首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of cisplatin, an anticancer agent, on DNA synthesis and cell cycle progression of a cisplatin-resistant cell line was investigated. Cell cycle analysis using flow cytometry showed that cytotoxic concentrations of cisplatin caused a transient inhibition of parental HeLa cells at S phase, followed by accumulation at G2 phase. In contrast, the resistant cells progressed through the cell cycle without being affected by the same treatment. However, cell cycle distributions were the same in the resistant and the parental cells at IC50, the drug concentration inhibiting cell growth by 50%. Studies using a [3H]thymidine incorporation technique also demonstrated a transient inhibition of DNA synthesis in HeLa cells by cisplatin; such inhibition was greatly reduced in the resistant cells. These data argue for the hypothesis that the inhibition of DNA synthesis is important in determining cisplatin-induced cytotoxicity. In addition, the accumulation of cells at G0/G1 by serum starvation was not effective in the resistant cells compared to the parental cells, suggesting that the control of cell cycle exiting is also altered in the resistant cells. Taken together, these results support the notion that alterations in cell cycle control, in particular G2 arrest, are important in determining the sensitivity or resistance of mammalian cells to cisplatin and may have a role in clinical protocols.  相似文献   

2.
The effect of cell crowding on DNA synthesis (incorporation of 3HTdR and 32PO4) was studied by an improved method in monolayers of secondary cells and established cell lines, either normal or transformed by viruses or carcinogens. The method was based mainly on pulse labeling of cultures of cells a few hours after their seeding in equal numbers onto areas of different size in identical dishes, a condition which ensured equal physiological conditions and different degrees of crowding of cells. DNA synthesis was hardly inhibited in crowded monolayers of secondary chick, mouse and hamster embryo cells. The incorporation of radioactive thymidine and phosphate into DNA of cell lines such as BHK 21, 3T3/SV40 and L929 was strongly inhibited. An SV40-transformed line of hamster kidney cells (HKT7) synthetized DNA equally well in sparse as in crowded monolayers. In lines of human amnion (FL) and BHK 21 cells which were more extensively studied the degree of inhibition of DNA synthesis was inversely proportional to their density. Autoradiography after 3HTdR pulse-labeling indicated that the same proportion of cell nuclei were labeled in sparse and in crowded cultures. The extent of labeling (number of grains per nucleus) was lower in crowded cultures of those cells that also showed inhibition of incorporation of this label as measured by scintillation. The inhibition is thus expressed in retardation of DNA synthesis in cells in S phase rather than arresting it in a larger percentage of cells.  相似文献   

3.
Colchicine, vinblastine, and vincristine inhibit the mitogenic stimulation of lymphocytes by concanavalin A as measured by the incorporation of [3H]thymidine and the appearance of blast cells. The inhibitory effect of colchicine could not be accounted for by diminution in cell viability or by metaphase arrest of mitosis in the stimulated cells. Moreover, the inhibition of [3H]thymidine incorporation was not due to blockage of thymidine transport or inhibition of DNA synthesis inasmuch as addition of colchicine had no effect on cells in the S phase of the cell cycle. The time of inhibition was correlated with the kinetics of cellular commitment to lectin activation and the kinetic data indicated that colchicine blocks stimulation early in the sequence of events following addition of the mitogen. These findings support the hypothesis that cytoplasmic microtubular function plays a role in the commitment of resting cells to undergo mitotic division.  相似文献   

4.
The activities throughout the cell cycle of thymidine kinase (EC 2.7.1.21), dihydrothymine dehydrogenase (EC 1.3.1.2), thymidine phosphorylase (EC 2.4.2.4) and dTMP phosphatase (EC 3.1.3.35) were measured in the Epstein-Barr virally transformed human B lymphocyte line LAZ-007. Cells were synchronised at different stages of the cell cycle using the technique of centrifugal elutriation. The degree of synchrony in each cycle-stage cell population was determined by flow microfluorimetric analysis of DNA content and by measurement of thymidine incorporation into DNA. The activity of the anabolic enzyme thymidine kinase was low in the G1 phase cells, but increased many-fold during the S and G2 phases, reaching a maximum after the peak of DNA synthesis, then decreasing in late G2 + M phase. By contrast, the specific activities of the enzymes involved in thymidine and thymidylate catabolism, dihydrothymine dehydrogenase, thymidine phosphorylase and dTMP phosphatase remained essentially constant throughout the cell cycle, indicating that the fate of thymidine at different stages of the cell cycle is governed primarily by regulation of the level of the anabolic enzyme thymidine kinase and not by regulation of the levels of thymidine catabolising enzymes.  相似文献   

5.
The MDA-468 human breast cancer cell line displays the unusual phenomenon of growth inhibition in response to pharmacological concentrations of EGF. This study was initiated with the objective of elucidating the cellular mechanisms involved in EGF-induced growth inhibition. Following EGF treatment the percentage of MDA-468 cells in G1 phase increased, together with a concomitant depletion in S and G2/M phase populations, as revealed by flow cytometry of DNA content. The apparent G1 block in the cell cycle was confirmed by treating the cells with vinblastine. DNA synthesis was reduced to about 35% of that measured in control, untreated cells after 48 h of EGF treatment, as measured by the incorporation of [3H]thymidine. DNA synthesis returned to normal following the removal of EGF from the growth-arrested cells. In order to locate the EGF-induced event responsible for the G1 arrest more precisely, we examined the expression of certain cell cycle-dependent genes by Northern blot analysis. EGF treatment did not alter either the induction of the early G1 marker, c-myc, or the expression of the late G1 markers, proliferating cell nuclear antigen, and thymidine kinase. However, EGF-treated cells revealed down regulation of p53 and histone 3.2 expression, which are expressed at the G1/S boundary and in S phase, respectively. These results indicate that EGF-induced growth inhibition in MDA-468 human breast cancer cells is characterized by a reversible cell cycle block at the G1/S boundary.  相似文献   

6.
Staining with acridine orange and flow microfluorometry was used to measure the distribution over the cell cycle of Concanavalin A (ConA)-stimulated mouse thymocytes. These data were compared with data on isotope incorporation. Mitogen-induced [14C]thymidine incorporation into DNA increased 10–20-fold upon addition of 2-mercaptoethanol or spleen-derived glass adherent cells. However, the proportion of proliferating cells as measured by flow microfluorometry increased only by a factor of two. Removal of nylonwool adherent cells nearly abolished ConA-induced thymidine incorporation; this was restored by the addition of glass-adherent cells. The fraction of mitogen-activated cells as measured by flow microfluorometry was hardly affected by nylonwool filtration and addition of mercaptoethanol or glass adherent cells enhanced the proportion of activated cells that can enter DNA synthesis. From these and similar experiments it is concluded that DNA synthesis measured as thymidine incorporation is only proportional to the number of mitogen-activated cells under restricted conditions. Differences in thymidine incorporation in different lymphocyte populations or measured under different conditions are difficult to interpret in terms of number of proliferating cells. The cytofluorographic method is a simple and rapid way to solve these problems quantitatively and rapidly.  相似文献   

7.
Our previous studies have implied that prostaglandins inhibit cell growth independent of cAMP. Recent reports, however, have suggested that prostaglandin arrest of the cell cycle may be mediated through protein kinase A. In this report, in order to eliminate the role of c-AMP in prostaglandin mediated cell cycle arrest, we use the-49 lymphoma variant (cyc?) cells that lack adenylate cyclase activity. We demonstrate that dimethyl prostaglandin A1 (dmPGA1) inhibits DNA synthesis and cell growth in cyc? cells. DNA synthesis is inhibited 42% by dmPGA1 (50 μM) despite the fact that this cell line lacks cellular components needed for cAMP generation. The ability to decrease DNA synthesis depends upon the specific prostaglandin structure with the most effective form possessing the α,β unsaturated ketone ring. Dimethyl PGA1 is most effective in inhibiting DNA synthesis in cyc? cells, with prostaglandins PGE1 and PGB1 being less potent inhibitors of DNA synthesis. DmPGE2 caused a significant stimulation of DNA synthesis. S-49 cyc- variant cells exposed to (30–50 μm) dmPGA1, arrested in the G1 phase of the cell cycle within 24 h. This growth arrest was reversed when the prostaglandin was removed from the cultured cells; growth resumed within hours showing that this treatment is not toxic. The S-49 cyc? cells were chosen not only for their lack of adenylate cyclase activity, but also because their cell cycle has been extensively studied and time requirements for G1, S, G2, and M phases are known. Within hours after prostaglandin removal the cells resume active DNA synthesis, and cell number doubles within 15 h suggesting rapid entry into S-phase DNA synthesis from the G1 cell cycle block. The S-49 cyc? cells are known to have a G1/S boundary through M phase transition time of 14.8 h, making the location of the prostaglandin cell cycle arrest at or very near the G1/S interface. The oncogenes, c-fos and c-myc which are normally expressed during G1 in proliferating cells have a 2–3 fold enhanced expression in prostaglandin G1 arrested cells. These data using the S-49 variants demonstrate that dmPGA1 inhibits DNA synthesis and arrests the cell cycle independent of cAMP-mediated effects. The prostaglandin arrested cells maintain the gene expression of a G1 synchronous cell which suggests a unique molecular mechanism for prostaglandin action in arresting cell growth. These properties indicate that this compound may be an effective tool to study molecular mechanisms of regulation of the cell cycle.  相似文献   

8.
MKT-1, a virus nonproducer lymphoblastoid cell line established from a Marek's disease tumor, was synchronized by double thymidine block to determine the sequence of events in the synthesis of cellular and latent marek's disease virus DNA. Cellular DNA synthesis was measured by incorporation of [3H]thymidine, whereas viral DNA synthesis was determined by DNA-DNA reassociation kinetics. The results of these studies indicate that the resident Marek's disease viral DNA in MKT-1 cells replicates during the early S phase of the cell cycle, before the onset of active cellular DNA synthesis. This observation is similar to that seen in the replication of resident Epstein-Barr virus DNA in synchronized Raji cells.  相似文献   

9.
We report procedures to allow incorporation and detection of 5-ethynyl-2'-deoxyuridine (EdU) in fission yeast, a thymidine analogue which has some technical advantages over use of bromodeoxyuridine. Low concentrations of EdU (1 μM) are sufficient to allow detection of incorporation in cells expressing thymidine kinase and human equilibrative nucleoside transporter 1 (hENT1). However EdU is toxic and activates the rad3-dependent checkpoint, resulting in cell cycle arrest, potentially limiting its applications for procedures which require labelling over more than one cell cycle. Limited DNA synthesis, when elongation is largely blocked by hydroxyurea, can be readily detected by EdU incorporation using fluorescence microscopy. Thus EdU should be useful for detecting early stages of S phase, or DNA synthesis associated with DNA repair and recombination.  相似文献   

10.
The effects of sodium butyrate on [3H]thymidine incorporation and cell growth characteristics in randomly growing and synchronized HeLa S3 cells have been examined in an attempt to determine what effects, if any, butyrate has on S phase cells. Whereas 5 mM sodium butyrate rapidly inhibits [5H]thymidine incorporation in a randomly growing cell populations, it has no effect on incorporation during the S phase in cells synchronized by double thymidine block techniques. This lack of effect does not result from an impaired ability of the S phase cells to take up butyrate, since butyrate administration during this period leads to histone hyperacetylation that is identical with that seen with butyrate treatment of randomly growing cells. Furthermore, the ability to induce such hyperacetylation with butyrate during an apparently normal progression through S phase indicates that histone hyperacetylation probably has no effect on the overall process of DNA replication. Temporal patterns of [3H]thymidine incorporation and cell growth following release from a 24-h exposure to butyrate confirm blockage of cell growth in the G1 phase of the cell cycle. Thus, the inhibition by butyrate of [3H]thymidine incorporation in randomly growing HeLa S3 cell populations can be accounted for solely on the basis of a G1 phase block, with no inhibitory effects on cells already engaged in DNA synthesis or cells beyond the G1 phase block at the time of butyrate administration.  相似文献   

11.
Treatment of ST2/K9 cells, a cloned mouse T-cell line, with 1 mM sodium butyrate for 24 h leads to complete growth arrest in G1. This block is completely reversible and restimulation of cellular growth is entirely dependent on the presence of interleukin-2 (Il-2) in the culture medium. Additional as yet undefined serum factors are necessary for maintenance of further proliferation. After release from butyrate-induced growth arrest, Il-2 is required only during the induction phase of DNA replication. At the onset of thymidine incorporation, the growth factor can be removed, after which DNA replication occurs and the cells are able to complete only one cycle of duplication. The data presented here show that synchronization with sodium butyrate promotes cellular accumulation in the lymphokine-sensitive phase of the cell cycle. On the basis of the parameters established for restimulation of these cells, the detailed characterization of the molecular events involved in Il-2-mediated growth is possible.  相似文献   

12.
A single dose of erythropoietin stimulates DNA synthesis in the spleen of the polycythemic mouse with the maximum effect occurring 48 h after the hormone is administered. The increase in DNA synthesis is accompanied by morphologic evidence of increased erythropoiesis and by increases in the activities per cell of both thymidine kinase and cytoplasmic high molecular weight DNA polymerase-alpha. The activity of low molecular weight DNA polymerase-beta does not change significantly. Spleen cells from mice which had received either erythropoietin or saline 48 h previously were separated into 7 density classes on discontinuous bovine serum albumin gradients. Following the administration of erythropoietin, thymidine incorporation and thymidine kinase activity showed the greatest relative increases per nucleated cell in layers 3, 4 and 5 of the gradient. DNA polymerase-alpha showed the greatest increase in cells of the denser layers 5, 6 and 7. Each layer contained normoblasts and lymphocytes. The less well differentiated erythroid elements constituted a larger proportion of cells in layers of lower density. Increases in the rates of thymidine incorporation were better correlated with increases in thymidine kinase activity than with increases in DNA polymerase activities. Measurement of iron incorporation into heme confirm the morphological impression that the cell type responsible for increased thymidine incorporation and increased DNA polymerase-alpha activity is the young normblast.  相似文献   

13.
PHA-stimulated leucocytes treated with cytosine arabinoside showed a changed uptake of [3H]thymidine, a lowered mitotic index and chromosome damage. Combined autoradiography and Feulgen microdensitometry demonstrated inhibition of DNA synthesis. Cells in the S period of the cell cycle were arrested in their progress, and cells newly entering S accumulated at the beginning of this period. At stronger concentrations these effects on the cell cycle were complicated by the cytotoxic effect of cytosine arabinoside. The inhibition of DNA synthesis is considered in the light of the chromosomal damage and megaloblastic changes caused by cytosine arabinoside, and is compared to the different pattern of DNA arrest found in megaloblastic anaemia.  相似文献   

14.
The alkylating antitumor agent triethyleneiminobenzoquinone (Trenimon) causes a rapid decrease in the incorporation of labeled thymidine into the DNA of Yoshida or Ehrlich ascites tumor cells. The effect is expressed 4 h after administration of 6 × 10−8 moles/kg of the drug to mice bearing Yoshida ascites tumors or of 6 × 10−7 moles/kg to Ehrlich ascites tumor-bearing animals, respectively. The reduced incorporation of labeled thymidine which is observed under these conditions is not due to an inhibition of DNA synthesis. DNA synthesis was measured by an isotope dilution assay after pulse-labeling with 3H-thymidine and by monitoring the increase in the total amount of DNA of the cell populations. The data demonstrate that DNA synthesis is not affected during the first 8 h after exposure to the drug. This conclusion is supported by cell kinetic measurements which indicate that the alkylating agent does not interfere with the progression of cells into the S phase, but exerts a block at the G 2 stage of the cell cycle. The reduced incorporation of thymidine into DNA is explained by a decreased transport of the nucleoside into the cells.  相似文献   

15.
Employing defined media conditions, the insulin sensitivities of mouse mammary gland epithelial cells in primary culture and MCF-7 human mammary epithelial cells were determined. Insulin stimulated the rates of (3H] uridine incorporation into RNA and [3H] leucine incorporation into protein in both primary mouse mammary gland epithelial cell cultures and MCF-7 cell cultures at concentrations approximating the dilution endpoint of the hormone (10-21 M). Insulin stimulated the rate of [3H] thymidine incorporation into DNA in primary mouse mammary gland epithelial cells at the dilution endpoint concentrations. However, MCF-7 cells required insulin concentrations 100-1000-times that necessary in mouse mammary epithelial cultures to elicit an increased rate of [3H] thymidine incorporation into DNA. Evidence is presented which suggests that the increased rates of uptake of 3H- uridine, [3H] thymidine and [3H] leucine into their respective precursor pools is not responsible for the apparent stimulation of RNA, DNA and protein synthesis.  相似文献   

16.
The effects of ACTH and 8-Br-cAMP on growth and replication of a functional mouse adrenal tumor cell line (Y-1) were investigated. ACTH and 8-Br-cAMP both inhibited DNA synthesis and replication when added to randomly growing cell cultures. ACTH addition and serum deprivation each arrested cells in G1; an additional point of arrest in G2 occurred with 8-Br-cAMP. Cells whose growth was arrested in G1 by ACTH had a significantly larger volume and protein and RNA content compared to cells arrested in G1 by serum deprivation. When ACTH or 8-Br-cAMP was added with serum to cells arrested by serum deprivation, the wave of DNA synthesis and cell division seen with serum was abolished. ACTH and 8-Br-cAMP had no effect on the serum-induced increases in protein and RNA content, rates of leucine incorporation into protein and uridine incorporation into RNA, and RNA polymerase I activity observed in cells during the pre-replicative period. Partial inhibition of the serum-induced increase in uridine transport occurred. ACTH and cAMP do not appear to inhibit replication by generalized negative pleiotypic effects but rather to inhibit the initiation of DNA synthesis more specifically. The ACTH-arrested Y-1 cell resembles an in vivo hypertrophied adrenal cortical cell.  相似文献   

17.
Temporal relationships between hydroxymethylglutaryl-CoA reductase activity, biosynthesis of C27 sterols, and [3H]thymidine incorporation into DNA were studied in a rat embryo fibroblast cell line synchronized by double thymidine block and cultured in cholesterol-containing medium. Cyclic variations of HMG-CoA reductase activity and C27 sterols occurred, with two maxima in S and G2M phases; the relative shortness of the G1 phase (3 h) in these cells could be responsible for the shift of sterol synthesis in the S phase. No noticeable variation of the individual C27 sterols was observed during the entire cell cycle. In each experiment, there was a good linear correlation between HMG-CoA reductase activity and C27 sterol synthesis, but from one experiment to another, a given level of enzymatic activity led to varying levels of [2-14C]acetate incorporation into sterols. In our experimental conditions, total HMG-CoA reductase activity is measured, and the preceding observation could be explained by a varying degree of phosphorylation of the enzyme depending on the metabolic state of the cells at the start of the experiment. The cyclic variations of the enzyme activity seem to be due more to increased synthesis at given times of the cycle than to periodic dephosphorylation. We question the existence of a relationship between cell division and cyclic sterol synthesis occurring in cells cultured in cholesterol-containing medium.  相似文献   

18.
Purine nucleoside phosphorylase (PNP; EC 2.4.2.1) deficiency is thought to cause T-lymphocyte depletion by accumulation of dG and dGTP, resulting in feedback inhibition of ribonucleotide reductase (RR; EC 1.17.4.1) and hence DNA synthesis. To test for additional toxic mechanisms of dG, we selected a double mutant of the mouse T-lymphoma S-49 cell line, dGuo-L, which is deficient in PNP and partially resistant to dGTP feedback inhibition of RR. The effects of dG on dGuo-L cells (concn. causing 50% inhibition, IC50 = 150 microM) were compared with those on the wild-type cells (IC50 = 30 microM) and the NSU-1 mutant with PNP deficiency only (IC50 = 15 microM). Fluorescence flow cytometry showed that equitoxic dG concentrations arrested wild-type and NSU-1 cells at the G1-S interface while allowing continued DNA synthesis in the S-phase, whereas the double mutant dGuo-L cells progressed through the cell cycle normally. dGuo-L cells accumulated high levels of dGTP in G1-phase, but not in S-phase cells, because of the utilization of dGTP for DNA synthesis and limited capacity to synthesize dGTP from dG. These results support the hypothesis that dG/dGTP toxicity occurs in the G1-phase or at the G1-S interface. Failure of dG to arrest the double mutant dGuo-L cells at the G1-S interface allows these cells to escape into S-phase, with an accompanying drop in dGTP levels. Thus the partial resistance of dGuo-L cells to dG toxicity may result from their shorter residence time in G1, allowing them to sustain higher dGTP levels. Hence RR inhibition by dGuo may not be the primary toxic mechanism in S-49 cells; rather, it may serve as an accessory event in dG toxicity by keeping the cells in the sensitive phase of the cell cycle. Among the possible targets of dG toxicity is RNA synthesis, which was inhibited at an early stage in dGuo-L cells.  相似文献   

19.
EGF induces cell cycle arrest of A431 human epidermoid carcinoma cells   总被引:4,自引:0,他引:4  
The human carcinoma cell line A431 is unusual in that physiologic concentrations of epidermal growth factor (EGF) inhibit proliferation. In the presence of 5-10 nM EGF proliferation of A431 cells is abruptly and markedly decreased compared to the untreated control cultures, with little loss of cell viability over a 4-day period. This study was initiated to examine how EGF affects the progression of A431 cells through the cell cycle. Flow cytometric analysis of DNA in EGF-treated cells reveals a marked change in the cell cycle distribution. The percentage of cells in late S/G2 increases and early S phase is nearly depleted. Since addition of the mitotic inhibitor vinblastine causes accumulation of cells in mitosis and prevents reentry of cells into G1, it is possible to distinguish between slow progression through G1 and G2 and blocks in those phases. When control cells, not treated with EGF, are exposed to vinblastine, the cells accumulate mitotic figures, as expected, and show progression into S, thus diminishing the number of cells in G1. In contrast, no mitotic figures are found among the EGF-treated cells in the presence or absence of vinblastine, and progression from G1 into S is not observed, as the number of cells in G1 remains constant. These results suggest that there are two EGF-induced blocks in cell cycle transversal; one is in late S and/or G2, blocking entry into mitosis, and the other is in G1, blocking entry into S phase. After 24 hours of EGF treatment, DNA synthesis is reduced to less than 10% compared to untreated controls as measured by the incorporation of [3H]thymidine or BrdU. In contrast, protein synthesis is inhibited by about twofold. Although inhibition of protein synthesis is less extensive, it occurs 6 hours prior to an equivalent inhibition of DNA synthesis. The rapid decrease in protein synthesis may result in the subsequent cell cycle arrest which occurs several hours later.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号