首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spontaneous transient outward currents(STOCs) were recorded from smooth muscle cells of theguinea pig taenia coli using the whole cell patch-clamp technique.STOCs were resolved at potentials positive to 50 mV. Treatingcells with caffeine (1 mM) caused a burst of outward currentsfollowed by inhibition of STOCs. Replacing extracellularCa2+ with equimolarMn2+ caused STOCs to "rundown." Iberiotoxin (200 nM) or charybdotoxin (ChTX; 200 nM)inhibited large-amplitude STOCs, but small-amplitude "mini-STOCs"remained in the presence of these drugs. Mini-STOCs were reduced byapamin (500 nM), an inhibitor of small-conductance Ca2+-activatedK+ channels (SK channels).Application of ATP or 2-methylthioadenosine 5'-triphosphate(2-MeS-ATP) increased the frequency of STOCs. The effects of 2-MeS-ATPpersisted in the presence of charybdotoxin but were blocked bycombination of ChTX (200 nM) and apamin (500 nM). 2-MeS-ATP did notincrease STOCs in the presence of pyridoxal phosphate6-azophenyl-2',4'-disulfonic acid, aP2 receptor blocker. Similarly,pretreatment of cells with U-73122 (1 µM), an inhibitor ofphospholipase C (PLC), abolished the effects of 2-MeS-ATP. XestosponginC, an inositol 1,4,5-trisphosphate(IP3) receptor blocker,attenuated STOCs, but these events were not affected by ryanodine. Thedata suggest that purinergic activation through P2Y receptors results in localizedCa2+ release via PLC- andIP3-dependent mechanisms. Releaseof Ca2+ is coupled to STOCs, whichare composed of currents mediated by large-conductanceCa2+-activatedK+ channels and SK channels. Thelatter are thought to mediate hyperpolarization and relaxationresponses of gastrointestinal muscles to inhibitory purinergic stimulation.

  相似文献   

2.
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) have been suggested as participants in enteric inhibitory neural regulation of gastrointestinal motility. These peptides cause a variety of postjunctional responses including membrane hyperpolarization and inhibition of contraction. Neuropeptides released from enteric motor neurons can elicit responses by direct stimulation of smooth muscle cells as opposed to other transmitters that rely on synapses between motor nerve terminals and interstitial cells of Cajal. Therefore, we studied the responses of murine colonic smooth muscle cells to VIP and PACAP(1–38) with confocal microscopy and patch-clamp technique. Localized Ca2+ transients (Ca2+ puffs) were observed in colonic myocytes, and these events coupled to spontaneous transient outward currents (STOCs). VIP and PACAP increased Ca2+ transients and STOC frequency and amplitude. Application of dibutyryl cAMP had similar effects. The adenylyl cyclase blocker MDL-12,330A alone did not affect spontaneous Ca2+ puffs and STOCs but prevented responses to VIP. Disruption of A-kinase-anchoring protein (AKAP) associations by application of AKAP St-Ht31 inhibitory peptide had effects similar to those of MDL-12,330A. Inhibition of ryanodine receptor channels did not block spontaneous Ca2+ puffs and STOCs but prevented the effects of dibutyryl cAMP. These findings suggest that regulation of Ca2+ transients (which couple to activation of STOCs) may contribute to the inhibitory effects of VIP and PACAP. Regulation of Ca2+ transients by VIP and PACAP occurs via adenylyl cyclase, increased synthesis of cAMP, and PKA-dependent regulation of ryanodine receptor channels. calcium puffs; ryanodine receptor channels; enteric nervous system; gastrointestinal motility  相似文献   

3.
Localized Ca2+ transients inisolated murine colonic myocytes depend on Ca2+ releasefrom inositol 1,4,5-trisphosphate (IP3) receptors.Localized Ca2+ transients couple to spontaneous transientoutward currents (STOCs) and mediate hyperpolarization responses inthese cells. We used confocal microscopy and whole cell patch-clamprecording to investigate how muscarinic stimulation, which causesformation of IP3, can suppress Ca2+ transientsand STOCs that might override the excitatory nature of cholinergicresponses. ACh (10 µM) reduced localized Ca2+ transientsand STOCs, and these effects were associated with a rise in basalcytosolic Ca2+. These effects of ACh were mimicked bygeneralized rises in basal Ca2+ caused by ionomycin(250-500 nM) or elevated external Ca2+ (6 mM).Atropine (10 µM) abolished the effects of ACh. Pretreatment of cellswith nicardipine (1 µM), or Cd2+ (200 µM) had no effecton responses to ACh. An inhibitor of phospholipase C, U-73122, blockedCa2+ transients and STOCs but did not affect the increasein basal Ca2+ after ACh stimulation. Xestospongin C (Xe-C;5 µM), a membrane-permeable antagonist of IP3 receptors,blocked spontaneous Ca2+ transients but did not prevent theincrease of basal Ca2+ in response to ACh. Gd3+(10 µM), a nonselective cation channel inhibitor, prevented the increase in basal Ca2+ after ACh and increased thefrequency and amplitude of Ca2+ transients and waves.Another inhibitor of receptor-mediated Ca2+ influxchannels, SKF-96365, also prevented the rise in basal Ca2+after ACh and increased Ca2+ transients and development ofCa2+ waves. FK-506, an inhibitor ofFKBP12/IP3 receptor interactions, had no effect onthe rise in basal Ca2+ but blocked the inhibitory effectsof increased basal Ca2+ and ACh on Ca2+transients. These results suggest that the rise in basalCa2+ that accompanies muscarinic stimulation of colonicmuscles inhibits localized Ca2+ transients that couldcouple to activation of Ca2+-activated K+channels and reduce the excitatory effects of ACh.

  相似文献   

4.
Localized Ca2+ transients resulting from inositoltrisphosphate (IP3)-dependent Ca2+ releasecouple to spontaneous transient outward currents (STOCs) in murinecolonic myocytes. Confocal microscopy and whole cell patch-clamptechniques were used to investigate coupling between localizedCa2+ transients and STOCs. Colonic myocytes were loadedwith fluo 3. Reduction in external Ca2+([Ca2+]o) reduced localized Ca2+transients but increased STOC amplitude and frequency. Simultaneous recordings of Ca2+ transients and STOCs showed increasedcoupling strength between Ca2+ transients and STOCs when[Ca2+]o was reduced. Gd3+ (10 µM) did not affect Ca2+ transients but increased STOCamplitude and frequency. Similarly, an inhibitor of Ca2+influx,1-2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxy]ethyl-1H-imidazole (SKF-96365), increased STOC amplitude and frequency. A protein kinase C(PKC) inhibitor, GF-109203X, also increased the amplitude and frequencyof STOCs but had no effect on Ca2+ transients. Phorbol12-myristate 13-acetate (1 µM) reduced STOC amplitude and frequencybut did not affect Ca2+ transients. 4-Phorbol (1 µM)had no effect on STOCs or Ca2+ transients. Single channelstudies indicated that large-conductance Ca2+-activatedK+ (BK) channels were inhibited by aCa2+-dependent PKC. In summary 1)Ca2+ release from IP3 receptor-operated storesactivates Ca2+-activated K+ channels;2) Ca2+ influx through nonselective cationchannels facilitates activation of PKC; and 3) PKC reducesthe Ca2+ sensitivity of BK channels, reducing the couplingstrength between localized Ca2+ transients and BK channels.

  相似文献   

5.
Forskolin, which elevates cAMP levels, and sodium nitroprusside(SNP) and nicorandil, which elevate cGMP levels, increased, by two- tothreefold, the frequency of subcellularCa2+ release("Ca2+ sparks") throughryanodine-sensitive Ca2+ release(RyR) channels in the sarcoplasmic reticulum (SR) of myocytes isolatedfrom cerebral and coronary arteries of rats. Forskolin, SNP,nicorandil, dibutyryl-cAMP, and adenosine increased the frequency ofCa2+-sensitiveK+(KCa) currents["spontaneous transient outward currents" (STOCs)] bytwo- to threefold, consistent withCa2+ sparks activating STOCs.These agents also increased the mean amplitude of STOCs by 1.3-fold, aneffect that could be explained by activation ofKCa channels, independent ofeffects on Ca2+ sparks. To testthe hypothesis that cAMP could act to dilate arteries throughactivation of the Ca2+sparkKCa channel pathway,the effects of blockers of KCachannels (iberiotoxin) and of Ca2+sparks (ryanodine) on forskolin-induced dilations of pressurized cerebral arteries were examined. Forskolin-induced dilations were partially inhibited by iberiotoxin and ryanodine (with no additive effects) and were entirely prevented by elevating externalK+. Forskolin lowered averageCa2+ in pressurized arteries whileincreasing ryanodine-sensitive, caffeine-inducedCa2+ transients. These experimentssuggest a new mechanism for cyclic nucleotide-mediated dilationsthrough an increase in Ca2+ sparkfrequency, caused by effects on SRCa2+ load and possibly on the RyRchannel, which leads to increased STOC frequency, membrane potentialhyperpolarization, closure of voltage-dependentCa2+ channels, decrease inarterial wall Ca2+, and,ultimately, vasodilation.

  相似文献   

6.
Spontaneous Ca2+ sparks were observed in fluo 4-loaded myocytes from guinea pig vas deferens with line-scan confocal imaging. They were abolished by ryanodine (100 µM), but the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) blockers 2-aminoethoxydiphenyl borate (2-APB; 100 µM) and intracellular heparin (5 mg/ml) increased spark frequency, rise time, duration, and spread. Very prolonged Ca2+ release events were also observed in 20% of cells treated with IP3R blockers but not under control conditions. 2-APB and heparin abolished norepinephrine (10 µM; 0 Ca2+)-evoked Ca2+ transients but increased caffeine (10 mM; 0 Ca2+) transients in fura 2-loaded myocytes. Transients evoked by ionomycin (25 µM; 0 Ca2+) were also enhanced by 2-APB. Ca2+ sparks and transients evoked by norepinephrine and caffeine were abolished by thimerosal (100 µM), which sensitizes the IP3R to IP3. In cells voltage clamped at –40 mV, spontaneous transient outward currents (STOCs) were increased in frequency, amplitude, and duration in the presence of 2-APB. These data are consistent with a model in which the Ca2+ store content in smooth muscle is limited by tonic release of Ca2+ via an IP3-dependent pathway. Blockade of IP3Rs elevates sarcoplasmic reticulum store content, promoting Ca2+ sparks and STOC activity. calcium ion release; calcium ion transients; smooth muscle  相似文献   

7.
In rat portal veinmyocytes, Ca2+ signals can begenerated by inositol 1,4,5-trisphosphate(InsP3)- and ryanodine-sensitive Ca2+ release channels, which arelocated on the same intracellular store. Using a laser scanningconfocal microscope associated with the patch-clamp technique, weshowed that propagated Ca2+ wavesevoked by norepinephrine (in the continuous presence of oxodipine) werecompletely blocked after internal application of ananti-InsP3 receptor antibody.These propagated Ca2+ waves werealso reduced by ~50% and transformed in homogenous Ca2+ responses after applicationof an anti-ryanodine receptor antibody or ryanodine. All-or-noneCa2+ waves obtained withincreasing concentrations of norepinephrine were transformed in adose-response relationship with a Hill coefficient close to unity afterryanodine receptor inhibition. Similar effects of the ryanodinereceptor inhibition were observed on the norepinephrine- andACh-induced Ca2+ responses innon-voltage-clamped portal vein and duodenal myocytes and on thenorepinephrine-induced contraction. Taken together, these results showthat ryanodine-sensitive Ca2+release channels are responsible for the fast propagation of Ca2+ responses evoked by variousneurotransmitters producing InsP3 in vascular and visceral myocytes.

  相似文献   

8.
The role of mitochondria inCa2+ homeostasis is controversial.We employed the Ca2+-sensitive dyerhod 2 with novel, high temporal and spatial resolution imaging toevaluate changes in the matrix freeCa2+ concentration of individualmitochondria([Ca2+]m)in agonist-stimulated, primary cultured aortic myocytes. Stimulation with 10 µM serotonin (5-HT) evoked modest cytosolicCa2+ transients[cytosolic freeCa2+ concentration([Ca2+]cyt)<500 nM; measured with fura 2] and triggered contractions inshort-term cultured myocytes. However, 5-HT triggered a large mitochondrial rhod 2 signal (indicating pronounced elevation of [Ca2+]m)in only 4% of cells. This revealed heterogeneity in the responses ofindividual mitochondria, all of which stained with MitoTracker GreenFM. In contrast, stimulation with 100 µM ATP evoked large cytosolicCa2+ transients (>1,000 nM) andinduced pronounced, reversible elevation of[Ca2+]m(measured as rhod 2 fluorescence) in 60% of cells. This mitochondrial Ca2+ uptake usually lagged behindthe cytosolic Ca2+ transient peakby 3-5 s, and[Ca2+]mdeclined more slowly than did bulk[Ca2+]cyt.The uptake delay may prevent mitochondria from interfering with rapidsignaling events while enhancing the mitochondrial response to large,long-duration elevations of[Ca2+]cyt.The responses of arterial myocytes to modest physiological stimulationdo not, however, depend on such marked changes in [Ca2+]m.  相似文献   

9.
To examine the natureof inositol 1,4,5-trisphosphate (IP3)-sensitive andryanodine (Ryn)-sensitive Ca2+ stores in isolated caninepulmonary arterial smooth cells (PASMC), agonist-induced changes inglobal intracellular Ca2+ concentration([Ca2+]i) were measured using fura2-AM fluorescence. Properties of elementary local Ca2+release events were characterized using fluo 3-AM or fluo 4-AM, incombination with confocal laser scanning microscopy. In PASMC, depletion of sarcoplasmic reticulum Ca2+ stores with Ryn(300 µM) and caffeine (Caf; 10 mM) eliminated subsequent Caf-inducedintracellular Ca2+ transients but had little or no effecton the initial IP3-mediated intracellular Ca2+transient induced by ANG II (1 µM). Cyclopiazonic acid (CPA; 10 µM) abolished IP3-induced intracellularCa2+ transients but failed to attenuate the initialCaf-induced intracellular Ca2+ transient. These resultssuggest that in canine PASMC, IP3-, and Ryn-sensitiveCa2+ stores are organized into spatially distinctcompartments while similar experiments in canine renal arterial smoothmuscle cells (RASMC) reveal that these Ca2+ stores arespatially conjoined. In PASMC, spontaneous local intracellular Ca2+ transients sensitive to modulation by Caf and Ryn weredetected, exhibiting spatial-temporal characteristics similar to thosepreviously described for "Ca2+ sparks" in cardiac andother types of smooth muscle cells. After depletion of Ryn-sensitiveCa2+ stores, ANG II (8 nM) induced slow, sustained[Ca2+]i increases originating at sites nearthe cell surface, which were abolished by depleting IP3stores. Discrete quantal-like events expected due to the coordinatedopening of IP3 receptor clusters ("Ca2+puffs") were not observed. These data provide new information regarding the functional properties and organization of intracellular Ca2+ stores and elementary Ca2+ release eventsin isolated PASMC.

  相似文献   

10.
Palytoxin is a coral toxin that seriously impairs heart function, but its effects on excitation-contraction (E-C) coupling have remained elusive. Therefore, we studied the effects of palytoxin on mechanisms involved in atrial E-C coupling. In field-stimulated cat atrial myocytes, palytoxin caused elevation of diastolic intracellular Ca2+ concentration ([Ca2+]i), a decrease in [Ca2+]i transient amplitude, Ca2+ alternans followed by [Ca2+]i waves, and failures of Ca2+ release. The decrease in [Ca2+]i transient amplitude occurred despite high sarcoplasmic reticulum (SR) Ca2+ load. In voltage-clamped myocytes, palytoxin induced a current with a linear current-voltage relationship (reversal potential 5 mV) that was blocked by ouabain. Whole cell Ca2+ current and ryanodine receptor Ca2+ release channel function remained unaffected by the toxin. However, palytoxin significantly reduced Ca2+ pumping of isolated SR vesicles. In current-clamped myocytes stimulated at 1 Hz, palytoxin induced a depolarization of the resting membrane potential that was accompanied by delayed afterdepolarizations. No major changes of action potential configuration were observed. The results demonstrate that palytoxin interferes with the function of the sarcolemmal Na+-K+ pump and the SR Ca2+ pump. The suggested mode of palytoxin toxicity in the atrium involves the conversion of Na+-K+ pumps into nonselective cation channels as a primary event followed by depolarization, Na+ accumulation, and Ca2+ overload, which, in turn, causes arrhythmogenic [Ca2+]i waves and delayed afterdepolarizations. atrial myocytes; intracellular calcium  相似文献   

11.
Transductionmechanisms between target cells within the intestinal wall andperipheral terminals of extrinsic primary afferent neurons are poorlyunderstood. The purpose of this study was to characterize theinteractions between smooth muscle cells from the rat distal colon andlumbar dorsal root ganglion (DRG) neurons in coculture. DRG neuronsvisually appeared to make contact with several myocytes. We show thatbrief mechanical stimulation of these myocytes resulted inintracellular Ca2+ concentration([Ca2+]i)transients that propagated into 57% of the contacting neurites. Directmechanical stimulation of DRG neurites cultured without smooth musclehad no effect. We also show that colonic smooth muscle cells expressmultiple connexin mRNAs and that these connexins formed functional gapjunctions, as evidenced by the intercellular transfer of Luciferyellow. Furthermore, thapsigargin pretreatment and neuronal heparininjection abolished the increase in neurite [Ca2+]i,indicating that the neuronal Ca2+signal was triggered by inositol 1,4,5-trisphosphate-mediated Ca2+ release from intracellularstores. Our results provide evidence for intercellular chemicalcommunication between DRG neurites and intestinal smooth muscle cellsthat mediates the exchange of second messenger molecules betweendifferent cell types.  相似文献   

12.
Spontaneous transient currents, due to activation of Ca2+-dependent K+ and Cl channels, occur in corpus cavernosum smooth muscle cells (CCSMC) of the penis. The Ca2+ events responsible for triggering Ca2+-dependent Cl channels have never been identified in vascular muscle. We used high-speed fluorescence imaging combined with patch-clamp electrophysiology to provide the first characterization of Ca2+ events underlying these currents. Freshly isolated rat CCSMC loaded with fluo-4 exhibited localized, spontaneous elevations of intracellular Ca2+ (Ca2+ sparks) in 57% of cells. There was an average of 6.4 ± 0.5 release sites/cell with a frequency of 0.9 ± 1 Hz/cell and peak amplitude F/Fo of 67 ± 10%. We addressed the controversy of whether these events are mediated by ryanodine or inositol 1,4,5 trisphosphate (IP3) receptors. Caffeine caused either a global Ca2+ rise at high concentrations or an increase in spark frequency at lower concentrations, whereas ryanodine dramatically reduced the amplitude and frequency of sparks. 2-Aminoethoxydiphenyl borate, an inhibitor of IP3 receptors, had no effect on spark frequency. Combined imaging and electrophysiological recording revealed strong coupling between Ca2+ sparks and biphasic transient currents, a relationship never before shown in vascular muscle. Moreover, spark frequency increased on depolarization, an effect abolished with the blockade of Ca2+ channels, consistent with Ca2+ influx regulating Ca2+ release from stores. We establish for the first time that Ca2+ sparks occur in CCSMC and arise from Ca2+ release through ryanodine receptors. Moreover, the voltage dependence of spark frequency demonstrated here provides novel functional evidence for voltage-dependent Ca2+ influx in CCSMC. calcium signaling; potassium and chloride channels; ryanodine receptors  相似文献   

13.
The presentstudy used real-time confocal microscopy to examine the effects of the2-adrenoceptor agonistsalbutamol on regulation of intracellularCa2+ concentration([Ca2+]i)in myotubes derived from neonatal mouse limb muscles.Immunocytochemical staining for ryanodine receptors and skeletal musclemyosin confirmed the presence of sarcomeres. The myotubes displayedboth spontaneous and ACh-induced rapid (<2-ms rise time)[Ca2+]itransients. The[Ca2+]itransients were frequency modulated by both low and high concentrations of salbutamol. Exposure to -bungarotoxin and tetrodotoxin inhibited ACh-induced[Ca2+]itransients and the response to low concentrations of salbutamol but notthe response to higher concentrations. Preexposure to caffeineinhibited the subsequent[Ca2+]iresponse to lower concentrations of salbutamol and significantly blunted the response to higher concentrations. Preexposure to salbutamol diminished the[Ca2+]iresponse to caffeine. Inhibition of dihydropyridine-sensitive Ca2+ channels with nifedipine orPN-200-110 did not prevent[Ca2+]ielevations induced by higher concentrations of salbutamol. The effectsof salbutamol were mimicked by the membrane-permeant analog dibutyryladenosine 3',5'-cyclic monophosphate. Thesedata indicate that salbutamol effects in skeletal muscle predominantly involve enhanced sarcoplasmic reticulumCa2+ release.  相似文献   

14.
This study examines whether fluid pressure (FP) modulates the L-type Ca2+ channel in cardiomyocytes and investigates the underlying cellular mechanism(s) involved. A flow of pressurized (16 dyn/cm2) fluid, identical to that bathing the myocytes, was applied onto single rat ventricular myocytes using a microperfusion method. The Ca2+ current (ICa) and cytosolic Ca2+ signals were measured using a whole cell patch-clamp and confocal imaging, respectively. It was found that the FP reversibly suppressed ICa (by 25%) without altering the current-voltage relationships, and it accelerated the inactivation of ICa. The level of ICa suppression by FP depended on the level and duration of pressure. The Ba2+ current through the Ca2+ channel was only slightly decreased by the FP (5%), suggesting an indirect inhibition of the Ca2+ channel during FP stimulation. The cytosolic Ca2+ transients and the basal Ca2+ in field-stimulated ventricular myocytes were significantly increased by the FP. The effects of the FP on the ICa and on the Ca2+ transient were resistant to the stretch-activated channel inhibitors, GsMTx-4 and streptomycin. Dialysis of myocytes with high concentrations of BAPTA, the Ca2+ buffer, eliminated the FP-induced acceleration of ICa inactivation and reduced the inhibitory effect of the FP on ICa by 80%. Ryanodine and thapsigargin, abolishing sarcoplasmic reticulum Ca2+ release, eliminated the accelerating effect of FP on the ICa inactivation, and they reduced the inhibitory effect of FP on the ICa. These results suggest that the fluid pressure indirectly suppresses the Ca2+ channel by enhancing the Ca2+-induced intracellular Ca2+ release in rat ventricular myocytes. L-type Ca2+ current; fluid pressure; ventricular myocytes; cytosolic Ca2+ transient  相似文献   

15.
We have previously demonstrated that intermittent high-altitude (IHA) hypoxia significantly attenuates ischemia-reperfusion (I/R) injury-induced excessive increase in resting intracellular Ca2+ concentrations ([Ca2+]i). Because the sarcoplasmic reticulum (SR) and Na+/Ca2+ exchanger (NCX) play crucial roles in regulating [Ca2+]i and both are dysfunctional during I/R, we tested the hypothesis that IHA hypoxia may prevent I/R-induced Ca2+ overload by maintaining Ca2+ homeostasis via SR and NCX mechanisms. We thus determined the dynamics of Ca2+ transients and cell shortening during preischemia and I/R injury in ventricular cardiomyocytes from normoxic and IHA hypoxic rats. IHA hypoxia did not affect the preischemic dynamics of Ca2+ transients and cell shortening, but it significantly suppressed the I/R-induced increase in resting [Ca2+]i levels and attenuated the depression of the Ca2+ transients and cell shortening during reperfusion. Moreover, IHA hypoxia significantly attenuated I/R-induced depression of the protein contents of SR Ca2+ release channels and/or ryanodine receptors (RyRs) and SR Ca2+ pump ATPase (SERCA2) and SR Ca2+ release and uptake. In addition, a delayed decay rate time constant of Ca2+ transients and cell shortening of Ca2+ transients observed during ischemia was accompanied by markedly inhibited NCX currents, which were prevented by IHA hypoxia. These findings indicate that IHA hypoxia may preserve Ca2+ homeostasis and contraction by preserving RyRs and SERCA2 proteins as well as NCX activity during I/R. intracellular Ca2+ concentration; Ca2+ transients; Ca2+ transporters; myofilament Ca2+ sensitivity  相似文献   

16.
In muscle, ATP is required for the powerstroke of the myosin head, the detachment of actin and myosin filaments, and the reuptake of Ca2+ into the sarcoplasmic reticulum. During contraction-relaxation, large amounts of ATP are consumed at the sites of action of the myosin-ATPase and sarcoplasmic reticulum Ca2+-ATPase. The present study addresses the consequences of a reduction in mitochondrial ATP production capacity on sarcoplasmic Ca2+ handling. To this end, myotubes were cultured from patient quadriceps with a biochemically defined decrease in the maximal rate of mitochondrial ATP production and were loaded with indo 1 for imaging of sarcoplasmic Ca2+ changes in real time by confocal microscopy. Myotubes were field-stimulated with 10-ms pulses of 16 V to evoke transient rises in sarcoplasmic Ca2+ concentration ([Ca2+]S). Three single pulses, two pulse trains (1 Hz), and one single pulse were applied in succession to mimic changing workloads. Control myotubes displayed [Ca2+]S transients with an amplitude that was independent of the strength of the stimulus. Intriguingly, the rate of sarcoplasmic Ca2+ removal (CRR) was significantly upregulated during the second and subsequent transients. In myotubes with a reduced mitochondrial ATP production capacity, the amplitude of the [Ca2+]S transients was markedly increased at higher stimulus intensities. Moreover, upregulation of the CRR was significantly decreased compared with control. Taken together, these results are in good agreement with a tight coupling between mitochondrial ATP production and sarcoplasmic Ca2+ handling. Moreover, they support the existence of a relatively long-lasting mitochondrial memory for sarcoplasmic [Ca2+] rises. This memory, which manifested itself as an increase in CRR upon recurrent stimulation, was impaired in patient myotubes with a reduced mitochondrial ATP production capacity. sarcoplasmic Ca2+ removal; video-rate imaging; indo 1; electrical stimulation; mitochondrial memory  相似文献   

17.
The effects of inhibitors of CaMKII on intracellular Ca2+ signaling were examined in single calf pulmonary artery endothelial (CPAE) cells using indo-1 microfluorometry to measure cytoplasmic Ca2+ concentration ([Ca2+]i). The three CaMKII inhibitors, KN-93, KN-62, and autocamtide-2-related inhibitory peptide (AIP), all reduced the plateau phase of the [Ca2+]i transient evoked by stimulation with extracellular ATP. Exposure to KN-93 or AIP alone in the presence of 2 mM extracellular Ca2+ resulted in a dose-dependent increase of [Ca2+]i consisting of a rapid and transient Ca2+ spike followed by a small sustained plateau phase of elevated [Ca2+]i. Exposure to KN-93 in the absence of extracellular Ca2+ caused a transient rise of [Ca2+]i, suggesting that exposure to CaMKII inhibitors directly triggered release of Ca2+ from intracellular endoplasmic reticulum (ER) Ca2+ stores. Repetitive stimulation with KN-93 and ATP, respectively, revealed that both components released Ca2+ largely from the same store. Pretreatment of CPAE cells with the membrane-permeable inositol 1,4,5-trisphosphate (IP3) receptor blocker 2-aminoethoxydiphenyl borate caused a significant inhibition of the KN-93-induced Ca2+ response, suggesting that exposure to KN-93 affects Ca2+ release from an IP3-sensitive store. Depletion of Ca2+ stores by exposure to ATP or to the ER Ca2+ pump inhibitor thapsigargin triggered robust capacitative Ca2+ entry (CCE) signals in CPAE cells that could be blocked effectively with KN-93. The data suggest that in CPAE cells, CaMKII modulates Ca2+ handling at different levels. The use of CaMKII inhibitors revealed that in CPAE cells, the most profound effects of CaMKII are inhibition of release of Ca2+ from intracellular stores and activation of CCE. Ca2+/calmodulin-dependent kinase II; calcium regulation; capacitative calcium entry  相似文献   

18.
Regulation of intracellular calcium in human esophageal smooth muscles   总被引:7,自引:0,他引:7  
We have investigated sources ofCa2+ contributing to excitation ofhuman esophageal smooth muscle, using fura 2 to study cytosolic freeCa2+ concentration([Ca2+]i)in dispersed cells and contraction of intact muscles. Acetylcholine (ACh) caused an initial peak rise of[Ca2+]ifollowed by a plateau accompanied by reversible contraction. Removal ofextracellular Ca2+ or addition ofdihydropyridine Ca2+ channelblockers reduced the plateau phase but did not prevent contraction.Caffeine also caused elevation of[Ca2+]iand blocked responses to ACh. Undershoots of[Ca2+]iwere apparent after ACh or caffeine. Blockade of the sarcoplasmic reticular Ca2+-ATPase bycyclopiazonic acid (CPA) reduced the ACh-evoked increase of[Ca2+]iand abolished the undershoot, indicating involvement ofCa2+ stores. When contraction wasstudied in intact muscles, removal ofCa2+ or addition of nifedipinereduced, but did not abolish, carbachol (CCh)-induced contraction.Elevation of extracellular K+caused contraction that was inhibited by nifedipine, although CCh stillelicited contraction. CPA caused contraction and suppressed theCCh-induced contraction, whereas ryanodine reduced CCh-induced contraction. Our studies provide evidence that muscarinic excitation ofhuman esophagus involves both release ofCa2+ from intracellular stores andinflux of Ca2+.

  相似文献   

19.
Despite their relevance for neuronal Ca2+-induced Ca2+ release (CICR), activation by Ca2+ of ryanodine receptor (RyR) channels of brain endoplasmic reticulum at the [ATP], [Mg2+], and redox conditions present in neurons has not been reported. Here, we studied the effects of varying cis-(cytoplasmic) free ATP concentration ([ATP]), [Mg2+], and RyR redox state on the Ca2+ dependence of endoplasmic reticulum RyR channels from rat brain cortex. At pCa 4.9 and 0.5 mM adenylylimidodiphosphate (AMP-PNP), increasing free [Mg2+] up to 1 mM inhibited vesicular [3H]ryanodine binding; incubation with thimerosal or dithiothreitol decreased or enhanced Mg2+ inhibition, respectively. Single RyR channels incorporated into lipid bilayers displayed three different Ca2+ dependencies, defined by low, moderate, or high maximal fractional open time (Po), that depend on RyR redox state, as we have previously reported. In all cases, cis-ATP addition (3 mM) decreased threshold [Ca2+] for activation, increased maximal Po, and shifted channel inhibition to higher [Ca2+]. Conversely, at pCa 4.5 and 3 mM ATP, increasing cis-[Mg2+] up to 1 mM inhibited low activity channels more than moderate activity channels but barely modified high activity channels. Addition of 0.5 mM free [ATP] plus 0.8 mM free [Mg2+] induced a right shift in Ca2+ dependence for all channels so that [Ca2+] <30 µM activated only high activity channels. These results strongly suggest that channel redox state determines RyR activation by Ca2+ at physiological [ATP] and [Mg2+]. If RyR behave similarly in living neurons, cellular redox state should affect RyR-mediated CICR. Ca2+-induced Ca2+ release; Ca2+ release channels; endoplasmic reticulum; thimerosal; 2,4-dithiothreitol; ryanodine receptor  相似文献   

20.
The relative contributions of Ca2+-induced Ca2+ release (CICR) versus Ca2+ influx through voltage-dependent Ca2+ channels (VDCCs) to excitation-contraction coupling has not been defined in most smooth muscle cells (SMCs). The present study was undertaken to address this issue in mouse urinary bladder (UB) smooth muscle cells (UBSMCs). Confocal Ca2+ images were obtained under voltage- or current-clamp conditions. When UBSMCs were activated by a 30-ms depolarization to 0 mV, intracellular Ca2+ concentration ([Ca2+]i) increased in several small, discrete areas just beneath the cell membrane. These Ca2+ "hot spots" then spread slowly through the myoplasm as Ca2+ waves, which continued even after repolarization. Shorter depolarizations (5 ms) elicited only a few Ca2+ sparks, which declined quickly. The number of Ca2+ sparks, or hot spots, was closely related to the depolarization duration in the range of 5–20 ms. There was an apparent threshold depolarization duration of 10 ms within which to induce enough Ca2+ transients to spread globally and then induce a contraction. Application of 100 µM ryanodine to the pipette solution did not change the resting [Ca2+]i or the VDCC current, but it did abolish Ca2+ hot spots elicited by depolarization. Application of 3 µM xestospongin C reduced ACh-induced Ca2+ release but did not affect depolarization-induced Ca2+ events. The addition of 100 µM ryanodine to tissue segments markedly reduced the amplitude of contractions triggered by direct electrical stimulation. In conclusion, global [Ca2+]i rise triggered by a single action potential is not due mainly to Ca2+ influx through VDCCs but is attributable to the subsequent two-step CICR. Ca2+-induced Ca2+ release; Ca2+-activated K+ current; voltage-dependent Ca2+ channel  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号