; Huxley-Jones et al. 2009; Ozbek et al. 2010). The ECM is extremely versatile and performs many functions in addition to its structural role. As a major component of the microenvironment of a cell, the ECM takes part in most basic cell behaviors, from cell proliferation, adhesion and migration, to cell differentiation and cell death (Hynes 2009). This pleiotropic aspect of ECM function depends on the highly dynamic structure of ECM and its remodeling as an effective mechanism whereby diverse cellular behaviors can be regulated. This concept is particularly important when considering processes and cell behaviors that need to be deployed promptly and transiently and wherein cell–cell and cell–matrix interactions are constantly changing (Daley et al. 2008).ECM dynamics are a feature of tissues wherein radical remodeling occurs, such as during metamorphosis of insects and amphibians or remodeling of the adult bone and mammary gland, and in developmental processes, including neural crest migration, angiogenesis, tooth and skeletal development, branching morphogenesis, maturation of synapses, and the nervous system (Berardi et al. 2004; Fukumoto and Yamada 2005; Page-McCaw et al. 2007; Zimmermann and Dours-Zimmermann 2008).ECM dynamics can result from changes of ECM composition, for example, because of altered synthesis or degradation of one or more ECM components, or in architecture because of altered organization. Mounting evidence has shown how individual ECM components are laid down, cross-linked, and organized together via covalent and noncovalent modifications and how they can greatly influence the fundamental aspects of cell behavior (Lopez et al. 2008; Engler et al. 2009; Egeblad et al. 2010b). This higher level of ECM organization is also dynamic and subject to sustained remodeling as mediated by reciprocal interactions between the ECM and its resident cellular components (Daley et al. 2008). Understandably, ECM dynamics are tightly regulated to ensure normal development, physiology, and robustness of organ systems. This is achieved by redundant mechanisms to modulate the expression and function of ECM modifying enzymes at multiple levels. When such control mechanisms are corrupted, ECM dynamics become deregulated, leading to various human congenital defects and diseases, including cancer.Here, we examine the players involved in ECM remodeling and how they are tightly regulated to achieve a delicate balance between stability and remodeling of the ECM. We focus on the cellular and molecular mechanisms through which ECM dynamics influence cellular behaviors. We illustrate how a wide variety of cell behaviors can be deployed by exploiting the important roles of ECM dynamics to build vertebrate organs and maintain their functions, and how deregulation of ECM dynamics contributes to the initiation and progression of human cancer.  相似文献   

15.
WOX(WUSCHEL-related homeobox)转录因子与植物发育密切相关,包括植物胚胎发育和体胚发生、花和根发育、愈伤组织的形成和维持,以及干细胞维持等过程。越来越多的研究表明WOX在植物发育过程中扮演着极其重要的角色。WOX调控植物发育的机理研究在促进植物发育以及构建植物良好表型等研究提供了突破口。本文主要对WOX调控植物发育的相关研究进行综述,并结合表观遗传学调控,探讨了WOX调控植物发育的过程,以期为WOX转录因子调控植物的作用机制提供启示。  相似文献   

16.
植物miRNA是广泛分布于植物基因组的非编码小分子RNA.是真核生物基因表达的一类负调控因子,主要通过指导靶基因的切割或降低靶基因的翻译从转录后水平上来抑制植物基因表达.从而影响植物形态发生、发育过程和适应环境的能力。本文综述了植物miRNA形成、作用机理、功能等方面研究的最新进展,总结了现有miRNA研究方法的优缺点,提出了miRNA在植物适应养分和元素毒害胁迫过程中的调节作用.拓宽了该领域研究的思路。  相似文献   

17.
PPR蛋白在陆生植物中属于最大的蛋白家族之一,其成员种类和数量均十分庞大。PPR蛋白主要的功能是通过在多种细胞器中进行定位从而参与细胞核和细胞器中特异单链RNA的转录后修饰和编辑,在植物生长发育的多个阶段均发挥着重要的作用。多数PPR蛋白编码基因的突变体呈现异常的发育表型,如胚胎致死、发育迟缓及绿化延迟等。对近年来植物PPR蛋白的分类、定位、RNA修饰的机制及其对植物生长发育影响进行了综述,并展望了植物PPR发挥功能区域和参与的调控网络研究。  相似文献   

18.
多胺在植物生长发育过程中的生理作用   总被引:11,自引:0,他引:11  
多胺在植物生长发育过程中具有广泛的生理作用,如参与植物衰老进程的调控、体细胞胚发生、花芽分化、花和果 实的发育及参与各种生理胁迫反应等。本文重点综述了多胺在植物生长发育过程中生理学功能方面的研究进展,并对有关 问题进行了讨论和展望。  相似文献   

19.
This protocol details the generation of acellular, yet biofunctional, renal extracellular matrix (ECM) scaffolds that are useful as small-scale model substrates for organ-scale tissue development. Sprague Dawley rat kidneys are cannulated by inserting a catheter into the renal artery and perfused with a series of low-concentration detergents (Triton X-100 and sodium dodecyl sulfate (SDS)) over 26 hr to derive intact, whole-kidney scaffolds with intact perfusable vasculature, glomeruli, and renal tubules. Following decellularization, the renal scaffold is placed inside a custom-designed perfusion bioreactor vessel, and the catheterized renal artery is connected to a perfusion circuit consisting of: a peristaltic pump; tubing; and optional probes for pH, dissolved oxygen, and pressure. After sterilizing the scaffold with peracetic acid and ethanol, and balancing the pH (7.4), the kidney scaffold is prepared for seeding via perfusion of culture medium within a large-capacity incubator maintained at 37 °C and 5% CO2. Forty million renal cortical tubular epithelial (RCTE) cells are injected through the renal artery, and rapidly perfused through the scaffold under high flow (25 ml/min) and pressure (~230 mmHg) for 15 min before reducing the flow to a physiological rate (4 ml/min). RCTE cells primarily populate the tubular ECM niche within the renal cortex, proliferate, and form tubular epithelial structures over seven days of perfusion culture. A 44 µM resazurin solution in culture medium is perfused through the kidney for 1 hr during medium exchanges to provide a fluorometric, redox-based metabolic assessment of cell viability and proliferation during tubulogenesis. The kidney perfusion bioreactor permits non-invasive sampling of medium for biochemical assessment, and multiple inlet ports allow alternative retrograde seeding through the renal vein or ureter. These protocols can be used to recellularize kidney scaffolds with a variety of cell types, including vascular endothelial, tubular epithelial, and stromal fibroblasts, for rapid evaluation within this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号