首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  • 1.1. Three forms of cholinesterase were sequentially extracted from head and tentacles of Sepia officinalis and noted as low-salt (LSS), detergent (DS) and high-salt (HSS) soluble. They represent about 24, 30 and 46% of total activity.
  • 2.2. All enzyme forms seem to be amphiphilic proteins with hydrophobic domains interacting with non-ionic detergent (Triton X-100) and giving self-aggregation (LSS form).
  • 3.3. The DS form is membrane-anchored by a phosphatidylinositol, while the HSS form is likely linked to some proteoglycan molecule of the extracellular matrix by ionic interactions.
  • 4.4. According to Vmax/Km values, all the enzymes are acetylcholinesterases, even if hydrolyze propionylthiocoline at the highest rate.
  • 5.5. Some kinetic and molecular properties of the studied enzymes are compared with those of other cholinesterases from vertebrates and invertebrates. Possible phylogenic and adaptive features are discussed.
  相似文献   

2.
  • 1.1. Searching for endogenous proteolytic activities converting the membrane form of dopamine β-hydroxylase (dopamine β-monooxygenase, DBH) into the soluble and releasable form, DBH was monitored enzymatically and immunologically in aqueous and detergent-solubilized extracts of the adrenomedullary fractions.
  • 2.2. Degradation of the soluble DBH and acidic chromogranins by activation of endogenous proteases occurred during lysis in H2O.
  • 3.3. Shifts in the hydrophobicity of the membrane DBH were also apparent. Loss in enzyme protein or activity was, on the other hand, not observed for bufier-dialysed CG (pH 5–6).
  • 4.4. Limited proteolysis within the membrane phase was, however, indicated by the shift towards dominance of the intermediate hydrophobic DBH in the buffer-dialysed CG.
  • 5.5. By two-dimensional, crossed immunoelectrophoresis with cationic detergent the microsomal DBH was immunologically identical to the granule-bound enzyme but differed from the latter in molecular heterogeneity and in susceptibility to proteolytic solubilization by endogenous protease activities.
  • 6.6. DBH in the membranes of the chromaffin granules was proteolytically solubilized at pH 6–8 and the soluble DBH further degraded at pH 5.
  • 7.7. The results indicate that a post-translational conversion of the amphiphilic DBH into the soluble form, initiated at the level of the microsomes, may continue within the light and the heavy granule fractions which contain several DBH-converting and degrading proteolytic activities with acid optima.
  相似文献   

3.
  • 1.1. A third form (D3) of cyclic nucleotide phosphodiesterase from Rhizobiumfrediiv/as detected and characterized for the first time.
  • 2.2. The enzyme could hydrolyse both cyclic AMP and cyclic GMP with apparent Km for cyclic AMP of approx. 0.2 μM.
  • 3.3. D3 cyclic nucleotide phosphodiesterase had a pH optimum of about 6.0 when hydrolysing cyclic AMP.
  • 4.4. The enzyme lost almost all its activity when heated to 60°C for 20 min.
  • 5.5. Gel filtration with Sephadex G-100 gave a mol. wt of approx. 42.5 kD for the native enzyme.
  相似文献   

4.
  • 1.1. Elastase has been purified from the hepatopancreas of the king crab (Paralithodes camtschatica). Specific activity of the enzyme measured toward Suc-(Ala)3-pNA and Boc-(Ala)3-pNA was 926 and 3700 mUnits per mg of protein, respectively.
  • 2.2. The enzyme is an anion protein (pI 4.5) with an approximate mol.wt of 28.5 kDa.
  • 3.3. The enzyme exhibited a bell-shaped pH-dependence for the hydrolysis of Suc-(Ala)3-pNA with a maximum at 8–8.5. Under these conditions the values of Km and kcat of the crab elastase are 4 mM and 4.75 s−1, respectively.
  • 4.4. The serine elastase is effectively inhibited by elastinal and diisopropylfluorophosphate.
  • 5.5. It is shown that some salts except HgCl2 activate the protease. In the presence of HgCl2 with concentrations of 10 mM and higher, the crab elastase is inactive. SDS and Triton X-100 have no any effect on the activity of crab elastase.
  相似文献   

5.
  • 1.1. A protease activity capable of degradation of the high mol. wt salivary mucus glycoprotein to a low mol. wt glycoprotein form was identified in human submandibular gland secretion.
  • 2.2. The protease exhibited optimum activity at pH 7.0–7.4, and gave on SDS-PAGE under reducing conditions two major protein bands of 48 and 53 kDa. The enzyme showed susceptibility to PMSF, α1antitrypsin, and egg white and soybean inhibitors, a characteristic typical to serine proteases.
  • 3.3. The activity of the protease towards the high mol. wt mucus glycoprotein was found to be 3.8-fold higher in submandibular gland secretion of caries-resistant individuals than that of caries-susceptible. Furthermore, the enzyme from both groups displayed greater activity against the mucus glycoprotein of caries-resistant subjects.
  • 4.4. Since the low mol. wt salivary mucus glycoprotein form is more efficient in bacterial clearance than the high mol. wt mucin, the enhanced expression of this indigenous salivary protease activity towards mucin may be the determining factor in the resistance to caries.
  相似文献   

6.
  • 1.1. A thermostable orthophosphoric monoester phosphohydrolase (EC 3.1.3.1) from Thermus sp strain Rt41A has been purified 400-fold to give a specific activity of 25 U/mg at 60°C in IM diethanolamine (pH 11.1).
  • 2.2. The enzyme has a Mr of 160,000 and is trimeric.
  • 3.3. The half-life of the enzyme is 5 min at 85°C.
  • 4.4. The enzyme has a wide specificity for a number of phosphate monoesters.
  • 5.5. The Hm of the enzyme is pH dependent, so the pH optimum of the enzyme is affected by the substrate concentration.
  • 6.6. The enzyme is inhibited 50% by 20 mM Ca2+ or Mg2+.
  • 7.7. The Ki for phosphate, EDTA-di sodium salt and arsenate (in 1 M diethanolamine, pH 11.1) is approx 1.2, 1.6 and 4mM respectively.
  • 8.8. Urea (200 mM) is not inhibitory.
  相似文献   

7.
  • 1.1. The specific activity of GMP synthetase was measured in several human tissues and found to be highest in cultured skin fibroblasts, followed by bone marrow, leukocytes, erythrocytes. placenta, and liver.
  • 2.2. The enzyme from fibroblasts was purified approximately 50-fold by ammonium sulfate fractionation and gel filtration.
  • 3.3. The Km values were determined to be 4.9μM for XMP, 270μM for ATP. and 340 μM for glutamine.
  • 4.4. Ammonium sulfate could replace glutamine as the amino donor but was much less efficient.
  • 5.5. The enzyme was specific for ATP as the energy source.
  • 6.6. Unlike the calf thymus enzyme, the human enzyme has no requirement for a reduced sulfhydryl compound.
  • 7.7. Human GMP synthetase is inhibited by ATP, dATP, azaserine, and hydroxylamine.
  相似文献   

8.
  • 1.1. Midgut is the major source of protease, amylase and lipase in a cricket, Gryllus rubens and in a mole cricket, Scapteriscus actetus.
  • 2.2. Hindgut makes a significant contribution, and possibly even the major contribution, to digestion in both crickets, with enzyme activities from 20% (amylase and lipase) to 30% (protease) of midgut level, and a pH favorable to action of all three.
  • 3.3. Ingested food helps regulate digestive enzyme levels, and crickets starved for 5 days had only 50–60% of normal levels of enzyme activity.
  相似文献   

9.
  • 1.1. Malic enzyme purified from the fruit tissue of Mangifera indica was irradiated in dilute solution and the effect of γ-irradiation was investigated.
  • 2.2. The activity of the enzyme decreased exponentially as a function of the applied dose under all conditions investigated. The inactivation yield (Go-value) in neutral solution and in air was 0.069.
  • 3.3. The role of the radicals produced by water radiolysis in the inactivation of the enzyme was investigated by using different gas atmospheres and selective free radical-anions. The hydrogen atom and the hydrated electron (reducing species) were found to be important in the enzyme inactivation; as well as the possible destruction of cysteine and tryptophan residues.
  • 4.4. The irradiated enzyme appears to adopt a more compact conformation as reflected in a slightly lower Mr, Stokes-radius and diffusion coefficient.
  • 5.5. γ-Radiation does not lead to any heterogeneity in the charge and size properties of the enzyme and the pI and the Mr of the subunits were unaffected.
  • 6.6. Some differences in the amino acid composition of the non-irradiated and irradiated enzyme were observed but specific amino acid residues were not preferentially destroyed.
  • 7.7. These changes were also reflected in the ultraviolet spectrum of the enzyme which shifted to lower values.
  • 8.8. The major cause of inactivation seem to be a change in conformation caused by chemical modification of amino acid side chains.
  相似文献   

10.
  • 1.1. The copepod Acartia clausi exhibited two laminarinases (exo- and endo-acting forms) purified by gel chromatography followed by affinity chromatography. Specific antibodies have been raised against the purified exolaminarinase antigen.
  • 2.2. A single band of protein appeared on a polyacrylamide disc gel electrophoresis; its mol. wt is 21,000.
  • 3.3. Biochemical properties of the purified enzyme showed a maximum activity at pH 5.2 and a temperature of 40°C with laminarin as substrate. The thermal stability of the enzyme and the effect of various cations on its activity were examined. The enzyme hydrolyses specifically the β(1–3) linked polysaccharides and had no activity against the α(1–4) or β(1–4) disaccharides or polysaccharides.
  • 4.4. The kinetic parameters Vm and Km vary with the temperature; the affinity constant (Ka) was maximum between 25–30°C. The Arrhenius plot defined two values of energy of activation: 7980 cal/mole and 17,506 cal/mole.
  • 5.5. From the purification scheme the exoacting form appears to be largely dominant over the endoacting form.
  相似文献   

11.
  • 1.1. An alkaline p-nitrophenylphosphate phosphatase has been purified 440-fold from extracts of Hatobacterium halobium.
  • 2.2. The enzyme has an apparent molecular weight of 24,000.
  • 3.3. A Km value for p-nitrophenylphosphate of 1.12mM has been found under optimal conditions.
  • 4.4. The enzyme is selectively activated and stabilized by Mn2+.
  • 5.5. It requires high salt concentrations for stability and maximum activity.
  • 6.6. It displays an unusual restricted substrate specificity of 25 phosphate esters tested, only phosphotyrosine and casein were hydrolysed besides p-nitrophenylphosphate.
  相似文献   

12.
  • 1.1. A lipoxygenase activity was purified from Thermoactinomyces vulgaris and some of its properties were characterized.
  • 2.2. The enzyme showed a temperature activity range of 40–55°C with still significant activity over 60°C.
  • 3.3. The pH of activity on linoleic acid had a broad range with an optimum at pH 6.0 and a weaker one at pH 11.0.
  • 4.4. On arachidonic acid the pattern was narrow bell-shaped with an optimum at pH 6.5.
  • 5.5. The purified lipoxygenase from Th. vulgaris showed an apparent Km of 1 mM and Vmax of 0.84 μmol diene/min/mg protein.
  • 6.6. It was inhibited by the oxidation products, 9-HPOD and 13-HPOD.
  • 7.7. A 160,000 Da molecular weight of the enzyme was determined by molecular filtration. Methionine, tyrosine, tryptophan and cysteine are apparently involved in its activity.
  相似文献   

13.
  • 1.1. Fundamental chitin digestion characteristics of Crassostrea virginica crystalline style were investigated.
  • 2.2. Optimum temperature and pH were 34°C and 4.8. respectively.
  • 3.3. The colloidal regenerated chitin (0.56mol/0.5 ml: GlcNAc equivalents) was saturating under all enzyme levels encountered.
  • 4.4. There was no evidence of end product inhibition, even after 100 hr incubation.
  • 5.5. Calculated Km for the chitinase complex was 1.19mM when determined using a 30 min assay, but was only 0.70 mM when determined using a 4.6 hr assay.
  • 6.6. Both Km values are lower than reported for similar assays in other molluscs and for most bacteria.
  • 7.7. Effect of substrate preparation on the kinetics are discussed.
  • 8.8. Eight peaks of chitinase activity were resolved by DEAE-Fractogel ion exchange chromatography.
  相似文献   

14.
  • 1.1. Biliverdin reductase from the liver of eel, Anguilla japonica was characterized and purified with a novel enzymatic staining method on polyacrylamide electrophoretic gel.
  • 2.2. This enzyme could use both NADPH and NADH as coenzyme. The Km of NADPH was 5.2 μM, while that of NADH was 5.50 μM.
  • 3.3. The optimum reaction pH for using HADPH as coenzyme was 5.3. That for NADH was 6.1. The optimum reaction temperature is 37°C.
  • 4.4. When NADPH was used as coenzyme, the Km of biliverdin was 0.6 μM. When NADH was used as coenzyme, the Km of biliverdin was 7.0 μM.
  • 5.5. The activity of the enzyme was inhibited by the concentration of biliverdin. Also, the potency of the enzyme was much less than that of the analogous enzyme isolated from mammals.
  • 6.6. This is a fairly stable enzyme with a mol. wt around 67,000. Its estimated pI was pH 3.5–4.0.
  • 7.7. This is the first time biliverdin reductase has been isolated and characterized from a vertebrate other than mammals. The property of it is quite different from that of mammals.
  相似文献   

15.
  • 1.1. NAD(P)H dehydrogenase from rabbit liver was purified to electrophoretic homogeneity using a procedure also found applicable for the rat liver enzyme.
  • 2.2. Rabbit and rat liver enzymes showed different behaviour in isoelectric focusing and different Km values and turnover numbers.
  • 3.3. Both enzymes were inhibited to similar extents by warfarin.
  • 4.4. The rabbit enzyme is composed of two subunits of mol. wt 27,000 and contained 1 FAD group per subunit.
  • 5.5. Some absorption and circular dichroism properties of the rat enzyme are shown.
  相似文献   

16.
  • 1.1. Phospholipase A2 was isolated from Agkistrodon bilineatus venom by Sephadex G-75 and CM-Cellulose column chromatographies.
  • 2.2. The purified phospholipase A2-I gave a single band on disc polyacrylamide gel electrophoresis, isoelectric focusing and sodium dodecyl sulfate polyacrylamide gel electrophoresis.
  • 3.3. The enzyme preparation had a molecular weight of 14,000, isoelectric point of pH 8.77 and possessed 123 amino acid residues.
  • 4.4. The purified phospholipase A2 possessed lethal, indirect hemolytic and anticoagulant activities.
  • 5.5. The enzyme hydrolyzed the phospholipids phosphatidyl choline (PC), phosphatidyl ethanolamine (PE), phosphatidyl inositol (PI) and phosphatidyl serine (PS).
  • 6.6. The concentration of mouse diaphragm was inhibited and the contraction of guinea pig left atrium was increased by phospholipase A2-I.
  • 7.7. Phospholipase A2 activity of this preparation was inhibited by ethylenediamine tetraacetic acid, p-bromo phenacyl bromide, n-bromo succinimide or dithiothreitol, but not by diisopropyl fluorophosphate or benzamidine.
  相似文献   

17.
  • 1.1. Primate liver lysosomal acid DNase is an endonucleolytic enzyme.
  • 2.2. The enzyme has both 3'- and 5'-nucleotidohydrolase activities.
  • 3.3. The oligonucleotides produced by DNase are polymers mainly about 30 mononucleotides long.
  • 4.4. The Arrhenius plot shows a discontinuity with a transition temperature at 47°C, with an activation energy of 107 kJ/mol below and 67 kJ/mol above this temperature.
  • 5.5. The activation enthalpy is 104kJ/mol and the entropy −0.498 kJ/mol/K.
  • 6.6. The enzyme is subject to substrate inhibition and the Km value is 159 × 10−3mM DNA-P.
  相似文献   

18.
  • 1.1. Purified ostrich (Struthio camelus) liver fructose-1,6-bisphosphatase exhibited an absolute requirement for Mg2+.
  • 2.2. The enzyme catalyzed the hydrolysis of fructose-1,6-bisphosphate, sedoheptulose-l,7-bisphosphate and ribulose-l,5-bisphosphate.
  • 3.3. S0.5 for substrate was 1.4 μM.
  • 4.4. AMP was a potent non-competitive inhibitor with respect to substrate (Ki of 25 μM).
  • 5.5. Fructose-2,6-bisphosphate was a potent competitive inhibitor of the enzyme (Ki of 4.8 μM).
  相似文献   

19.
  • 1.1. Glycerolphosphate acyltransferase (GPAT) was solubilized from the rat liver mitochondrial membranes using sodium cholate. Dithiothreitol was necessary to stabilize the solubilized enzyme on storage.
  • 2.2. Unlike the enzyme in situ in mitochondrial membranes, the solubilized mitochondrial GPAT was susceptible to inhibition by N-ethylmaleimide; a property more characteristic of the distinct microsomal form of GPAT.
  • 3.3. Solubilized mitochondrial GPAT retained its very high preference for saturated acyl-CoA substrate (palmitoyl-CoA) and had no activity whatever with any tested concentration of the unsaturated substrate oleoyl-CoA.
  • 4.4. Solubilization increased the affinity of mitochondrial GPAT for palmitoyl-CoA whilst decreasing the Km for glycerol phosphate.
  • 5.5. After separation of liver mitochondrial outer and inner membranes and estimation of cross-contamination by appropriate markers it was concluded that the mitochondrial inner membrane contains significant GPAT activity. This was established with preparations from fed, 48 hr-starved and streptozotocin-diabetic rats.
  相似文献   

20.
  • 1.1. Kinetic constant values of the reaction catalyzed by bass liver glucose 6-phosphate dehydrogenase show to be modified between 10 and 40°C.
  • 2.2. The Arrhenius plot between 10 and 50°C shows two slopes with different activation energies.
  • 3.3. These results suggest a regulation of this enzyme by environmental temperature.
  • 4.4. Kinetics of ATP inhibition were examined between pH 6.2 and 7.8: patterns and Ki values obtained are affected by the pH variation.
  • 5.5. NADH is an effective inhibitor of bass glucose 6-phosphate dehydrogenase but this enzyme does not show NAD-linked activity.
  • 6.6. Kinetics of pyridoxal 5′-phosphate inhibition have indicated the presence of a lysine in the catalytic site for NADP+.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号