首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nerve injury‐induced protein 1 (Ninjurin1, Ninj1) is a membrane protein that mediates cell adhesion. The role of Ninj1 during inflammatory response has been widely investigated in macrophages and endothelial cells. Ninj1 is expressed in various tissues, and the liver also expresses high levels of Ninj1. Although the hepatic upregulation of Ninj1 has been reported in human hepatocellular carcinoma and septic mice, little is known of its function during the pathogenesis of liver diseases. In the present study, the role of Ninj1 in liver inflammation was explored using lipopolysaccharide (LPS)/D‐galactosamine (D‐gal)‐induced acute liver failure (ALF) model. When treated with LPS/D‐gal, conventional Ninj1 knock‐out (KO) mice exhibited a mild inflammatory phenotype as compared with wild‐type (WT) mice. Unexpectedly, myeloid‐specific Ninj1 KO mice showed no attenuation of LPS/D‐gal‐induced liver injury. Whereas, Ninj1 KO primary hepatocytes were relatively insensitive to TNF‐α‐induced caspase activation as compared with WT primary hepatocytes. Also, Ninj1 knock‐down in L929 and AML12 cells and Ninj1 KO in HepG2 cells ameliorated TNF‐α‐mediated apoptosis. Consistent with in vitro results, hepatocyte‐specific ablation of Ninj1 in mice alleviated LPS/D‐gal‐induced ALF. Summarizing, our in vivo and in vitro studies show that lack of Ninj1 in hepatocytes diminishes LPS/D‐gal‐induced ALF by alleviating TNF‐α/TNFR1‐induced cell death.  相似文献   

2.
Aging is an important risk factor for cardiovascular diseases, and aging‐related cardiac dysfunction serves as a major determinant of morbidity and mortality in elderly populations. Our previous study has identified fibronectin type III domain‐containing 5 (FNDC5) and its cleaved form, irisin, as the cardioprotectant against doxorubicin‐induced cardiomyopathy. Herein, aging or matched young mice were overexpressed with FNDC5 by adeno‐associated virus serotype 9 (AAV9) vectors, or subcutaneously infused with irisin to uncover the role of FNDC5 in aging‐related cardiac dysfunction. To verify the involvement of nucleotide‐binding oligomerization domain‐like receptor with a pyrin domain 3 (NLRP3) and AMP‐activated protein kinase α (AMPKα), Nlrp3 or Ampkα2 global knockout mice were used. Besides, young mice were injected with AAV9‐FNDC5 and maintained for 12 months to determine the preventive effect of FNDC5. Moreover, neonatal rat cardiomyocytes were stimulated with tumor necrosis factor‐α (TNF‐α) to examine the role of FNDC5 in vitro. We found that FNDC5 was downregulated in aging hearts. Cardiac‐specific overexpression of FNDC5 or irisin infusion significantly suppressed NLRP3 inflammasome and cardiac inflammation, thereby attenuating aging‐related cardiac remodeling and dysfunction. In addition, irisin treatment also inhibited cellular senescence in TNF‐α‐stimulated cardiomyocytes in vitro. Mechanistically, FNDC5 activated AMPKα through blocking the lysosomal degradation of glucagon‐like peptide‐1 receptor. More importantly, FNDC5 gene transfer in early life could delay the onset of cardiac dysfunction during aging process. We prove that FNDC5 improves aging‐related cardiac dysfunction by activating AMPKα, and it might be a promising therapeutic target to support cardiovascular health in elderly populations.  相似文献   

3.
Based on the recent reports, cardiovascular events encompass a large portion of the mortality caused by the COVID‐19 pandemic, which drawn cardiologists into the management of the admitted ill patients. Given that common laboratory values may provide key insights into the illness caused by the life‐threatening SARS‐CoV‐2 virus, it would be more helpful for screening, clinical management and on‐time therapeutic strategies. Commensurate with these issues, this review article aimed to discuss the dynamic changes of the common laboratory parameters during COVID‐19 and their association with cardiovascular diseases. Besides, the values that changed in the early stage of the disease were considered and monitored during the recovery process. The time required for returning biomarkers to basal levels was also discussed. Finally, of particular interest, we tended to abridge the latest updates regarding the cardiovascular biomarkers as prognostic and diagnostic criteria to determine the severity of COVID‐19.  相似文献   

4.
ObjectivesMyocardial dysfunction is a significant manifestation in sepsis, which results in high mortality. Even Kcnh2 has been hinted to associate with the pathological process, its involved signalling is still elusive.Materials and methodsThe caecal ligation puncture (CLP) surgery or lipopolysaccharide (LPS) injection was performed to induce septic cardiac dysfunction. Western blotting was used to determine KCNH2 expression. Cardiac function was examined by echocardiography 6 hours after CLP and LPS injection in Kcnh2 knockout (Kcnh2+/‐) and NS1643 injection rats (n ≥ 6/group). Survival was monitored following CLP‐induced sepsis (n ≥ 8/group).ResultsSepsis could downregulate KCNH2 level in the rat heart, as well as in LPS‐stimulated cardiomyocytes but not cardiac fibroblast. Defect of Kcnh2 (Kcnh2+/‐) significantly aggravated septic cardiac dysfunction, exacerbated tissue damage and increased apoptosis under LPS challenge. Fractional shortening and ejection fraction values were significantly decreased in Kcnh2+/‐ group than Kcnh2+/+ group. Survival outcome in Kcnh2+/‐ septic rats was markedly deteriorated, compared with Kcnh2+/+ rats. Activated Kcnh2 with NS1643, however, resulted in opposite effects. Lack of Kcnh2 caused inhibition of FAK/AKT signalling, reflecting in an upregulation for FOXO3A and its downstream targets, which eventually induced cardiomyocyte apoptosis and heart tissue damage. Either activation of AKT by activator or knockdown of FOXO3A with si‐RNA remarkably attenuated the pathological manifestations that Kcnh2 defect mediated.ConclusionKcnh2 plays a protection role in sepsis‐induced cardiac dysfunction (SCID) via regulating FAK/AKT‐FOXO3A to block LPS‐induced myocardium apoptosis, indicating a potential effect of the potassium channels in pathophysiology of SCID.  相似文献   

5.
Oxidative stress plays a central role in age‐related macular degeneration (AMD). Iron, a potent generator of hydroxyl radicals through the Fenton reaction, has been implicated in AMD. One easily oxidized molecule is docosahexaenoic acid (DHA), the most abundant polyunsaturated fatty acid in photoreceptor membranes. Oxidation of DHA produces toxic oxidation products including carboxyethylpyrrole (CEP) adducts, which are increased in the retinas of AMD patients. In this study, we hypothesized that deuterium substitution on the bis‐allylic sites of DHA in photoreceptor membranes could prevent iron‐induced retinal degeneration by inhibiting oxidative stress and lipid peroxidation. Mice were fed with either DHA deuterated at the oxidation‐prone positions (D‐DHA) or control natural DHA and then given an intravitreal injection of iron or control saline. Orally administered D‐DHA caused a dose‐dependent increase in D‐DHA levels in the neural retina and retinal pigment epithelium (RPE) as measured by mass spectrometry. At 1 week after iron injection, D‐DHA provided nearly complete protection against iron‐induced retinal autofluorescence and retinal degeneration, as determined by in vivo imaging, electroretinography, and histology. Iron injection resulted in carboxyethylpyrrole conjugate immunoreactivity in photoreceptors and RPE in mice fed with natural DHA but not D‐DHA. Quantitative PCR results were consistent with iron‐induced oxidative stress, inflammation, and retinal cell death in mice fed with natural DHA but not D‐DHA. Taken together, our findings suggest that DHA oxidation is central to the pathogenesis of iron‐induced retinal degeneration. They also provide preclinical evidence that dosing with D‐DHA could be a viable therapeutic strategy for retinal diseases involving oxidative stress.  相似文献   

6.
Integrating optical sensors and 3D‐printed optics into single‐use (SU) cultivation vessels for customized, tailor‐made equipment could be a next big step in the bioreactor and screening platform development enabling online bioprocess monitoring. Many different parameters such as pH, oxygen, carbon dioxide and optical density (OD) can be monitored more easily using online measuring instruments compared to offline sampling. Space‐saving integrated sensors in combination with adapted optics such as prisms open up vastly new possibilities to precisely guide light through SU vessels. This study examines how optical prisms can be 3D‐printed with a 3D‐inkjet printer, modified and then evaluated in a custom made optical bench. The prisms are coated or bonded with thin cover glasses. For the examination of reflectance performance and conformity prisms are compared on the basis of measured characteristics of a conventional glass prism. In addition, the most efficient and reproducible prism geometry and modification technique is applied to a customized 3D‐printed cultivation vessel. The vessel is evaluated on a commercial sensor‐platform, a shake flask reader (SFR) vario, to investigate its sensing‐characteristics while monitoring scattered light with the turbidity standard formazine and a cell suspension of Saccharomyces cerevisiae as model organism. It is demonstrated that 3D‐printed prisms can be used in combination with commercial scattered light sensor‐platforms to determine OD of a microbial culture and that a 3D‐printed unibody design with integrated optics in a cultivation vessel is feasible. In the range of OD600 0–1.16 rel.AU a linear correlation between sensor amplitude and offline determined OD can be achieved. Thus, enabling for the first time a measurement of low cell densities with the SFR vario platform. Moreover, sensitivity is also at least three times higher compared to the commonly used method.  相似文献   

7.
8.
ObjectivesMyocardial infarction (MI) is the most predominant type of cardiovascular diseases with high mortality and morbidity. Stem cell therapy, especially cardiac progenitor cell therapy, has been proposed as a promising approach for cardiac regeneration and MI treatment. Previously, we have successfully generated cardiac progenitor‐like cells, induced cardiosphere (iCS), via somatic reprogramming. However, the genome integration characteristic of virus‐based reprogramming approach hampered their therapeutic applications due to the risk of tumour formation. In the current study, we aim to establish a safer iCS generation strategy with transgene‐free approaches.Materials and MethodsFour transgene‐free approaches for somatic reprogramming, including episome, minicircle, self‐replicative RNA, and sendai virus, were compared, from the perspective of cardiac progenitor marker expression, iCS formation, and cardiac differentiation. The therapeutic effects were assessed in the mouse model of MI, from the perspective of survival rate, cardiac function, and structural alterations.ResultsThe self‐replicative RNA approach produced more iCS, which had cardiomyocyte differentiation ability and therapeutic effects on the mouse model of MI with comparable levels with endogenous cardiospheres and iCS generated with retrovirus. In addition, the CXCR4 (C‐X‐C chemokine receptor 4) positive subpopulation of iCS derived cells (iCSDC) delivered by intravenous injection was found to have similar therapeutic effects with intramyocardial injection on the mouse model of MI, representing a safer delivery approach.ConclusionThus, the optimized strategy for iCS generation is safer and has more therapeutic potentials.  相似文献   

9.
Aging‐related sarcopenia is currently the most common sarcopenia. The main manifestations are skeletal muscle atrophy, replacement of muscle fibers with fat and fibrous tissue. Excessive fibrosis can impair muscle regeneration and function. Lysyl oxidase‐like 2 (LOXL2) has previously been reported to be involved in the development of various tissue fibrosis. Here, we investigated the effects of LOXL2 inhibitor on D‐galactose (D‐gal)‐induced skeletal muscle fibroblast cells and mice. Our molecular and physiological studies show that treatment with LOXL2 inhibitor can alleviate senescence, fibrosis, and increased production of reactive oxygen species in fibroblasts caused by D‐gal. These effects are related to the inhibition of the TGF‐β1/p38 MAPK pathway. Furthermore, in vivo, mice treatment with LOXL2 inhibitor reduced D‐gal‐induced skeletal muscle fibrosis, partially enhanced skeletal muscle mass and strength and reduced redox balance disorder. Taken together, these data indicate the possibility of using LOXL2 inhibitors to prevent aging‐related sarcopenia, especially with significant fibrosis.  相似文献   

10.
Recognition of invading pathogens by the innate immune system is essential to initiate antimicrobial responses and trigger adaptive immunity. This is largely mediated by an array of pattern‐recognition receptor families that are essential for recognizing conserved molecular motifs characteristic of pathogenic microbes. One such family is the Toll‐like receptors (TLRs). Activation of TLRs induces production of pro‐inflammatory cytokines and type I interferons: the former triggers the synthesis of inflammatory mediators which cause fever, pain and other inflammation, and the latter mediates antiviral responses. Over the past decade, significant progress has been made in structural elucidation of TLRs in higher eukaryotes. The TLR structures with and without agonist and antagonist have been revealed by X‐ray crystallography and cryo‐electron microscopy studies, demonstrating the activated dimer formation induced by the agonistic ligand and the inhibition mechanism of the antagonistic ligand. Intracellular assembled structures and the TLR‐chaperone complex are also reported. As the structural understanding of TLRs becomes better integrated with biochemical and immunological studies, a more comprehensive picture of their architectural and functional properties will emerge. This review summarizes recent advances in structural biological and mechanistic studies on TLRs.  相似文献   

11.
Persistent cardiac Ca2+/calmodulin‐dependent Kinase II (CaMKII) activation was considered to promote heart failure (HF) development, some studies believed that CaMKII was a target for therapy of HF. However, CaMKII was an important mediator for the ischaemia‐induced coronary angiogenesis, and new evidence confirmed that angiogenesis inhibited cardiac remodelling and improved heart function, and some conditions which impaired angiogenesis aggravated ventricular remodelling. This study aimed to investigate the roles and the underlying mechanisms of CaMKII inhibitor in cardiac remodelling. First, we induced cardiac remodelling rat model by ISO, pre‐treated by CaMKII inhibitor KN‐93, evaluated heart function by echocardiography measurements, and performed HE staining, Masson staining, Tunel staining, Western blot and RT‐PCR to test cardiac remodelling and myocardial microvessel density; we also observed ultrastructure of cardiac tissue with transmission electron microscope. Second, we cultured HUVECs, pre‐treated by ISO and KN‐93, detected cell proliferation, migration, tubule formation and apoptosis, and carried out Western blot to determine the expression of NOX2, NOX4, VEGF, VEGFR2, p‐VEGFR2 and STAT3; mtROS level was also measured. In vivo, we found KN‐93 severely reduced myocardial microvessel density, caused apoptosis of vascular endothelial cells, enhanced cardiac hypertrophy, myocardial apoptosis, collagen deposition, aggravated the deterioration of myocardial ultrastructure and heart function. In vitro, KN‐93 inhibited HUVECs proliferation, migration and tubule formation, and promoted apoptosis of HUVECs. The expression of NOX2, NOX4, p‐VEGFR2 and STAT3 were down‐regulated by KN‐93; mtROS level was severely reduced by KN‐93. We concluded that KN‐93 impaired angiogenesis and aggravated cardiac remodelling and heart failure via inhibiting NOX2/mtROS/p‐VEGFR2 and STAT3 pathways.  相似文献   

12.
Accumulating evidence suggests a higher risk for cardiovascular diseases among individuals with mental disorders, but very little is known about the risk for overall and specific groups of cardiovascular diseases in people with attention‐deficit/hyperactivity disorder (ADHD). To fill this knowledge gap, we investigated the prospective associations between ADHD and a wide range of cardiovascular diseases in adults. In a nationwide population‐based cohort study, we identified 5,389,519 adults born between 1941 and 1983, without pre‐existing cardiovascular diseases, from Swedish registers. The study period was from January 1, 2001 to December 31, 2013. Incident cardiovascular disease events were identified according to ICD codes. Hazard ratios (HR) with 95% confidence intervals (CI) were calculated using Cox proportional hazards regression model, with ADHD as a time‐varying exposure. After an average 11.80 years of follow‐up, 38.05% of individuals with ADHD versus 23.57% of those without ADHD had at least one diagnosis of cardiovascular disease (p<0.0001). ADHD was significantly associated with increased risk of any cardiovascular disease (HR=2.05, 95% CI: 1.98‐2.13) after adjusting for sex and year of birth. Further adjustments for education level, birth country, type 2 diabetes mellitus, obesity, dyslipidemia, sleep problems and heavy smoking attenuated the association, which however remained significant (HR=1.84, 95% CI: 1.77‐1.91). Further adjustment for psychiatric comorbidities attenuated but could not fully explain the association (HR=1.65, 95% CI: 1.59‐1.71). The strongest associations were found for cardiac arrest (HR=2.28, 95% CI: 1.81‐2.87), hemorrhagic stroke (HR=2.16, 95% CI: 1.68‐2.77), and peripheral vascular disease/arteriosclerosis (HR=2.05, 95% CI: 1.76‐2.38). Stronger associations were observed in males and younger adults, while comparable associations were found among individuals with or without psychotropic medications and family history of cardiovascular diseases. These data suggest that ADHD is an independent risk factor for a wide range of cardiovascular diseases. They highlight the importance of carefully monitoring cardiovascular health and developing age‐appropriate and individualized strategies to reduce the cardiovascular risk in individuals with ADHD.  相似文献   

13.
The association between IGF‐1 levels and mortality in humans is complex with low levels being associated with both low and high mortality. The present meta‐analysis investigates this complex relationship between IGF‐1 and all‐cause mortality in prospective cohort studies. A systematic literature search was conducted in PubMed/MEDLINE, Scopus, and Cochrane Library up to September 2019. Published studies were eligible for the meta‐analysis if they had a prospective cohort design, a hazard ratio (HR) and 95% confidence interval (CI) for two or more categories of IGF‐1 and were conducted among adults. A random‐effects model with a restricted maximum likelihood heterogeneity variance estimator was used to find combined HRs for all‐cause mortality. Nineteen studies involving 30,876 participants were included. Meta‐analysis of the 19 eligible studies showed that with respect to the low IGF‐1 category, higher IGF‐1 was not associated with increased risk of all‐cause mortality (HR = 0.84, 95% CI = 0.68–1.05). Dose–response analysis revealed a U‐shaped relation between IGF‐1 and mortality HR. Pooled results comparing low vs. middle IGF‐1 showed a significant increase of all‐cause mortality (HR = 1.33, 95% CI = 1.14–1.57), as well as comparing high vs. middle IGF‐1 categories (HR = 1.23, 95% CI = 1.06–1.44). Finally, we provide data on the association between IGF‐1 levels and the intake of proteins, carbohydrates, certain vitamins/minerals, and specific foods. Both high and low levels of IGF‐1 increase mortality risk, with a specific 120–160 ng/ml range being associated with the lowest mortality. These findings can explain the apparent controversy related to the association between IGF‐1 levels and mortality.  相似文献   

14.
Coronavirus disease 2019 (COVID‐19) is especially severe in aged patients, defined as 65 years or older, for reasons that are currently unknown. To investigate the underlying basis for this vulnerability, we performed multimodal data analyses on immunity, inflammation, and COVID‐19 incidence and severity as a function of age. Our analysis leveraged age‐specific COVID‐19 mortality and laboratory testing from a large COVID‐19 registry, along with epidemiological data of ~3.4 million individuals, large‐scale deep immune cell profiling data, and single‐cell RNA‐sequencing data from aged COVID‐19 patients across diverse populations. We found that decreased lymphocyte count and elevated inflammatory markers (C‐reactive protein, D‐dimer, and neutrophil–lymphocyte ratio) are significantly associated with age‐specific COVID‐19 severities. We identified the reduced abundance of naïve CD8 T cells with decreased expression of antiviral defense genes (i.e., IFITM3 and TRIM22) in aged severe COVID‐19 patients. Older individuals with severe COVID‐19 displayed type I and II interferon deficiencies, which is correlated with SARS‐CoV‐2 viral load. Elevated expression of SARS‐CoV‐2 entry factors and reduced expression of antiviral defense genes (LY6E and IFNAR1) in the secretory cells are associated with critical COVID‐19 in aged individuals. Mechanistically, we identified strong TGF‐beta‐mediated immune–epithelial cell interactions (i.e., secretory‐non‐resident macrophages) in aged individuals with critical COVID‐19. Taken together, our findings point to immuno‐inflammatory factors that could be targeted therapeutically to reduce morbidity and mortality in aged COVID‐19 patients.  相似文献   

15.
DNA synthesis during homologous recombination is highly mutagenic and prone to template switches. Two‐ended DNA double‐strand breaks (DSBs) are usually repaired by gene conversion with a short patch of DNA synthesis, thus limiting the mutation load to the vicinity of the DSB. Single‐ended DSBs are repaired by break‐induced replication (BIR), which involves extensive and mutagenic DNA synthesis spanning up to hundreds of kilobases. It remains unknown how mutagenic BIR is suppressed at two‐ended DSBs. Here, we demonstrate that BIR is suppressed at two‐ended DSBs by proteins coordinating the usage of two ends of a DSB: (i) ssDNA annealing proteins Rad52 and Rad59 that promote second end capture, (ii) D‐loop unwinding helicase Mph1, and (iii) Mre11‐Rad50‐Xrs2 complex that promotes synchronous resection of two ends of a DSB. Finally, BIR is also suppressed when Sir2 silences a normally heterochromatic repair template. All of these proteins are particularly important for limiting BIR when recombination occurs between short repetitive sequences, emphasizing the significance of these mechanisms for species carrying many repetitive elements such as humans.  相似文献   

16.
Transmission electron microscopy has historically been indispensable for virology research, as it offers unique insight into virus function. In the past decade, as cryo‐electron microscopy (cryo‐EM) has matured and become more accessible, we have been able to peer into the structure of viruses at the atomic level and understand how they interact with the host cell, with drugs or with antibodies. Perhaps, there was no time in recent history where cryo‐EM was more needed, as SARS‐CoV‐2 has spread around the globe, causing millions of deaths and almost unquantifiable economic devastation. In this concise review, we aim to mark the most important contributions of cryo‐EM to understanding the structure and function of SARS‐CoV‐2 proteins, from surface spikes to the virus core and from virus‐receptor interactions to antibody binding.  相似文献   

17.
Pulmonary fibrosis (PF) is a progressive interstitial lung disease with limited treatment options. The incidence and prevalence of PF is increasing with age, cell senescence has been proposed as a pathogenic driver, the clearance of senescent cells could improve lung function in PF. FOXO4‐D‐Retro‐Inverso (FOXO4‐DRI), a synthesis peptide, has been reported to selectively kill senescent cells in aged mice. However, it remains unknown if FOXO4‐DRI could clear senescent cells in PF and reverse this disease. In this study, we explored the effect of FOXO4‐DRI on bleomycin (BLM)‐induced PF mouse model. We found that similar as the approved medication Pirfenidone, FOXO4‐DRI decreased senescent cells, downregulated the expression of senescence‐associated secretory phenotype (SASP) and attenuated BLM‐induced morphological changes and collagen deposition. Furthermore, FOXO4‐DRI could increase the percentage of type 2 alveolar epithelial cells (AEC2) and fibroblasts, and decrease the myofibroblasts in bleomycin (BLM)‐induced PF mouse model. Compared with mouse and human lung fibroblast cell lines, FOXO4‐DRI is inclined to kill TGF‐β‐induced myofibroblast in vitro. The inhibited effect of FOXO4‐DRI on myofibroblast lead to a downregulation of extracellular matrix (ECM) receptor interaction pathway in BLM‐induced PF. Above all, FOXO4‐DRI ameliorates BLM‐induced PF in mouse and may be served as a viable therapeutic option for PF.  相似文献   

18.
Doxorubicin (Dox) is a broad‐spectrum antitumour agent; however, its clinical application is impeded due to the cumulative cardiotoxicity. The present study aims to investigate the role and underlying mechanisms of microRNA‐495‐3p (miR4953p) in Dox‐induced cardiotoxicity. Herein, we found that cardiac miR4953p expression was significantly decreased in Dox‐treated hearts, and that the miR4953p agomir could prevent oxidative stress, cell apoptosis, cardiac mass loss, fibrosis and cardiac dysfunction upon Dox stimulation. In contrast, the miR4953p antagomir dramatically aggravated Dox‐induced cardiotoxicity in mice. Besides, we found that the miR4953p agomir attenuated, while the miR4953p antagomir exacerbated Dox‐induced oxidative stress and cellular injury in vitro. Mechanistically, we demonstrated that miR4953p directly bound to the 3′‐untranslational region of phosphate and tension homology deleted on chromosome ten (PTEN), downregulated PTEN expression and subsequently activated protein kinase B (PKB/AKT) pathway, and that PTEN overexpression or AKT inhibition completely abolished the cardioprotective effects of the miR4953p agomir. Our study for the first time identify miR4953p as an endogenous protectant against Dox‐induced cardiotoxicity through activating AKT pathway in vivo and in vitro.  相似文献   

19.
Genetic, environmental, and pharmacological interventions into the aging process can confer resistance to multiple age‐related diseases in laboratory animals, including rhesus monkeys. These findings imply that individual mechanisms of aging might contribute to the co‐occurrence of age‐related diseases in humans and could be targeted to prevent these conditions simultaneously. To address this question, we text mined 917,645 literature abstracts followed by manual curation and found strong, non‐random associations between age‐related diseases and aging mechanisms in humans, confirmed by gene set enrichment analysis of GWAS data. Integration of these associations with clinical data from 3.01 million patients showed that age‐related diseases associated with each of five aging mechanisms were more likely than chance to be present together in patients. Genetic evidence revealed that innate and adaptive immunity, the intrinsic apoptotic signaling pathway and activity of the ERK1/2 pathway were associated with multiple aging mechanisms and diverse age‐related diseases. Mechanisms of aging hence contribute both together and individually to age‐related disease co‐occurrence in humans and could potentially be targeted accordingly to prevent multimorbidity.  相似文献   

20.
Nanofiltration (NF) with advantages of high efficiency and low‐cost has attracted increasing attentions in bio‐separation. However, the large‐scale application is limited by the inferior molecular selectivity, low chemical stability and serious membrane fouling. Many efforts, thus, have been devoted in NF materials design for specific applications to enhance the separation efficiency of bio‐products and increase membrane life‐time, as well as reduce the operating cost. This review summarized the recent progress of NF applications in bio‐separation, discussed various demands for NF membrane in the bio‐products purification and corresponding material innovations, finally proposed several practical suggestions for future research, which provided directions and guidance toward further product development and process industrialization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号