首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Despite a substantial progress in diagnosis and therapy, acute myocardial infarction (MI) is a major cause of mortality in the general population. A novel insight into the pathophysiology of myocardial infarction obtained by studying gene expression should help to discover novel biomarkers of MI and to suggest novel strategies of therapy. The aim of our study was to establish gene expression patterns in leukocytes from acute myocardial infarction patients.

Methods and Results

Twenty-eight patients with ST-segment elevation myocardial infarction (STEMI) were included. The blood was collected on the 1st day of myocardial infarction, after 4–6 days, and after 6 months. Control group comprised 14 patients with stable coronary artery disease, without history of myocardial infarction. Gene expression analysis was performed with Affymetrix Human Gene 1.0 ST microarrays and GCS3000 TG system. Lists of genes showing altered expression levels (fold change >1.5, p<0.05) were submitted to Ingenuity Pathway Analysis. Gene lists from each group were examined for canonical pathways and molecular and cellular functions. Comparing acute phase of MI with the same patients after 6 months (stable phase) and with control group we found 24 genes with changed expression. In canonical analysis three pathways were highlighted: signaling of PPAR (peroxisome proliferator-activated receptor), IL-10 and IL-6 (interleukin 10 and 6).

Conclusions

In the acute phase of STEMI, dozens of genes from several pathways linked with lipid/glucose metabolism, platelet function and atherosclerotic plaque stability show altered expression. Up-regulation of SOCS3 and FAM20 genes in the first days of myocardial infarction is observed in the vast majority of patients.  相似文献   

2.

Aims

Myocardial CCN2/CTGF is induced in heart failure of various etiologies. However, its role in the pathophysiology of left ventricular (LV) remodeling after myocardial infarction (MI) remains unresolved. The current study explores the role of CTGF in infarct healing and LV remodeling in an animal model and in patients admitted for acute ST-elevation MI.

Methods and Results

Transgenic mice with cardiac-restricted overexpression of CTGF (Tg-CTGF) and non-transgenic littermate controls (NLC) were subjected to permanent ligation of the left anterior descending coronary artery. Despite similar infarct size (area of infarction relative to area at risk) 24 hours after ligation of the coronary artery in Tg-CTGF and NLC mice, Tg-CTGF mice disclosed smaller area of scar tissue, smaller increase of cardiac hypertrophy, and less LV dilatation and deterioration of LV function 4 weeks after MI. Tg-CTGF mice also revealed substantially reduced mortality after MI. Remote/peri-infarct tissue of Tg-CTGF mice contained reduced numbers of leucocytes, macrophages, and cells undergoing apoptosis as compared with NLC mice. In a cohort of patients with acute ST-elevation MI (n = 42) admitted to hospital for percutaneous coronary intervention (PCI) serum-CTGF levels (s-CTGF) were monitored and related to infarct size and LV function assessed by cardiac MRI. Increase in s-CTGF levels after MI was associated with reduced infarct size and improved LV ejection fraction one year after MI, as well as attenuated levels of CRP and GDF-15.

Conclusion

Increased myocardial CTGF activities after MI are associated with attenuation of LV remodeling and improved LV function mediated by attenuation of inflammatory responses and inhibition of apoptosis.  相似文献   

3.
《Biomarkers》2013,18(7):620-624
Abstract

Objective: To investigate the dynamic changes in serum tryptase levels and their association with clinical data in patients with acute ST-elevation myocardial infarction (STEMI) treated with primary percutaneous coronary intervention (PCI).

Methods: Serum tryptase levels were measured in 99 STEMI patients and 25 control subjects.

Results: Tryptase levels were significantly increased at admission, and descended after primary PCI. Tryptase levels at 0.5, 2 and 6?h after PCI were negatively correlated with the percentage of ST-segment resolution (STR) as well as left ventricular ejection fraction (LVEF).

Conclusions: High tryptase levels after PCI were associated with poor myocardial reperfusion and poor cardiac function.  相似文献   

4.
Lu LF  Wang CP  Yu TH  Hung WC  Chiu CA  Chung FM  Tsai IT  Yang CY  Cheng YA  Lee YJ  Yeh LR 《Cytokine》2012,57(1):74-80
Visfatin is a cytokine that is expressed in many tissues, including the heart, and has been proposed to play a role in plaque destabilization leading to acute myocardial injury. The present study evaluates plasma levels of visfatin in acute ST-elevation myocardial infarction (STEMI) patients and examines the temporal changes in visfatin levels from the acute period to the subacute period to determine a correlation with the degree of myocardial ischemia. We evaluated 54 patients with STEMI. Circulating levels of visfatin and brain natriuretic peptide (BNP) were measured by ELISA. In addition, local expression of visfatin and BNP were detected by quantitative real-time polymerase chain reaction and immunohistochemical (IHC) analysis of left ventricular myocytes in a mouse model of myocardial infarction (MI). Plasma levels of visfatin were significantly increased in patients with STEMI on admission, relative to controls (effort angina patients and individuals without coronary artery disease). The visfatin levels reached a peak 24 h after percutaneous coronary intervention (PCI) and then decreased toward the control range during the first week after PCI. The basal plasma visfatin levels were found to correlate with peak troponin-I, peak creatine kinase-MB, total white blood cell count, and BNP levels. Trend analyses confirmed that visfatin levels correlated with the number of diseased coronary arteries. Further, in MI mice, mRNA levels of visfatin and BNP were found to be higher than in sham-treated mice. IHC analysis showed that visfatin and BNP immunoreactivity was diffusely observable in left ventricular myocytes of the MI mice. This study indicates that plasma visfatin levels are significantly higher in STEMI patients and that these higher visfatin levels correlate with elevated levels of cardiac enzymes, suggesting that increased plasma visfatin may be closely related to the degree of myocardial damage.  相似文献   

5.
Background: Cyclophilin A (CyPA) concentration increases in acute coronary syndrome. In an animal model of acute myocardial infarction, administration of angiotensin-converting-enzyme inhibitor was associated with lower left ventricular (LV) CyPA concentration and improved LV performance. This study investigated the relationships between changes in plasma CyPA concentrations and LV remodeling in patients with ST-elevation myocardial infarction (STEMI).Methods and Results: We enrolled 55 patients who underwent percutaneous coronary intervention for acute STEMI. Plasma CyPA, matrix metalloproteinase (MMP), interleukin-6 and high-sensitivity C-reactive protein concentrations were measured at baseline and at one-month follow-up. Echocardiography was performed at baseline and at one-, three-, and six-month follow-up. Patients with a decrease in baseline CyPA concentration at one-month follow-up (n = 28) had a significant increase in LV ejection fraction (LVEF) (from 60.2 ± 11.5% to 64.6 ± 9.9%, p < 0. 001) and preserved LV synchrony at six months. Patients without a decrease in CyPA concentration at one month (n = 27) did not show improvement in LVEF and had a significantly increased systolic dyssynchrony index (SDI) (from 1.170 ± 0.510% to 1.637 ± 1.299%, p = 0.042) at six months. Multiple linear regression analysis showed a significant association between one-month CyPA concentration and six-month LVEF. The one-month MMP-2 concentration was positively correlated with one-month CyPA concentration and LV SDI.Conclusions: Decreased CyPA concentration at one-month follow-up after STEMI was associated with better LVEF and SDI at six months. Changes in CyPA, therefore, may be a prognosticator of patient outcome.  相似文献   

6.

Objective

Left ventricular (LV) remodeling following myocardial infarction (MI) is characterized by progressive alterations of structure and function, named LV remodeling. Although several risk factors such as infarct size have been identified, LV remodeling remains difficult to predict in clinical practice. Changes within the extracellular matrix, involving matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), are an integral part of left ventricular (LV) remodeling after myocardial infarction (MI). We investigated the temporal profile of circulating MMPs and TIMPs and their relations with LV remodeling at 1 year and clinical outcome at 3 years in post-MI patients.

Methods

This prospective multicentre study included 246 patients with a first anterior MI. Serial echocardiographic studies were performed at hospital discharge, 3 months, and 1 year after MI, and analysed at a core laboratory. LV remodeling was defined as the percent change in LV end-diastolic volume (EDV) from baseline to 1 year. Serum samples were obtained at hospital discharge, 1, 3, and 12 months. Multiplex technology was used for analysis of MMP-1, -2, -3, -8, -9, -13, and TIMP-1, -2, -3, -4 serum levels.

Results

Baseline levels of MMP-8 and MMP-9 were positively associated with changes in LVEDV (P = 0.01 and 0.02, respectively). When adjusted for major baseline characteristics, MMP-8 levels remained an independent predictor LV remodeling (P = 0.025). By univariate analysis, there were positive relations between cardiovascular death or hospitalization for heart failure during the 3-year follow-up and the baseline levels of MMP-2 (P = 0.03), MMP-8 (P = 0.002), and MMP-9 (P = 0.03). By multivariate analysis, MMP-8 was the only MMP remaining significantly associated with clinical outcome (P = 0.02).

Conclusion

Baseline serum MMP-8 is a significant predictor of LV remodeling and cardiovascular outcome after MI and may help to improve risk stratification.  相似文献   

7.
Myocardial remodeling after myocardial infarction (MI) is associated with increased levels of the matrix metalloproteinases (MMPs). Levels of two MMP species, MMP-2 and MMP-9, are increased after MI, and transgenic deletion of these MMPs attenuates post-MI left ventricular (LV) remodeling. This study characterized the spatiotemporal patterns of gene promoter induction for MMP-2 and MMP-9 after MI. MI was induced in transgenic mice in which the MMP-2 or MMP-9 promoter sequence was fused to the beta-galactosidase reporter, and reporter level was assayed up to 28 days after MI. Myocardial localization with respect to cellular sources of MMP-2 and MMP-9 promoter induction was examined. After MI, LV diameter increased by 70% (P < 0.05), consistent with LV remodeling. beta-Galactosidase staining in MMP-2 reporter mice was increased by 1 day after MI and increased further to 64 +/- 6% of LV epicardial area by 7 days after MI (P < 0.05). MMP-2 promoter activation occurred in fibroblasts and myofibroblasts in the MI region. In MMP-9 reporter mice, promoter induction was detected after 3 days and peaked at 7 days after MI (53 +/- 6%, P < 0.05) and was colocalized with inflammatory cells at the peri-infarct region. Although MMP-2 promoter activation was similarly distributed in the MI and border regions, activation of the MMP-9 promoter was highest at the border between the MI and remote regions. These unique findings visually demonstrated that activation of the MMP-2 and MMP-9 gene promoters occurs in a distinct spatial relation with reference to the MI region and changes in a characteristic time-dependent manner after MI.  相似文献   

8.
The myocardial ATP concentration is significantly decreased in failing hearts, which may be related to the progressive loss of the myocardial total adenine nucleotide pool. The total myocardial interstitial purine metabolites (IPM) in the dialysate of interstitial fluid could reflect the tissue ATP depletion. In rats, postmyocardial infarction (MI) left ventricular (LV) remodeling was induced by ligation of the coronary artery. Cardiac microdialysis was employed to assess changes of IPM in response to graded beta-adrenergic stimulation with isoproterenol (Iso) in myocardium of hearts with post-MI LV remodeling (MI group) or hearts with sham operation (sham group). The dialysate samples were analyzed for adenosine, inosine, hypoxanthine, xanthine, and uric acid. LV volume was greater in the MI group (2.2 +/- 0.2 ml/kg) compared with the sham group (1.3 +/- 0.2 ml/kg, P < 0.05). Infarct size was 28 +/- 4%. The baseline dialysate level of uric acid was higher in the MI group (18.9 +/- 3.4 micromol) compared with the sham group (4.6 +/- 0.7 micromol, P < 0.01). During and after Iso infusion, the dialysate levels of adenosine, xanthine, and uric acid were all significantly higher in the MI group. Thus the level of IPM is increased in hearts with postinfarction LV remodeling both at baseline and during Iso infusion. These results suggest that the decreased myocardial ATP level in hearts with post-MI LV remodeling may be caused by the chronic depletion of the total adenine nucleotide pool.  相似文献   

9.
Left ventricular (LV) remodeling is known to contribute to morbidity and mortality after myocardial infarction (MI). Because LV remodeling is strongly associated with an inflammatory response, we investigated whether or not TLR-4 influences LV remodeling and survival in a mice model of MI. Six days after MI induction, TLR4 knockout (KO)-MI mice showed improved LV function 32 and reduced LV remodeling as indexed by reduced levels of atrial natriuretic factor and total collagen as well as by a reduced heart weight to body weight ratio when compared with WT-MI mice. This was associated with a reduction of protein levels of the intracellular TLR4 adapter protein MyD88 and enhanced protein expression of the anti-hypertrophic JNK in KO-MI mice when compared with wild-type (WT)-MI mice. In contrast, protein activation of the pro-hypertrophic kinases protein kinase Cdelta and p42/44 were not regulated in KO-MI mice when compared with WT-MI mice. Improved LV function, reduced cardiac remodeling, and suppressed intracellular TLR4 signaling in KO-MI mice were associated with significantly improved survival compared with WT-MI mice (62 vs 23%; p < 0.0001). TLR4 deficiency led to improved survival after MI mediated by attenuated left ventricular remodeling.  相似文献   

10.
A recent study suggests that exogenous ghrelin administration might decrease renal sympathetic nerve activity in conscious rabbits. In the present study, we investigated whether ghrelin administration would attenuate left ventricular (LV) remodeling following myocardial infarction (MI) via the suppression of cardiac sympathetic activity. Ghrelin (100 microg/kg sc, twice daily, n = 15) or saline (n = 15) were administered for 2 wk from the day after MI operation in Sprague-Dawley rats. The effects of ghrelin on cardiac remodeling were evaluated by echocardiographic, hemodynamic, histopathological, and gene analysis. In addition, before and after ghrelin (100 microg/kg sc, n = 6) was administered in conscious rats with MI, the autonomic nervous function was investigated by power spectral analysis obtained by a telemetry system. In ghrelin-treated rats, LV enlargement induced by MI was significantly attenuated compared with saline-treated rats. In addition, there was a substantial decrease in LV end-diastolic pressure and increases in the peak rate of the rise and fall of LV pressure in ghrelin-treated MI rats compared with saline-treated MI rats. Furthermore, ghrelin attenuated an increase in morphometrical collagen volume fraction in the noninfarct region, which was accompanied by the suppression of collagen I and III mRNA levels. Importantly, a 2-wk administration of ghrelin dramatically suppressed the MI-induced increase in heart rate and plasma norepinephrine concentration to the similar levels as in sham-operated controls. Moreover, acute administration of ghrelin to MI rats decreased the ratio of the low-to-high frequency spectra of heart rate variability (P < 0.01). In conclusion, these data suggest the potential usefulness of ghrelin as a new cardioprotective hormone early after MI.  相似文献   

11.
We tested the hypothesis that left ventricular (LV) remodeling late after myocardial infarction (MI) is associated with myocyte apoptosis in myocardium remote from the infarcted area and is related temporally to LV dilation and contractile dysfunction. One, four, and six months after MI caused by coronary artery ligation, LV volume and contractile function were determined using an isovolumic balloon-in-LV Langendorff technique. Apoptosis and nuclear morphology were determined by terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL) and Hoechst 33258 staining. Progressive LV dilation 1-6 mo post-MI was associated with reduced peak LV developed pressure (LVDP). In myocardium remote from the infarct, there was increased wall thickness and expression of atrial natriuretic peptide mRNA consistent with reactive hypertrophy. There was a progressive increase in the number of TUNEL-positive myocytes from 1 to 6 mo post-MI (2.9-fold increase at 6 mo; P < 0. 001 vs. sham). Thus LV remodeling late post-MI is associated with increased apoptosis in myocardium remote from the area of ischemic injury. The frequency of apoptosis is related to the severity of LV dysfunction.  相似文献   

12.
Previous studies have demonstrated seasonal variation in the incidence of acute myocardial infarction (AMI) with an increase in cases during the winter months. However, they did not assess whether ST-elevation MI (STEMI) and non-ST-elevation MI (NSTEMI) exhibit similar changes. The object of this study was to compare the seasonal variation of STEMI and NSTEMI. All patients who presented with AMI and underwent coronary angiography within seven days of admission were identified via the institutional database. STEMI diagnosis required admission ECG demonstrating ST elevation in at least two continguous leads. All AMIs not meeting criteria for STEMI were defined as NSTEMI. Patients were divided into monthly and seasonal groups based on the date of admission with MI. A total of 784 patients were included: 549 patients with STEMI and 235 with NSTEMI. When STEMI patients were analyzed by season, there were 170 patients (31%) in the winter months, a statistically significant difference of excess MI (p<0.005). When NSTEMI patients were analyzed, there were 62 patients (26%) in the winter with no statistically significant difference in the seasonal variation. Our findings suggest that the previously noted seasonal variation in the incidence of AMI is limited to patients presenting with STEMI, and that there are important physiological differences between STEMI and NSTEMI, the nature of which remains to be elucidated.  相似文献   

13.

Introduction

The expression of hundreds of genes is altered in response to left ventricular (LV) remodeling following large transmural myocardial infarction (MI). Thyroid hormone (TH) improves LV remodeling and cardiac performance after MI. However, the molecular basis is unknown.

Methods

MI was produced by ligation of the left anterior descending coronary artery in female SD rats. Rats were divided into the following groups: (1) Sham MI, (2) MI, and (3) MI+T4 treatment (T4 pellet 3.3 mg, 60 days release, implanted subcutaneously immediately following MI). Four weeks after surgery, total RNA was isolated from LV non-infarcted areas for microarray analysis using the Illumina RatRef-12 Expression BeadChip Platform.

Results

Signals were detected in 13,188 genes (out of 22,523), of which the expression of 154 genes were decreased and the expression of 200 genes were increased in MI rats compared with Sham MI rats (false discovery rate (FDR) <0.05). Compared to MI rats, T4 treatment decreased expression of 27 genes and increased expression of 28 genes. In particular, 6 genes down-regulated by MI and 12 genes up-regulated by MI were reversed by T4. Most of the 55 genes altered by T4 treatment are in the category of molecular function under binding (24) and biological processes which includes immune system process (9), multi-organism process (5) and biological regulation (19) nonexclusively.

Conclusions

These results suggest that altered expression of genes for molecular function and biological process may be involved in the beneficial effects of thyroid hormone treatment following MI in rats.  相似文献   

14.
Cardiomyocyte remodeling, which includes partial dedifferentiation of cardiomyocytes, is a process that occurs during both acute and chronic disease processes. Here, we demonstrate that oncostatin M (OSM) is a major mediator of cardiomyocyte dedifferentiation and remodeling during acute myocardial infarction (MI) and in chronic dilated cardiomyopathy (DCM). Patients suffering from DCM show a strong and lasting increase of OSM expression and signaling. OSM treatment induces dedifferentiation of cardiomyocytes and upregulation of stem cell markers and improves cardiac function after MI. Conversely, inhibition of OSM signaling suppresses cardiomyocyte remodeling after MI and in a mouse model of DCM, resulting in deterioration of heart function after MI but improvement of cardiac performance in DCM. We postulate that dedifferentiation of cardiomyocytes initially protects stressed hearts but fails to support cardiac structure and function upon continued activation. Manipulation of OSM signaling provides a means to control the differentiation state of cardiomyocytes and cellular plasticity.  相似文献   

15.
Postinfarction left ventricular remodeling leads to the functional decline of the left ventricle (LV). Since dihydropyridine receptor (DHPR), ryanodine receptor (RyR2), and sarco-endoplasmic reticulum (SR) Ca2+-ATPase2 (SERCA2a) play a major role in the contractility of the heart, the aim of our study was to evaluate the time course of changes in the expression of these proteins 1 day, 2 weeks and 4 weeks after myocardial infarction (MI). Myocardial infarction was produced by ligation of left anterior descending coronary artery of the rat. Transthoracic echocardiography was performed to characterize structural and functional changes after MI. To evaluate protein mRNA levels and the relative amount of proteins, real-time quantitative RT-PCR and Western blotting were used. LV ejection fraction and fractional shortening decreased significantly during the 4-week follow-up period (P < 0.001). Typical features of LV remodeling after MI were seen, with a decrease in anterior wall thickness (P < 0.001) and dilatation of the LV (P < 0.001). Expression of DHPR and RyR2 mRNAs decreased and Serca2a mRNA tended to decrease 1 day after MI (P < 0.001, P < 0.01 and P = 0.06, respectively), followed by recovery of the expression during the next 4 weeks. In the infarcted hearts the quantities of SERCA2 proteins in the LV were significantly decreased at the time of 4 weeks. In conclusion, MI was associated with transient decrease in the expression of the DHPR and RyR2 mRNAs and a reduced quantity of SERCA2 proteins in the LV. Since they have a key role in the contraction of the heart, changes in the expression of these proteins may be important regulators of LV systolic function after MI.  相似文献   

16.
《Cytotherapy》2014,16(4):460-470
Background aimsTraditionally, stem cell therapy for myocardial infarction (MI) has been administered as a single treatment in the acute or subacute period after MI. These time intervals coincide with marked differences in the post-infarct myocardial environment, raising the prospect that repeat cell dosing could provide incremental benefit beyond a solitary intervention. This prospect was evaluated with the use of mesenchymal stromal cells (MSCs).MethodsThree groups of rats were studied. Single-therapy and dual-therapy groups received allogeneic, prospectively isolated MSCs (1 × 106 cells) by trans-epicardial injection immediately after MI, with additional dosing 1 week later in the dual-therapy cohort. Control animals received cryopreservant solution only. Left ventricular (LV) dimensions and ejection fraction (EF) were assessed by cardiac magnetic resonance immediately before MI and at 1, 2 and 4 weeks after MI.ResultsImmediate MSC treatment attenuated early myocardial damage with EF of 35.3 ± 3.1% (dual group, n = 12) and 35.2 ± 2.2% (single group, n = 15) at 1 week after MI compared with 22.1 ± 1.9% in controls (n = 17, P < 0.01). In animals receiving a second dose of MSCs, EF increased to 40.7 ± 3.1% by week 4, which was significantly higher than in the single-therapy group (EF 35.9 ± 1.8%, P < 0.05). Dual MSC treatment was also associated with greater myocardial mass and arteriolar density, with trends toward reduced myocardial fibrosis. These incremental benefits were especially observed in remote (non-infarct) segments of LV myocardium.ConclusionsRepeated stem cell intervention in both the acute and the sub-acute period after MI provides additional improvement in ventricular function beyond solitary cell dosing, largely owing to beneficial changes remote to the area of infarction.  相似文献   

17.
Right ventricular (RV) weight increases dependent on time after myocardial infarction (MI) and on MI size. The sequential changes in RV volume and hemodynamics and their relations to left ventricular (LV) remodeling after MI are unknown. We therefore examined the time course of RV remodeling in rats with LV MI. MI was produced by left coronary artery ligation. Four, eight, and sixteen weeks later, LV and RV hemodynamic measurements were performed and pressure-volume curves were obtained. For serial measurement of RV volumes and performance, cine-MRI was performed 2 and 8 wk after MI. The ratios of beta-myosin heavy chain (MHC) to alpha-MHC and skeletal to cardiac alpha-actin were determined for the RV and LV after large MI or sham operation. RV weight increased in rats with MI, as did RV volume. RV pressure-volume curves were shifted toward larger volumes 16 wk after large MI. RV systolic pressure increased gradually over time; however, the gain in RV weight was always in excess of RV systolic pressure. The ratios of skeletal to cardiac alpha-actin and beta-MHC to alpha-MHC were increased after MI in both ventricles in a similar fashion. Because RV wall stress was not increased after infarction, mechanical factors may not conclusively explain hypertrophy, which maintained balanced loading conditions for the RV even after large LV infarction.  相似文献   

18.
Left ventricular (LV) remodeling, which includes ventricular dilatation and increased interstitial fibrosis after myocardial infarction (MI), is the critical process underlying the progression to heart failure. Therefore, a novel approach for preventing LV remodeling after MI is highly desirable. Yuzu is a citrus plant originating in East Asia, and has a number of cardioprotective properties such as hesperidin. However, no study has proved whether yuzu can prevent LV remodeling. The aim of this study was to determine the effects of yuzu on heart failure (HF) and its potential impact on the LV remodeling process after MI. Our in vivo study using the permanent left anterior descending coronary artery (LAD) occlusion model demonstrate that one week pre-treatment with yuzu or its major metabolite hesperidin before LAD occlusion significantly attenuated cardiac dysfunction, myocyte apoptosis and inflammation. Not only yuzu but also hesperidin inhibited caspase-3 activity, myeloperoxidase expression, α-smooth muscle actin expression, and matrix metalloproteinase-2 activity in a permanent LAD occlusion rat model. To our knowledge, our findings provide the first evidence that yuzu and hesperidin prevent MI-induced ventricular dysfunction and structural remodeling of myocardium.  相似文献   

19.
《IRBM》2014,35(4):182-188
ObjectivesInfarct size is a major surrogate marker for prognosis in the context of myocardial infarction. There is a growing interest in validating a quantitative assessment approach in order to: (1) standardize these analyses; (2) to precise the individual prognosis of our patients. Several methods are available and were tested across their capacity to predict left ventricular (LV) remodeling at three months.Patients and methodsLate gadolinium enhancement-MRI was performed on day 5 and after a period of three months in 92 patients with STEMI. LV volumes and scar parameters were assessed visually (by using a four scale score) and quantitatively on day 5 and at three months. Dichotomous thresholds were defined first visually (VISUAL), then by 2, 5 and 6 standard deviations above remote myocardium, and by the full-width at half-maximum (FWHM) method.ResultsAll infarct sizing methods showed great relation to LV remodeling at three months (ROC analysis). Univariate predictors of an LV end-systolic volume index (LVESVi) superior to 70 mL/m2 were: heart failure, creatin kinase peak and infarct size at day 5. FWHM was shown to be the best of all quantitative methods. An infarct size superior to 44 grams predicted a LVESVi > 70 mL/m2 with a sensitivity of 90% and a specificity of 92.5%. FWHM reproducibility was good (r = 0.895, P < 0.0001, Bland Altman bias of 0.8 g).ConclusionIn the context of STEMI, FWHM is a tough and reproducible algorithm to quantitatively assess late gadolinium hyperenhancement, greatly related to functional prognosis at three months follow-up.  相似文献   

20.
In patients with ST-segment elevation myocardial infarction (STEMI), the time of onset of ischemia has been associated with myocardial infarction (MI) size. Myocardial blush grade (MBG) reflects myocardial response to ischemia/reperfusion injury, which may differ according to time of the day. The aim of our study was to explore the 24-hour variation in MBG and MI size in relation to outcomes in STEMI patients. A retrospective multicenter analysis of 6970 STEMI patients was performed. Time of onset of STEMI was divided into four 6-hour periods. STEMI patients have a significant 24-hour pattern in onset of symptoms, with peak onset around 09:00 hour. Ischemic time was longest and MI size, estimated by peak creatine kinase concentration, was largest in patients with STEMI onset between 00:00 and 06:00 hours. Both MBG and MI size were independently associated with mortality. Time of onset of STEMI was not independently associated with mortality when corrected for baseline and procedural factors. Interestingly, patients presenting with low MBG between 00:00 and 06:00 hours had a better prognosis compared to other groups. In conclusion, patients with symptom onset between 00:00 and 06:00 hours have longer ischemic time and consequently larger MI size. However, this does not translate into a higher mortality in this group. In addition, patients with failed reperfusion presenting in the early morning hours have better prognosis, suggesting a 24-hour pattern in myocardial protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号