首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metastasis contributes to treatment failure in nasopharyngeal carcinoma (NPC) patients. Our study aimed at elucidating the role of insulin‐like growth factor 2 mRNA binding protein 3 (IGF2BP3) in NPC metastasis and the underlying mechanism involved. IGF2BP3 expression in NPC was determined by bioinformatics, quantitative polymerase chain reaction and immunohistochemistry analyses. The biological function of IGF2BP3 was investigated by using in vitro and in vivo studies. In this study, IGF2BP3 mRNA and protein levels were elevated in NPC tissues. In addition, IGF2BP3 exerted an oncogenic role by promoting epithelial‐mesenchymal transition (EMT), thereby inducing NPC cell migration and invasion. Further studies revealed that IGF2BP3 regulated the expression of key regulators of EMT by activating AKT/mTOR signalling, thus stimulating NPC cell migration and invasion. Remarkably, targeting IGF2BP3 delayed NPC metastasis through attenuating p‐AKT and vimentin expression and inducing E‐cadherin expression in vivo. Moreover, IGF2BP3 protein levels positively correlated with distant metastasis after initial treatment. Importantly, IGF2BP3 expression served as an independent prognostic factor in predicting the overall survival and distant metastasis‐free survival of NPC patients. This work identifies IGF2BP3 as a novel prognostic marker and a new target for NPC treatment.  相似文献   

2.
Epstein–Barr virus (EBV) was the first oncogenic virus identified in humans. It is primarily associated with multiple lymphoid and epithelial cancers, including nasopharyngeal carcinoma (NPC). However, its association with ferroptosis and its role in cancer therapy resistance have not been fully elucidated. Here, we show that EBV infection reduces the sensitivity of NPC cells to ferroptosis by activating the p62-Keap1-NRF2 signaling pathway in conjunction with upregulation of SLC7A11 and GPX4 expression. Knockdown of endogenous GPX4 or blockade of GPX4 using a specific inhibitor enhanced the chemosensitivity of EBV-infected NPC cells. Functional studies revealed that GPX4 knockdown suppresses the proliferation and colony formation of NPC cells. Mechanistically, GPX4 interacts with the TAK1-TAB1/TAB3 complex, regulates TAK1 kinase activity, and further activates downstream MAPK-JNK and NFκB pathways. High GPX4 expression is correlated with poor clinical outcomes in patients with NPC and other cancer types. Taken together, our findings suggest that EBV infection has important effects on redox homeostasis, revealing a previously unappreciated role for GPX4 in tumor progression. This novel mechanism provides a potential new target for the treatment of EBV-related tumors.Subject terms: Microbiology, Oncogenes  相似文献   

3.
The interaction of tumor cells with platelets is a prerequisite for successful hematogenous metastatic dissemination. Upon tumor cell arrival in the blood, tumor cells immediately activate platelets to form a permissive microenvironment. Platelets protect tumor cells from shear forces and assault of NK cells, recruit myeloid cells by secretion of chemokines, and mediate an arrest of the tumor cell platelet embolus at the vascular wall. Subsequently, platelet-derived growth factors confer a mesenchymal-like phenotype to tumor cells and open the capillary endothelium to expedite extravasation in distant organs. Finally, platelet-secreted growth factors stimulate tumor cell proliferation to micrometastatic foci. This review provides a synopsis on the current literature on platelet-mediated effects in cancer metastasis and particularly focuses on platelet adhesion receptors and their role in metastasis. Immunoreceptor tyrosine-based activation motif (ITAM) and hemi ITAM (hemITAM) comprising receptors, especially, glycoprotein VI (GPVI), FcγRIIa, and C-type lectin-like-2 receptor (CLEC-2) are turned in the spotlight since several new mechanisms and contributions to metastasis have been attributed to this family of platelet receptors in the last years.  相似文献   

4.
Trimethylation of lysine 27 on histone H3 (H3K27me3) is an epigenetic change which plays a critical role in tumor development and/or progression. However, the molecular status of H3K27me3 and its clinicopathologic/prognostic significance in nasopharyngeal carcinoma (NPC) have not been elucidated. In this study, the methods of Western blotting and immunohistochemistry (IHC) were utilized to examine the expression of H3K27me3 protein in NPC tissues and nonneoplastic nasopharyngeal epithelial tissues. Receiver operating characteristic (ROC) curve analysis was used to determine the cutpoint for H3K27me3 high expression. High expression of H3K27me3 could be observed in 127/209 (60.8%) of NPCs and in 8/50 (16.0%) normal nasopharyngeal epithelial tissues (P < 0.001). Further correlation analysis demonstrated that high expression of H3K27me3 was positively associated with tumor later T classification, tumor metastasis, advanced clinical stage and chemoradioresistance (P < 0.05). Moreover, high expression of H3K27me3 was closely associated with NPC patient shortened survival time as evidenced by univariate and multivariate analysis (P < 0.05). Consequently, a new clinicopathologic prognostic model with three poor prognostic factors (H3K27me3 expression, distant metastasis and treatment regimen) was constructed. The model could stratify risk significantly (low, intermediate and high) for overall survival and progression-free survival (P < 0.0001). These findings provide evidence that H3K27me3 expression, as examined by IHC, has the potential to be used as an immunomarker to predict NPC chemoradiotherapy response and patient prognosis. The combined clinicopathologic prognostic model may become a useful tool for identifying NPC patients with different clinical outcomes.  相似文献   

5.
Viral noncoding RNAs (Epstein–Barr virus-encoded RNAs, EBERs) are believed to play a critical role in the progression of lymphoma and nasopharyngeal carcinoma (NPC). However, the accurate mechanisms accounting for their oncogenic function have not been elucidated, especially in terms of interaction between tumor cells and mesenchymal cells. Here, we report that, in addition to NPC cells, EBERs are also found in endothelial cells in Epstein–Barr virus (EBV)-infected NPC parenchymal tissues, which implicates NPC-derived extracellular vesicles (EVs) in transmitting EBERs to endothelial cells. In support of this hypothesis, we first ascertained if EBERs could be transferred to endothelial cells via EVs isolated from NPC culture supernatant. Then, we clarified that EVs-derived EBERs could promote angiogenesis through stimulation of VCAM-1 expression. Finally, we explored the involvement of EBER recognition by TLR3 and RIG-I in NPC angiogenesis. Our observations collectively illustrate the significance and mechanism of EVs-derived EBERs in angiogenesis and underlie the interaction mechanisms between EBV-infected NPC cells and the tumor microenvironment.  相似文献   

6.
7.
Nasopharyngeal carcinoma (NPC) is known for its potential to progress to the lymph nodes and distant metastases at an early stage. As an important regulator in tumorigenesis biological processes, the functions of lncRNA in NPC tumor development remain largely unclear. In this research, the expression of EPB41L4A-AS2 in NPC tissues and cells was analyzed via real-time quantitative polymerase chain reaction (qRT-PCR). CCK8, colony formation, and EDU experiments were used to determine the viability of NPC cells. Transwell and wound healing assays were performed to test NPC cell migration and invasion. RNA pull-down and mass spectrometry analysis were used to identify potential binding proteins. Then, a popliteal lymph node metastasis model was established to test NPC metastasis. EPB41L4A-AS2 is repressed by transforming growth factor-beta, which is downregulated in NPC cells and tissue. It is associated with the presence of distant metastasis and adverse outcomes. The univariate and multivariate survival assays confirmed that EPB41L4A-AS2 expression was an independent predictor of progression-free survival (PFS) in patients with NPC. Biological analyses showed that overexpression of EPB41L4A-AS2 reduced the metastasis and invasion of NPC in vitro and in vivo, but had no significant effect on cell proliferation. Mechanistically, in the nucleus we identified that EPB41L4A-AS2 relies on binding to YBX1 to reduce the stability of Snail mRNA to enhance the expression of E-cadherin and reverse the progression of epithelial-to-mesenchymal transition (EMT). In the cytoplasm, we found that EPB41L4A-AS2 blocked the invasion and migration of NPC cells by promoting LATS2 expression via sponging miR-107. In a whole, the findings of this study help to further understand the metastasis mechanism of NPC and could help in the prevention and treatment of NPC metastasis.  相似文献   

8.
Nickel compounds are associated with lung and skin cancer incidence increase and accumulation of nickel in the body contributes to carcinogenesis. Upregulation of certain integrins in the primary tumor is associated with cancer metastasis and poor prognosis. However, the molecular mechanisms of nickel-induced cancer metastasis are still unclear. The purpose of the present study was to investigate the effects of nickel chloride (NiCl2) on the progression of cancer during metastasis. The results of showed that NiCl2 induces the expression of integrin β3 mRNA and protein in a dose- and time-dependent manner. Inhibition of integrin αvβ3 activation by ITGB3 ligand mimetics and GR144053, as well as downregulation of ITGB3 by lentiviral shRNA gene silencing, diminished NiCl2-induced secretion of vascular endothelial growth factor-a (VEGF-a). Furthermore, pretreatment with type I TGF-β receptor inhibitor, SB525334, suppressed the expression of ITGB3 at cell surface and secretion of VEGF-a in NiCl2-treated cells. In conclusion, NiCl2 induces the expression of ITGB3 through TGF-β signaling activation, followed by increasing VEGF-a secretion, revealing a novel role for ITGB3 in nickel compound-induced cancer metastasis and tumor angiogenesis.  相似文献   

9.
Glioblastoma multiforme (GBM) is the most aggressive and highly vascularized brain tumor with poor prognosis. Endothelial cell-dependent angiogenesis and tumor cell-dependent Vasculogenic mimicry (VM) synergistically contribute to glioma vascularization and progression. However, the mechanism underlying GBM vascularization remains unclear. In this study, GBM stem cells (GSCs) were divided into high and low β8 integrin (ITGB8) subpopulations. Co-culture assays followed by Cell Counting Kit-8 (CCK-8), migration, Matrigel tube formation, and sprouting assays were conducted to assess the proliferative, migratory and angiogenic capacity of GBM cells and human brain microvascular endothelial cells (hBMECs). An intracranial glioma model was constructed to assess the effect of ITGB8 on tumor vascularization in vivo. Our results indicated that ITGB8 expression was elevated in GSCs and positively associated with stem cell markers in glioma tissues, and could be induced by hypoxia and p38 activation. ITGB8 in GSCs inhibited the angiogenesis of hBMECs in vitro, while it promoted the ability of network formation and expression of VM-related proteins. The orthotopic GBM model showed that ITGB8 contributed to decreased angiogenesis, meanwhile enhanced invasiveness and VM formation. Mechanistic studies indicated that ITGB8-TGFβ1 axis modulates VM and epithelial-mesenchymal transition (EMT) process via Smad2/3-RhoA signaling. Together, our findings demonstrated a differential role for ITGB8 in the regulation of angiogenesis and VM formation in GBM, and suggest that pharmacological inhibition of ITGB8 may represent a promising therapeutic strategy for treatment of GBM.Subject terms: Cancer stem cells, CNS cancer  相似文献   

10.
Nasopharyngeal carcinoma (NPC) is a highly invasive and metastatic head and neck cancer. However, mechanistic study of the invasion and metastasis of NPC has been hampered by the lack of proper in vivo models. We established an in vivo chick embryo chorioallantoic membrane (CAM) model to study NPC tumor biology. We found 100% micro-tumor formation 3 days after inoculation with NPC cell lines (4/4) or primary tumor biopsy tissue (35/35). The transplanted NPC micro-tumors grew on CAMs with extracellular matrix interaction and induced angiogenesis. In addition, the CAM model could be used to study the growth of transplanted NPC tumors and also several important steps of metastasis, including tumor invasion by detecting the extent of basement membrane penetration, tumor angiogenesis by analyzing the area of neo-vessels, and tumor metastasis by quantifying tumor cells in distant organs. We established and described a feasible, easy-to-manipulate and reliable CAM model for in vivo study of NPC tumor biology. This model closely simulates the clinical features of NPC growth, progression and metastasis and could help elucidate the biological mechanisms of the growth pattern and invasion of NPC cells and in quantitative assessment of angiogenesis and cell intravasation.  相似文献   

11.
12.
Increasing focus has come to the role of extracellular vesicles (EVs) in various cancers. Hence, we designed this study to explore the mechanism whereby microRNA-342-3p (miR-342-3p)-containing EVs derived from BMSCs might affect breast cancer. MCF-7 breast cancer cell line was co-incubated with the EVs isolated from rat BMSCs, followed by alteration of miR-342-3p and INHBA expression. Microarray-based analyses predicted a possible regulatory mechanism involving miR-342-3p, INHBA, and IL13Rα2 in breast cancer, which was verified by luciferase reporter, RNA pull-down, and RIP assays. Besides, in order to evaluate the effects of miR-342-3p on the biological features of breast cancer cells in vitro and in vivo, we employed the scratch assay, Transwell assay, CCK-8 assay, and nude mouse tumorigenicity assay. miR-342-3p carried by BMSC-EVs was transferred into breast cancer cells through co-culture, which inhibited the proliferation and metastasis of breast cancer cells in vitro. miR-342-3p downregulated the expression of INHBA, which further repressed the expression of IL13Rα2. Finally, the in vivo experimental results revealed the inhibitory role of miR-342-3p in tumor growth and metastasis in nude mice. To sum up, BMSC-EVs carrying miR-342-3p could prevent breast cancer growth and metastasis by downregulating the INHBA/IL13Rα2 axis, highlighting a potential target for anti-cancer treatment for breast cancer.  相似文献   

13.
Nasopharyngeal carcinoma (NPC) is one of the most common malignancies in southern China and Southeast Asia, with the highest metastasis rate among head and neck cancers. The mechanisms underlying NPC progression remain poorly understood. Genome-wide expression profiling on 18 NPC vs. 18 noncancerous nasopharyngeal tissues together with GeneGo pathway analysis and expression verification in NPC cells and tissues revealed a potential role of urokinase-type plasminogen activator receptor (uPAR) in NPC progression, which has not been investigated in NPC. We then observed that uPAR expression is increased in poorly differentiated, highly metastatic NPC cells compared with lowly metastatic cells or differentiated NPC cells. In vitro studies demonstrated that uPAR regulates NPC cell growth, colony formation, migration, and invasion and promotes the epithelial–mesenchymal transition (EMT). Additional tumor xenograft and spontaneous metastasis experiments revealed that uPAR promotes NPC cell growth and metastasis in vivo. The JAK–STAT pathway is involved in uPAR-regulated signaling in NPC cells as determined by immunoblotting. Moreover, uPAR-mediated growth and motility is partially abolished upon treatment with the Jak1/Jak2 inhibitor INCB018424. We suppressed uPA expression in uPAR-overexpressing NPC cells and found that uPAR-mediated cellular growth and motility is not exclusively dependent on uPA. In summary, uPAR is a significant regulator of NPC progression and could serve as a promising therapeutic target.  相似文献   

14.
Aldehyde dehydrogenases (ALDHs) play an essential role in regulating malignant tumor progression; however, their role in cholangiocarcinoma (CCA) has not been elucidated. We analyzed the expression of ALDHs in 8 paired tumor and peritumor perihilar cholangiocarcinoma (pCCA) tissues and found that ALDH3B1 and ALDH3B2 were upregulated in tumor tissues. Further survival analysis in intrahepatic cholangiocarcinoma (iCCA, n = 27), pCCA (n = 87) and distal cholangiocarcinoma (dCCA, n = 80) cohorts have revealed that ALDH3B2 was a prognostic factor of CCA and was an independent prognostic factor of iCCA and pCCA. ALDH3B2 expression was associated with serum CEA in iCCA and dCCA, associated with tumor T stage, M stage, neural invasion and serum CA19-9 in pCCA. In two cholangiocarcinoma cell lines, overexpression of ALDH3B2 promoted cell proliferation and clone formation by promoting the G1/S phase transition. Knockdown of ALDH3B2 inhibited cell migration, invasion, and EMT in vitro, and restrained tumor metastasis in vivo. Patients with high expression of ALDH3B2 also have high expression of ITGB1 in iCCA, pCCA, and dCCA at both mRNA and protein levels. Knockdown of ALDH3B2 downregulated the expression of ITGB1 and inhibited the phosphorylation level of c-Jun, p38, and ERK. Meanwhile, knockdown of ITGB1 inhibited the promoting effect of ALDH3B2 overexpression on cell proliferation, migration, and invasion. ITGB1 is also a prognostic factor of iCCA, pCCA, and dCCA and double-positive expression of ITGB1 and ALDH3B2 exhibits better performance in predicting patient prognosis. In conclusion, ALDH3B2 promotes tumor proliferation and metastasis in CCA by regulating the expression of ITGB1 and upregulating its downstream signaling pathway. The double-positive expression of ITGB1 and ALDH3B2 serves as a better prognostic biomarker of CCA.Subject terms: Prognostic markers, Bile duct cancer  相似文献   

15.
That metastatic tumor cells grow in selective non-native environments suggests an ability to differentially respond to local microenvironments. BRMS1, like other metastasis suppressors, halts ectopic growth (metastasis) without blocking orthotopic tumor formation. BRMS1-expressing tumor cells reach secondary sites but do not colonize distant tissues, compelling the hypothesis that BRMS1 selectively restricts the ability of tumor cells to respond to exogenous regulators in different tissues. Here we report that BRMS1 expression in metastatic human breast cancer cells leads to a selective reduction in epidermal growth factor receptor expression and downstream (AKT) signaling. Signaling through another receptor tyrosine kinase, hepatocyte growth factor receptor (c-Met), remains unaltered despite reduced levels of the signaling intermediate phosphatidylinositol (4,5)-bisphosphate. Interestingly, reduced downstream calcium signaling is observed following treatment with platelet-derived growth factor, consistent with decreased phosphatidylinositol (4,5)-bisphosphate. However, platelet-derived growth factor receptor expression is unaltered. Thus, BRMS1 differentially attenuates cellular responses to mitogenic signals, not only dependent upon the specific signal received, but at varying steps within the same signaling cascade. Specific modulation of signaling responses received from the microenvironment may ultimately dictate which environments are permissive/restrictive for tumor cell growth and provide insights into the biology underlying metastasis.  相似文献   

16.
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in males and second in females worldwide. Unfortunately 40-50% of patients already have metastatic disease at presentation when prognosis is poor with a 5-year survival of <10%. Reactive oxygen species (ROS) have been proposed to play a crucial role in tumor metastasis. We now show that higher levels of ROS accumulation are found in a colorectal cancer-derived metastatic cell line (SW620) compared with a cell line (SW480) derived from the primary lesion from the same patient. In addition, ROS accumulation can affect both the migratory and invasive capacity of SW480 and SW620 cells. To explore the molecular mechanism underlying ROS-induced migration and invasion in CRC, we have compared protein expression patterns between SW480 and SW620 cells using a two-dimensional electrophoresis-based proteomics strategy. A total of 63 altered proteins were identified from tandem MS analysis. Cluster analysis revealed dysregulated expression of multiple redox regulative or ROS responsive proteins, implicating their functional roles in colorectal cancer metastasis. Molecular and pathological validation demonstrated that altered expression of PGAM1, GRB2, DJ-1, ITGB3, SOD-1, and STMN1 was closely correlated with the metastatic potential of CRC. Functional studies showed that ROS markedly up-regulated expression of ITGB3, which in turn promoted an aggressive phenotype in SW480 cells, with concomitant up-regulated expression of STMN1. In contrast, knockdown of ITGB3 expression could mitigate the migratory and invasive potential of SW620 or H(2)O(2)-treated SW480 cells, accompanied by down-regulated expression of STMN1. The function of ITGB3 was dependent on the surface expression of integrin αvβ3 heterodimer. Furthermore, STMN1 expression and the PI3K-Akt-mTOR pathway were found to be involved in ROS-induced and ITGB3-mediated migration and invasion of colorectal cancer cells. Taken together, these studies suggest that ITGB3 plays an important role in ROS-induced migration and invasion in CRC.  相似文献   

17.
18.
By regulating matrix metalloproteinase (MMP) activity and controlling the breakdown of extracellular matrix components, tissue inhibitors of metalloproteinases (TIMPs) play an important role in the process of tumor invasion and metastasis. The present study was designed to clarify the role of TIMP-2 in nasopharyngeal carcinoma (NPC) patients and to evaluate its importance relative to clinicopathologic parameters. It was carried out in 30 patients with NPC and 20 controls. Tissue biopsies were studied and graded pathologically, and Western blot analysis was performed to assess TIMP-2 protein expression. Clinically, in accordance with TNM classification (T: tumor size, N: lymph node involvement, M: distant metastasis), 8 cases were diagnosed as stage II, 12 as stage III, and 10 cases as stage IV; however, pathologic typing with use of the World Health Organization (WHO) classification revealed the presence of 9 specimens of squamous cell carcinoma (WHO type 1), 6 cases of nonkeratinizing carcinoma (WHO type 2), and 15 cases of undifferentiated carcinoma (WHO type 3). The difference in percentage of TIMP-2 positivity between NPC patients (76.6%) and normal controls (30%) was statistically highly significant (P < .01). In addition, there was a significant positive correlation between TIMP-2 protein positivity and either the clinical staging or the histopathologic typing (P < .01) using Chi-square test (x(2)), suggesting that TIMP-2 can be used as a marker of the severity of NPC.Accordingly, we can assume that TIMP-2 may play a role in regional lymph node and/or distant metastasis and in progression of squamous cell carcinoma. Further studies are needed to investigate the role of TIMP-2 as a marker for tumor progression and to evaluate its potential value in the follow-up of patients.  相似文献   

19.
20.
Extracellular vesicles (EVs) play an essential role in the communication between cells and the tumor microenvironment. However, the effect of tumor-derived EVs on the growth and metastasis of lung adenocarcinoma (LUAD) remains to be explored. This study aimed to elucidate the role of miR-153-3p-EVs in the invasion and migration capabilities of LUAD cells and explore its mechanism through in vivo and in vitro experiments. We found that miR-153-3p was specifically and highly expressed in LUAD and its secreted EVs. Furthermore, the expression of BANCR was negatively regulated by miR-153-3p and identified as a target gene of miR-153-3p using luciferase reporter assays. Through further investigation, we found that the downregulation of BANCR activates the PI3K/AKT pathway and accelerates the process of epithelial-mesenchymal transition (EMT), which ultimately leads to the aggravation of LUAD. The orthotopic xenograft mouse model was established to illustrate the effect of miR-153-3p-EVs on LUAD. Animal studies showed that miR-153-3p-EVs accelerated tumor growth in mice. Besides, we found that miR-153-3p-EVs could damage the respiratory ability of mice and produce a mass of inflammatory cells around the lung tissue of mice. Nevertheless, antagomir-153-3p treatment could inhibit the deterioration of respiratory function and inhibit the growth of lung tumors in mice. In conclusion, our study reveals the potential molecular mechanism of miR-153-3p-EVs in the development of LUAD and provides a potential strategy for the treatment of LUAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号