首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P Mattson  J Kowal 《Tissue & cell》1983,15(5):805-821
We have demonstrated previously that the steroidogenic activity of ACTH on cultured adrenal tumor cells is associated with cell rounding and a rearrangement of microfilaments. Cytochalasin B (CB) also induces cell rounding, but changes the conformation of microfilaments and severely inhibits steroidogenesis. ACTH and CB may have different modes of action on the contractile machinery which are related to their opposing actions on steroidogenesis. To investigate this possibility further, we have examined the reversibility of the morphological and functional effects of these agents. Cultures were incubated for 1 hr, with and without ACTH (10 microU/ml of media), or with CB (50 micrograms/ml), or with both agents simultaneously. After a media wash, the cultures were incubated for 1 hr, with and without ACTH. The steroid production of the cells during pre- and post-washout incubations was determined, and some cultures were fixed for electron microscopy at the end of both incubation periods. The three- to ten-fold increases in steroidogenic activity of ACTH-stimulated cells declined during recovery incubations, but remained well above basal values. These cells nearly reflattened and began to regain stress fibers which had been 'pulled apart'. The 'washed out' ACTH-stimulated cells were often refractory to restimulation. Cells recovering from CB also reflattened. Masses of filamentous felt induced by the drug disappeared from the cytoplasm, lost microvilli reappeared and stress fibers reformed. The 20-50% inhibition of basal steroidogenesis by CB was completely reversed. When ex-CB-treated cells were incubated with ACTH, their morphology and steroid production were typical of acutely stimulated cells. The recovery behavior of cells incubated with ACTH and CB simultaneously reflected the observation that there were cell-specific responses to one agent or the other during initial incubations. The persistence of heightened steroidogenic activity following a washout of ACTH and the rapid reversal of the effects of CB strongly support the concept that regulated actomyosin interactions are an integral part of the steroidogenic process.  相似文献   

2.
R Benis  P Mattson 《Tissue & cell》1989,21(4):479-494
In adrenocortical cells, the first step in the enzymatic processing of cholesterol to steroid end products occurs in the mitochondria. ACTH increases mitochondrial cholesterol and steroidogenesis. In cultured mouse adrenocortical tumor cells, microtubule-based organelle motility may increase the proximity of mitochondria to the SER, lipid droplets and endoscome-derived lysosomes, thereby facilitating the transfer of cholesterol from these organelles to the mitochondrial outer membrane. ACTH may increase opportunities for the transfer by promoting organelle motility and by increasing the number of lysosomes. Taxol, a microtubule polymerizer, inhibits basal and ACTH-induced steroidogenesis in these cells, presumably at the step where mitochondria obtain cholesterol. We examined the ultrastructure of taxol-treated, unstimulated and ACTH-stimulated cells, seeking alterations which conceivably could interefer with the proposed organelle transport and encounters, and thus correlate with taxol's inhibition of steroidogenesis. Primary cultured cells were incubated in serum-containing medium for 4 hr with and without ACTH (10 mU/ml), with 10 micrograms/ml and 50 micrograms/ml of taxol, and with ACTH and taxol 10 or taxol 50 simultaneously. Culture media were analyzed for the presence of secreted steroids at the end of 1, 2, and 4 hr of incubation. At the end of the fourth hour, unstimulated cells and cells treated with ACTH, taxol 50, and both agents simultaneously, were fixed and processed for EM. Taxol inhibited basal and ACTH-induced steroidogenesis in a dose-dependent fashion. In both unstimulated and ACTH-stimulated cells, taxol 50 formed numerous microtubule bundles, but did not markedly change the distribution of mitochondria and lipid droplets. SER tubules, and clusters of Golgi fragments, endosomes, and lysosomes appeared to be translocated towards the cell periphery along some of the microtubules. Taxol permitted an ACTH-induced cell rounding and microfilament rearrangement considered to facilitate organelle motility. Our data indicate that taxol disrupts the formation of lysosomes by these adrenal cells, but it seemed unlikely that taxol's ultrastructural effects could prevent organelle transport proposed to cause meetings between mitochondria and the SER or lipid droplets, or prevent ACTH-caused increases in these encounters. Taxol may instead prevent the transfer of lipid droplet or SER-contained cholesterol to adjacent mitochondria, by a means not detectable in our electron micrographs.  相似文献   

3.
ACTH increases the basal steroidogenic activity of cultured adrenocortical tumor cells, whereas moderate-high doses of cytochalasin B (CB) inhibit both basal and ACTH-induced steroidogenesis. Previous ultrastructural studies have revealed that ACTH rearranges microfilaments in these adrenal cells, whereas CB causes microfilaments to aggregate into felt-like masses. It has been postulated that the ACTH effects may facilitate organelle motility and increase organelle interactions that are required for steroid biosynthesis, and that the CB-created "foci" may impede or prevent the organelle meetings. To shed light on these possibilities, we have employed 16 mm cinemicrography of unstimulated adrenal tumor cells and cells incubated for 1-2 h with ACTH (10 mU/ml), or low (10 micrograms/ml), or high (50 micrograms/ml) doses of CB. ACTH caused initial increases in membrane ruffling and a "flurry" of particle (organelle) activity above that seen in unstimulated cells. The stimulated cells then retracted from each other and began their characteristic "rounding up" in response to the hormone. Particles appeared to move towards the nucleus, and in fully-rounded cells were extremely congested. Steroid production rose several fold above basal levels. CB10 produced slight-marked cell convexities, nearly stopped particle motility and inhibited steroid production moderately. CB50 produced an asymmetrical, spidery cell form, stopped membrane ruffling and particle motility and abolished steroidogenesis. After a washout of CB50, particle motility resumed nearly immediately. Our CB data indicate that associations between particles, presumably between mitochondria and various sources of cholesterol, are prerequisite for basal steroidogenesis in the adrenal tumor cells. In ACTH-stimulated cells, increases in steroid output correspond with increased opportunities for particle associations. These opportunities appear to arise directly or indirectly from ACTH effects on microfilaments. The responses of microfilaments to the hormone may be particularly intense in tumorous forms. By these means, the cells may express their differentiated function, although their cytoplasm has a distinctly unspecialized appearance.  相似文献   

4.
R Benis  P Mattson 《Tissue & cell》1989,21(5):687-698
Taxol inhibits the basal and ACTH-stimulated steroidogenesis of cultured mouse adrenocortical tumor cells, presumably by preventing the arrival of cholesterol in mitochondria. In these cells, taxol polymerizes and rearranges microtubules, disperses SER masses, disrupts the Golgi, and impedes the formation of cholesterol-containing lysosomes. However, taxol's alterations in ultrastructure appear likely to permit both a microtubule-based organelle transport proposed to bring mitochondria of unstimulated cells close to alternate sources of cholesterol--the SER and lipid droplets--and postulated ACTH-caused increases in these encounters. Conceivably, taxol may prevent the transfer of cholesterol from the SER and lipid droplets to mitochondria, once the meetings are achieved. To investigate this possibility, we determined the reversibility of taxol's ultrastructural effects and inhibition of steroidogenesis. Primary cultured adrenal tumor cells were incubated for 4 hr with and without ACTH (10 mU/ml). with taxol (50 micrograms/ml), and with ACTH and taxol 50 simultaneously. Some cultures from each set were washed with fresh medium and re-incubated for 1.5 hr. with and without ACTH. Media taken from cultures at the ends of pre- and post-washout incubations were analyzed for the presence of secreted steroids. Sample cultures were fixed for electron microscopy at the ends of both incubations. Data derived from pre-washout incubations confirmed previous reports of taxol's ultrastructural changes and inhibition of steroidogenesis. When cells recovered from taxol in the absence of ACTH, the inhibition of steroidogenesis was completely reversed. In the presence of ACTH, ex-taxol-treated cells demonstrated a "rounding up' and an increased steroid production that are characteristic responses to the hormone. However, in all cases, there was a persistence of taxol's alterations in organelle numbers and arrangements. Our findings establish that the ultrastructural effects of taxol which we recorded cannot prevent mitochondria of unstimulated and ACTH-stimulated adrenal tumor cells from gaining cholesterol. They strengthened the possibility that in pre-washout incubations, taxol allowed organelle motility to bring mitochondria adjacent to cholesterol-containing SER tubules and lipid droplets, but inhibited steroidogenesis by preventing the cholesterol transfer. Taxol might limit the availability of a protein required for the transfer, an effect not visible in our electron micrographs.  相似文献   

5.
The surface topologies of mouse adrenal cortex tumor cells of primary or clonal origin grown as monolayer cell cultures were observed by scanning electron microscopy following their exposure to substances that effect steroid release and/or cell rounding. ACTH induced cell rounding with a concomitant profuse development of fine microvilli in a non-synchronously dividing cell population. This was less pronounced with other steroidogenic substances and absent in EGTA or trypsin-treated cells. Morphological alterations occurred most rapidly with cAMP and least rapidly with dbcAMP. The rapid development of fine microvilli with ACTH is proposed to be a specific hormone mediated response.  相似文献   

6.
We previously reported that an oxidized derivative of linoleic acid stimulated steroidogenesis in rat adrenal cells. This derivative was also detected in human plasma, and was positively correlated with visceral adiposity and plasma DHEA-S. The present study sought to characterize the effects of this derivative, 12,13-epoxy-9-keto-(10- trans)-octadecenoic acid (EKODE), on steroid production by normal human adrenocortical cells obtained during clinically-indicated adrenalectomy. Cell suspensions were incubated in the presence of varying concentrations of EKODE and ACTH. EKODE (16 microM) significantly increased DHEA production by 28% under basal conditions and by 25% in the presence of a low concentration of ACTH (0.2 ng/ml). The effect on DHEA was absent at a higher ACTH concentration (2.0 ng/ml). EKODE decreased cortisol production by 16% (low ACTH) and 25% (high ACTH), but was without effect on cortisol under basal conditions. The results suggest that EKODE affects adrenal DHEA production in the human, possibly by modulating steroidogenic enzyme activity. We postulate that excess visceral fat delivers fatty acids to the liver, where oxidized derivatives are formed that modulate adrenal steroidogenesis. This may be an important phenomenon in the genesis of changes in adrenal function associated with syndromes of obesity, especially those that include androgen excess.  相似文献   

7.
Calcium is required for ACTH stimulated steroidogenesis in adrenal tumor cells in tissue culture. In the absence of calcium, the dose of ACTH required to induce half maximum steroidogenesis was increased 30 fold. In contrast to intact adrenal glands or isolated adrenal cells, high doses of ACTH (50 mU/ml) maximally stimulated steroidogenesis in the absence of calcium. Growth for up to six days in medium with low calcium did not affect basal or ACTH induced steroidogenesis. The addition of calcium to cells incubated with ACTH produced a maximum steroidogenic response in 15 minutes. In contrast to intact adrenal glands, calcium is not required for adenosine-3′,5′-cyclic monophosphate (cyclic AMP) stimulated steroidogenesis in adrenal tumor cells. These experiments support the concept that calcium is important at the level of ACTH-membrane receptor site interaction or activation of adenyl cyclase in adrenal tumor cells.  相似文献   

8.
The effects of a physiological dose of IGF I (40 ng/ml approximately 5 x 10(-9) M) on steroidogenesis were studied in bovine adrenal fasciculata cells cultured in serum-free McCoy's medium. They were compared with those of a single dose of ACTH (0.25 ng/ml approximately 10(-10) M) at approximately the concentration inducing half-maximal stimulation. With IGF I, steroidogenesis commenced after 48 h culture and progressively increased throughout the 96-h test period. Expressed as stimulated level/control level ratios, glucocorticoid (cortisol + corticosterone) responses to IGF I after 4 days' culture (2.41 +/- 0.20 (SEM) n = 9) were similar to those obtained with ACTH (2.59 +/- 0.18, n = 9). A combination of the two peptides had a synergistic effect (5.95 +/- 0.79, n = 5). The cortisol/corticosterone ratio increased in the presence of IGF I from 1 +/- 0.19 to 1.76 +/- 0.45 (n = 7, P less than 0.02), although less so than in the presence of ACTH (5.50 +/- 0.98). Moreover, cortisol production was accompanied by androstenedione production (2.36 ng/10(6) cells, n = 3) similar to that induced by ACTH (2.10 ng/10(6) cells, n = 3). These findings together suggest stimulation of 17 alpha-hydroxylase activity. Cell multiplication was unaffected by IGF I. [3H]Thymidine incorporation into DNA reached only 193% +/- 17 (SEM) (n = 4) of control levels, whereas with ACTH it dropped to 60% +/- 5. Our findings show that IGF I alone has no mitogenic effect on adrenocortical cells in vitro, but that it is capable of inducing differentiated steroidogenesis.  相似文献   

9.
The cytochalasins stimulate steroid secretion of Y-1 adrenal tumor cells two-to threefold. The order of potencies is cytochalasin E is greater than D is greater than B, but the maximum response is the the same and always less than with ACTH. Like that with ACTH, the stimulation has a rapid onset, is easily reversible, is inhibited by cucloheximide and aminoglutethimide, and occurs at a stage before pregnenolone. Although the cytochalasin, like ACTH, produce cell rounding, it is shown that this morphological change is not necessarily coupled to steridogenesis. Unlike ACTH, cytochalasin B does not measurably increase cellular levels of cAMP at concentrations that lead to maximal steroidogenesis. The cytochalasin B-induced stimulation of steroidogenesis, unlike the short-term ACTH effect, fails to occur in the absence of serum. This lack of response can be corrected by even low concentrations of human high density lipoproteins (HDL) but not by low density lipoproteins (LDL). We, therefore, propose that cytochalasin B enhances the availability of cholesterol bound to HDL for steroidogenesis by Y-1 adrenal cells.  相似文献   

10.
The tumor-promoting agent 12-0-tetradecanoyl-phorbol-13-acetate (TPA) caused a time- and dose-dependent morphological change in Y-1 adrenocortical tumor cells. The morphological alteration was apparent 2 hr following addition of 1 microgram/ml TPA to cell cultures and became more striking with longer treatment times. Smaller doses of TPA took a longer time to produce an effect. Cultures grown in the presence of TPA exhibited more rounding and piling up of cells than similar cultures maintained in medium lacking TPA. These TPA-stimulated morphological changes were reversible, and after 24 hr in TPA-free media, the cultured cells began to flatten. After 96 hr in TPA-free media they resembled the control cultures. The reversibility of the morphological change was also dose dependent: cells treated with 1 microgram/ml TPA took a longer time to resume the typical control morphology than did cultures treated with 0.01 microgram/ml TPA. In addition, TPA treatment resulted in a decrease in cell growth rate, an increase in steroid production, and an increase in the localization of free catalytic units of cAMP-dependent protein kinase in the cytoplasm. The steroidogenic effect of ACTH on the cell population was inhibited in cultures maintained in TPA. The results of this study indicate that TPA induces morphological changes in the Y-1 adrenocortical tumor cell population while increasing steroidogenesis and the activation of cAMP-dependent protein kinase and decreasing cell growth rate.  相似文献   

11.
The effects of cholera toxin on isolated rat adrenocortical cells have been investigated. Both steroid and cyclic AMP output from adrenal cells were increased by the toxin in a dose dependent fashion. The concentration of toxin for half maximal stimulation for both of these responses was about 40 ng/ml. Maximal steroidogenesis and cyclic AMP output was obtained with similar concentrations of the toxin. A correlation was observed between the low amounts of cyclic AMP produced in response to all doses of cholera toxin and to physiologically significant concentrations of adrenocorticotropin (ACTH) (< 0.1 munit/ml; i.e. submaximal for steroidogenesis in this system). This was in direct contrast to the much higher levels of cyclic AMP generated by concentrations of ACTH greater than 1 munits/ml. Time course studies demonstrated a time-lag between toxin addition and steroid response of at least 40 min. Binding of cholera toxin to adrenal cells was rapid and was 90% complete within 15 min at both 37 and 0°C. These data indicate that most of the delay in response to cholera toxin is due to processes subsequent to the initial binding interaction. Following the initial delay the subsequent maximal rate of steroidogenesis brought about by cholera toxin was very similar to that obtained with a concentration of ACTH that was maximal for steroidogenesis. Significant increases in cyclic AMP levels were detected about 20 min before increased steroidogenesis was apparent. Possible explanations for this result are considered. The results presented indicate great potential use for cholera toxin in the study of adrenal steroidogenic control mechanisms, particularly at the level of receptor mechanisms and the role of cyclic AMP.  相似文献   

12.
The results from a number of clinical and experimental studies have suggested that during endotoxemia, suppression of adrenocortical steroidogenesis may occur. We have examined the possibility that macrophages are the source of a factor that suppresses adrenocortical steroidogenesis. Resident and peptone-elicited peritoneal exudate macrophages (PEM) from C3HeB/FeJ mice were incubated for 4 hr at 37 degrees C in the presence or absence of T cell hybridoma-derived lymphokine (LK) that contained high concentrations of MAF activity (assessed by induction of nonspecific tumoricidal activity in PEM). The LK was removed by rinsing, and fresh medium was added, followed by Salmonella minnesota R595 LPS (final concentration 10 micrograms/ml). After 18 hr at 37 degrees C the PEM supernatants and control medium from flasks without cells were harvested and stored at -20 degrees C. Explanted rabbit adrenocortical cells in 96-well plates were exposed to 30 microliters of PEM supernatant or control medium and ACTH (10 or 100 mU/ml) in a final volume of 120 microliters for 3 consecutive days. The adrenocortical cell supernatants were harvested each day, followed by replenishment of medium, PEM supernatant, and ACTH. Fluorogenic steroid production in wells that received control medium or supernatants from PEM not treated with LPS was normal (0.22 microgram +/- 0.010 (SD) per 5 X 10(4) cells). However, as much as 75 to 95% suppression of steroidogenesis was observed in wells that received supernatants from PEM treated with LK and LPS, compared to 40% suppression in wells that received supernatant from PEM treated with LPS alone. Continued exposure (over 3 days) of adrenocortical cells to supernatants from LPS-treated PEM resulted in progressively decreasing response to ACTH. Comparable suppressive activity was observed in supernatants from LPS-treated bone marrow-derived macrophages. In further experiments, suppression was observed in wells that were pretreated (22 hr) with the appropriate PEM supernatant, and evidence was obtained that the suppressive activity was not due to carry-over LPS. Finally, results from control experiments demonstrated that suppressive PEM supernatants neither inactivate ACTH nor interfere with the assay of fluorogenic steroids. Thus, these results suggest that during endotoxemia, products from LPS-stimulated macrophages may suppress adrenocortical function.  相似文献   

13.
We previously reported that expression of CD43/leukosialin induces cell rounding and microvillus formation via inhibition of cell adhesion. Here, we found that CD34, a cell surface sialomucin and marker for hematopoietic progenitor cells, also inhibited cell adhesion and induced cell rounding and microvillus formation. Forced expression of CD34-induced cell rounding, microvillus formation, and phosphorylation of ezrin/radixin/moesin (ERM) proteins in HEK293T cells, while inhibiting integrin-mediated cell re-attachment. Furthermore, CD34+ blood cells and KG-1 cells, which express endogenous CD34 on their surface, were spherical in shape, surrounded by microvilli, and non-adherent to substrata. In addition, cleavage of O-sialomucin augmented integrin-mediated cell adhesion of KG-1 cells. These results suggest the involvement of CD34 in the inhibition of integrin-mediated cell adhesion and formation of the cell surface structure. The inhibitory function of CD34 in cell adhesion may affect cell shape organization via phosphorylation of ERM proteins. Cellular structures such as the spherical shape and microvilli of CD34+ cells may also contribute to regulation of cell adhesion.  相似文献   

14.
Calcium requirement for ACTH and Dibutyryl cyclic AMP (DBCAMP) stimulation of steroidogenesis was compared in rat adrenal cell suspensions. In the absence of added calcium ACTH at low concentrations (< 1 mU/ml) was ineffective; however, the calcium requirement decreased when higher concentrations of ACTH were used. This was not the case with DBCAMP. At all levels of the nucleotide tested, the Ca++ requirement was about the same. When the cells were preincubated with EGTA, the Ca++ requirement became more pronounced for ACTH than for DBCAMP. The results indicate that the events before the formation of cyclic AMP show a greater dependence on Ca++ than the events following its formation.  相似文献   

15.
Paracrine regulations between the oocyte and granulosa cells are likely to be key regulators of early folliculogenesis. Evidence obtained from genetic mutants as well as in vivo experiments suggest that Kit and Kit Ligand (KL) may regulate early follicular morphogenesis and function. In this study, we used in vitro culture of intact mouse follicles to confirm and extend these findings. Two concentrations of Kit Ligand (20 and 50 ng/ml) or an antibody blocking the Kit-Kit Ligand interactions (SC1494) were added to preantral follicles grown individually for 12 days and which were finally triggered to ovulate. Effects on follicle and oocyte survival, granulosa cell function (antrum formation, cell numbers, steroidogenesis), and oocyte function (growth, survival, nuclear and/or cytoplasmic maturation) were then analyzed. In optimal culture conditions (presence of 5% fetal calf serum), 50 ng/ml of KL significantly improved cytoplasmic maturation of the oocyte and increased follicular testosterone output, but other parameters were not altered. In serum-free culture conditions, KL was mitogenic for granulosa cells at 50 ng/ml, but could not induce antrum formation and no differences were observed between control and treated groups for steroidogenesis or oocyte growth. Blockade of Kit-Kit Ligand interactions by addition of a blocking antibody decreased oocyte survival 6-9 days after addition of the antibody, but did not upset granulosa cell proliferation. Antrum formation was, however, strongly inhibited. In addition, the blocking antibody markedly reduced aromatase activity of granulosa cells. We conclude that Kit/KL interactions are important for antrum formation and follicular steroidogenesis and regulate survival and cytoplasmic maturation of the oocyte.  相似文献   

16.
Dramatic changes in morphology and extensive reorganization of membrane-associated actin filaments take place during mitosis in cultured cells, including rounding up; appearance of numerous actin filament-containing microvilli and filopodia on the cell surface; and disassembly of intercellular and cell-substratum adhesions. We have examined the distribution and solubility of the membrane-associated actin-binding protein, spectrin, during interphase and mitosis in cultured CHO and HeLa cells. Immunofluorescence staining of substrate-attached, well-spread interphase CHO cells reveals that spectrin is predominantly associated with both the dorsal and ventral plasma membranes and is also concentrated at the lateral margins of cells at regions of cell-cell contacts. In mitotic cells, staining for spectrin is predominantly in the cytoplasm with only faint staining at the plasma membrane on the cell body, and no discernible staining on the membranes of the microvilli and filopodia (retraction fibers) which protrude from the cell body. Biochemical analysis of spectrin solubility in Triton X-100 extracts indicates that only 10-15% of the spectrin is soluble in interphase CHO or HeLa cells growing attached to tissue culture plastic. In contrast, 60% of the spectrin is soluble in mitotic CHO and HeLa cells isolated by mechanical "shake-off" from nocodazole-arrested synchronized cultures, which represents a four- to sixfold increase in the proportion of soluble spectrin. This increase in soluble spectrin may be partly due to cell rounding and detachment during mitosis, since the amount of soluble spectrin in CHO or HeLa interphase cells detached from the culture dish by trypsin-EDTA or by growth in spinner culture is 30-38%. Furthermore, mitotic cells isolated from synchronized spinner cultures of HeLa S3 cells have only 2.5 times as much soluble spectrin (60%) as do synchronous interphase cells from these spinner cultures (25%). The beta subunit of spectrin is phosphorylated exclusively on serine residues both in interphase and mitosis. Comparison of steady-state phosphorylation levels of spectrin in mitotic and interphase cells demonstrates that solubilization of spectrin in mitosis is correlated with a modest increase in the level of phosphorylation of the spectrin beta subunit in CHO and HeLa cells (a 40% and 70% increase, respectively). Two-dimensional phosphopeptide mapping of CHO cell spectrin indicates that this is due to mitosis-specific phosphorylation of beta-spectrin at several new sites. This is independent of cell rounding and dissociation from other cells and the substratum, since no changes in spectrin phosphorylation take place when cells are detached from culture dishes with trypsin-EDTA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The plant lectins, concanavalin A (conA), wheat germ agglutinin (WGA), and phytohemagglutinin (PHA) stimulate steroidogenesis in cultured adrenal tumor cells. ConA maximally stimulated steroidogenesis at 100 μg/ml following an approximate 4 h lag phase. ConA stimulation was completely inhibited by α-methyl-d-mannopyranoside and the WGA effect was prevented by N-acetyl-d-glucosamine. It was also found that conA alone did not cause a measurable increase in either intra- or extracellular cyclic adenosine 3′5′-monophosphate (cAMP) production. In addition, conA when added simultaneously with adrenocorticotropin (ACTH) doubled the intra- and extracellular cAMP production over controls treated with ACTH alone. This enhancement effect was dose dependent. When Y-1 cells were preincubated with conA and then treated with either ACTH or cholera enterotoxin (CT) there was a dose- and time-dependent inhibition of induced cAMP production. In the case of CT, the inhibitory effect occurred even with simultaneous addition of conA and CT. This effect was reversed by addition of both α-methyl-d-mannopyranoside and washing with Eagle's minimal essential medium (MEM) 1 h after CT had bound to its receptor. This reversal was not apparent for the inhibitory effect of conA on ACTH-induced cAMP production which occurred after 2 h of preincubation with conA. These results demonstrate that conA, as well as the other plant lectins, interact with specific membrane receptors to reversibly stimulate steroid production as well as enhancing or inhibiting ligand-induced cAMP production in cultured adrenal tumor cells.  相似文献   

18.
J S Winter  P J Smail 《Steroids》1983,42(6):677-685
Dispersed adrenal cells from a 16 1/2 week anencephalic fetus, 7 fetuses with intact pituitaries and 3 adult subjects undergoing renal transplants were maintained in tissue culture and the steroidogenic responses to ACTH (0-10(3) pg/ml), with or without added estradiol (0-10(4) ng/ml) were evaluated. In the anencephalic preparation the response to ACTH was delayed, but by the fifth day production of cortisol, dehydroepiandrosterone (DHA) and DHA-sulfate was similar to that in the other cultured fetal adrenal cells. The addition of estradiol caused dose-related inhibition of cortisol production and concomitant increase in DHA and DHA-sulfate production. The adult adrenal cells in the presence of ACTH showed a much higher cortisol/DHA secretion ratio, but the addition of estradiol markedly reduced this ratio as in fetal cells. The data support the suggestion that the major factors which interact to impose the characteristic fetal pattern of adrenal steroidogenesis are ACTH and the synergistic effects of placental and intra-adrenal steroids (such as estradiol) which act to inhibit 3 beta-hydroxysteroid dehydrogenase activity.  相似文献   

19.
The surface ultrastructure of porcine early corpus luteum cells (days 1-3 of the luteal phase) was studied in SEM and correlated with progesterone secretion. Luteal cells were divided into 2 groups: small cells (10-20 microns) and large cells (20-30 microns) and their surface features were observed after 1, 3, and 5 h of incubation in the control medium and in a medium supplemented with prolactin (PRL). The surface morphology of control cells was characterized by numerous smooth blebs and the presence or absence of thin microvilli. Small and large cells showed a tendency to adhere to the glass during the experiment, but on the large cells the number of thin adhesive filopodia was greater. After the 1st and 3rd h of incubation with PRL the number of microvilli and numerous filopodia on the small cells increased substantially. Nodular blebs were scattered and appeared to protrude from the cell surface. Many small cells adhered to the glass by thick, layered and thin thread-like cytoplasmic processes. After the 5th h distinct smoothing of the surface of the small cells was seen. The number of microvilli seen on the PRL stimulated surface of the large cells was smaller and in some cases even entirely absent. After the 1st and 3rd h of the experiment the large cell surface was ruffled with minute folds. Numerous nodular blebs protruded from the cell surface. The number of adhesive filopodia attaching the cells to the glass decreased or vanished during the experiment. After the 5 h of incubation most of the cells had smooth surface with smooth blebs. Progesterone secretion was measured by radioimmunoassay. The cells in the medium without exogenous hormone (control) secreted relatively low levels of progesterone throughout 1-5 h of the incubation period. After addition of PRL to the medium the amount of secreted progesterone increased.  相似文献   

20.
The influence of ACTH fragments, possessing structural elements, common for certain groups of peptide hormones and kinins--"common" fragments and cluster of basic amino-acids--(Lys 17,18-ACTH 11-18-NH2--I; ACTH 11-13-NH2--II; NH2CO-ACTH18-20-NH2--III) on lipolytic effect of ACTH in rat isolated fat cells and on the steroidogenic effect of ACTH in isolated rat adrenal cells was studied. Fragment I exerts a steroidogenic effect (alpha=0,84) at concentrations of 1--100 microng/ml. At low concentrations (10(-8)--10(-3) microng/ml) fragment I potentiates ACTH-induced steroidogenesis. Fragment I has no effect on the lipolysis;however, it potentiates ACTH-induced lipolysis at concentrations of 10--100 microng/ml. The results obtained support our previous supposition that "common" fragments are essential secondary non-specific active sites of hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号