首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A family of calcium-responsive protein kinases is abundant in plant cell extracts but has not been identified in animals and fungi. These enzymes have a unique structure consisting of a protein kinase catalytic domain fused to carboxy-terminal autoregulatory and calmodulin-like domains. In this report, we present the amino acid sequences for eight new Arabidopsis cDNA clones encoding isoforms of this enzyme. Three isoforms were expressed as fusion proteins in Escherichia coli and exhibited calcium-stimulated protein kinase activity. We propose CPK as the gene designation for this family of enzymes and describe a phylogenetic analysis for all known isoforms.  相似文献   

2.
Folding enzymes often use distinct domains for the binding of substrate proteins ("chaperone domains") and for the catalysis of slow folding reactions such as disulfide formation or prolyl isomerization. The human prolyl isomerase FKBP12 is a small single-domain protein without a chaperone domain. Its very low folding activity could previously be increased by inserting the chaperone domain from the homolog SlyD (sensitive-to-lysis protein D) of Escherichia coli. We now inserted three unrelated chaperone domains into human FKBP12: the apical domain of the chaperonin GroEL from E. coli, the chaperone domain of protein disulfide isomerase from yeast, or the chaperone domain of SurA from the periplasm of E. coli. All three conveyed FKBP12 with a high affinity for unfolded proteins and increased its folding activity. Substrate binding and release of the chimeric folding enzymes were found to be very fast. This allows rapid substrate transfer from the chaperone domain to the catalytic domain and ensures efficient rebinding of protein chains that were unable to complete folding. The advantage of having separate sites, first for generic protein binding and then for specific catalysis, explains why our construction of the artificial folding enzymes with foreign chaperone domains was successful.  相似文献   

3.
J L Garcia  E Diaz  A Romero    P Garcia 《Journal of bacteriology》1994,176(13):4066-4072
Autolysins are endogenous enzymes that specifically degrade the covalent bonds of the cell walls and eventually can induce bacterial lysis. One of the best-characterized autolysins, the major pneumococcal LytA amidase, has evolved by the fusion of two domains, the N-terminal catalytic domain and the C-terminal domain responsible for the binding to cell walls. The precise biochemical role played by the six repeat units that form the C-terminal domain of the LytA amidase has been investigated by producing serial deletions. Biochemical analyses of the truncated mutants revealed that the LytA amidase must contain at least four units to efficiently recognize the choline residues of pneumococcal cell walls. The loss of an additional unit dramatically reduces its hydrolytic activity as well as the binding affinity, suggesting that the catalytic efficiency of this enzyme can be considerably improved by keeping the protein attached to the cell wall substrate. Truncated proteins lacking one or two repeat units were more sensitive to the inhibition by free choline than the wild-type enzyme, whereas the N-terminal catalytic domain was insensitive to this inhibition. In addition, the truncated proteins were inhibited by deoxycholate (DOC), and the expression of a LytA amidase lacking the last 11 amino acids in Streptococcus pneumoniae M31, a strain having a deletion in the lytA gene, conferred to the cells an atypical phenotype (Lyt+ DOC-) (cells autolysed at the end of the stationary phase but were not sensitive to lysis induced by DOC), which has been previously observed in some clinical isolates of pneumococci. Our results are in agreement with the existence of several choline-binding sites and suggest that the stepwise acquisition of the repeat units and the tail could be considered an evolutionary advantage for the enzyme, since the presence of these motifs increases its hydrolytic activity.  相似文献   

4.
Multifunctional proteins, which play a critical role in many biological processes, have typically evolved through the recruitment of different domains that have the required functional diversity. Thus the different activities displayed by these proteins are mediated by spatially distinct domains, consistent with the specific chemical requirements of each activity. Indeed, current evolutionary theory argues that the colocalization of diverse activities within an enzyme is likely to be a rare event, because it would compromise the existing activity of the protein. In contrast to this view, a potential example of multifunctional recruitment into a single protein domain is provided by CtCel5C-CE2, which contains an N-terminal module that displays cellulase activity and a C-terminal module, CtCE2, which exhibits a noncatalytic cellulose-binding function but also shares sequence identity with the CE2 family of esterases. Here we show that, unlike other CE2 members, the CtCE2 domain displays divergent catalytic esterase and noncatalytic carbohydrate binding functions. Intriguingly, these diverse activities are housed within the same site on the protein. Thus, a critical component of the active site of CtCE2, the catalytic Ser-His dyad, in harness with inserted aromatic residues, confers noncatalytic binding to cellulose whilst the active site of the domain retains its esterase activity. CtCE2 catalyses deacetylation of noncellulosic plant structural polysaccharides to deprotect these substrates for attack by other enzymes. Yet it also acts as a cellulose-binding domain, which promotes the activity of the appended cellulase on recalcitrant substrates. The CE2 family encapsulates the requirement for multiple activities by biocatalysts that attack challenging macromolecular substrates, including the grafting of a second, powerful and discrete noncatalytic binding functionality into the active site of an enzyme. This article provides a rare example of “gene sharing,” where the introduction of a second functionality into the active site of an enzyme does not compromise the original activity of the biocatalyst.  相似文献   

5.
A regulatory mechanism is introduced whereupon the catalytic activity of a given enzyme is controlled by ligand binding to a receptor domain of choice. A small enzyme (barnase) and a ligand-binding polypeptide (GCN4) are fused so that a simple topological constraint prevents them from existing simultaneously in their folded states. The two domains consequently engage in a thermodynamic tug-of-war in which the more stable domain forces the less stable domain to unfold. In the absence of ligand, the barnase domain is more stable and is therefore folded and active; the GCN4 domain is substantially unstructured. DNA binding induces folding of GCN4, forcibly unfolding and inactivating the barnase domain. Barnase-GCN4 is thus a "natively unfolded" protein that uses ligand binding to switch between partially folded forms. The key characteristics of each parent protein (catalytic efficiency of barnase, DNA binding affinity and sequence specificity of GCN4) are retained in the chimera. Barnase-GCN4 thus defines a modular approach for assembling enzymes with novel sensor capabilities from a variety of catalytic and ligand binding domains.  相似文献   

6.
Mitchell CA  Shi C  Aldrich CC  Gulick AM 《Biochemistry》2012,51(15):3252-3263
Many bacteria use large modular enzymes for the synthesis of polyketide and peptide natural products. These multidomain enzymes contain integrated carrier domains that deliver bound substrates to multiple catalytic domains, requiring coordination of these chemical steps. Nonribosomal peptide synthetases (NRPSs) load amino acids onto carrier domains through the activity of an upstream adenylation domain. Our lab recently determined the structure of an engineered two-domain NRPS containing fused adenylation and carrier domains. This structure adopted a domain-swapped dimer that illustrated the interface between these two domains. To continue our investigation, we now examine PA1221, a natural two-domain protein from Pseudomonas aeruginosa. We have determined the amino acid specificity of this new enzyme and used domain specific mutations to demonstrate that loading the downstream carrier domain within a single protein molecule occurs more quickly than loading of a nonfused carrier domain intermolecularly. Finally, we have determined crystal structures of both apo- and holo-PA1221 proteins, the latter using a valine-adenosine vinylsulfonamide inhibitor that traps the adenylation domain-carrier domain interaction. The protein adopts an interface similar to that seen with the prior adenylation domain-carrier protein construct. A comparison of these structures with previous structures of multidomain NRPSs suggests that a large conformational change within the NRPS adenylation domains guides the carrier domain into the active site for thioester formation.  相似文献   

7.
8.
There is growing evidence that metabolic enzymes may act as multifunctional proteins performing diverse roles in cellular metabolism. Among these functions are the RNA-binding activities of NAD(+)-dependent dehydrogenases. Previously, we have characterized the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an RNA-binding protein with preference to adenine-uracil-rich sequences. In this study, we used GST-GAPDH fusion proteins generated by deletion mutagenesis to search for the RNA binding domain. We established that the N-terminal 43 amino acid residues of GAPDH, which correspond to the first mononucleotide-binding domain of the NAD(+)-binding fold is sufficient to confer RNA-binding. We also provide evidence that this single domain, although it retains most of the RNA-binding activity, loses sequence specificity. Our results suggest a molecular basis for RNA-recognition by NAD(+)-dependent dehydrogenases and (di)nucleotide-binding metabolic enzymes that had been reported to have RNA-binding activity with different specificity. To support this prediction we also identified other members of the family of NAD(+)-dependent dehydrogenases with no previous history of nucleic acid binding as RNA binding proteins in vitro. Based on our findings we propose the addition of the NAD(+)-binding domain to the list of RNA binding domains/motifs.  相似文献   

9.
近年来随着生命科学新技术、新方法的涌现,酶蛋白结构和功能研究逐渐深入。具有多结构域的酶蛋白中各个结构域常具有独立的催化或结合底物的功能,在重组酶和组合生物合成研究中具有极大的研究和应用价值。这些结构域功能和组织方式的多样性,是研究分子进化的基础。对结构域进行进化分析对于研究多结构域酶的进化过程、功能相近酶之间的关系,以及对酶的分类鉴定等有重要意义。本文从结构域的重复性、结构域的水平基因转移和结构域的重组等方面出发,对多结构域酶中结构域之间进化关系的研究成果进行综述。  相似文献   

10.
Chen B  Markillie LM  Xiong Y  Mayer MU  Squier TC 《Biochemistry》2007,46(49):14153-14161
Methionine sulfoxide reductase enzymes MsrA and MsrB have complementary stereospecificities that reduce the S and R stereoisomers of methionine sulfoxide (MetSO), respectively, and together function as critical antioxidant enzymes. In some pathogenic and metal-reducing bacteria, these genes are fused to form a bifunctional methionine sulfoxide reductase (i.e., MsrBA) enzyme. To investigate how gene fusion affects the substrate specificity and catalytic activities of Msr, we have cloned and expressed the MsrBA enzyme from Shewanella oneidensis, a metal-reducing bacterium and fish pathogen. For comparison, we also cloned and expressed the wild-type MsrA enzyme from S. oneidensis and a genetically engineered MsrB protein. MsrBA is able to completely reduce (i.e., repair) MetSO in the calcium regulatory protein calmodulin (CaM), while only partial repair is observed using both MsrA and MsrB enzymes together at 25 degrees C. A restoration of the normal protein fold is observed co-incident with the repair of MetSO in oxidized CaM (CaMox by MsrBA, as monitored by time-dependent increases in the anisotropy associated with the rigidly bound multiuse affinity probe 4',5'-bis(1,3,2-dithioarsolan-2-yl)fluorescein (FlAsH). Underlying the efficient repair of MetSO in CaMox is the coordinate activity of the two catalytic domains in the MsrBA fusion protein, which results in a 1 order of magnitude rate enhancement in comparison to those of the individual MsrA or MsrB enzyme alone. The coordinate binding of both domains of MsrBA permits the full repair of all MetSO in CaMox. The common expression of Msr fusion proteins in bacterial pathogens is consistent with an important role for this enzyme activity in the maintenance of protein function necessary for bacterial survival under highly oxidizing conditions associated with pathogenesis or bioremediation.  相似文献   

11.
12.
Human RNase H1 contains an N-terminal domain known as dsRHbd for binding both dsRNA and RNA/DNA hybrid. We find that dsRHbd binds preferentially to RNA/DNA hybrids by over 25-fold and rename it as hybrid binding domain (HBD). The crystal structure of HBD complexed with a 12 bp RNA/DNA hybrid reveals that the RNA strand is recognized by a protein loop, which forms hydrogen bonds with the 2'-OH groups. The DNA interface is highly specific and contains polar residues that interact with the phosphate groups and an aromatic patch that appears selective for binding deoxyriboses. HBD is unique relative to non-sequence-specific dsDNA- and dsRNA-binding domains because it does not use positive dipoles of alpha-helices for nucleic acid binding. Characterization of full-length enzymes with defective HBDs indicates that this domain dramatically enhances both the specific activity and processivity of RNase H1. Similar activity enhancement by small substrate-binding domains linked to the catalytic domain likely occurs in other nucleic acid enzymes.  相似文献   

13.
《Journal of molecular biology》2013,425(22):4089-4098
Parvulins are small prolyl isomerases and serve as catalytic domains of folding enzymes. SurA (survival protein A) from the periplasm of Escherichia coli consists of an inactive (Par1) and an active (Par2) parvulin domain as well as a chaperone domain. In the absence of the chaperone domain, the folding activity of Par2 is virtually abolished. We created a chimeric protein by inserting the chaperone domain of SlyD, an unrelated folding enzyme from the FKBP family, into a loop of the isolated Par2 domain of SurA. This increased its folding activity 450-fold to a value higher than the activity of SurA, in which Par2 is linked with its natural chaperone domain. In the presence of both the natural and the foreign chaperone domain, the folding activity of Par2 was 1500-fold increased. Related and unrelated chaperone domains thus are similarly efficient in enhancing the folding activity of the prolyl isomerase Par2. A sequence analysis of various chaperone domains suggests that clusters of exposed methionine residues in mobile chain regions might be important for a generic interaction with unfolded protein chains. This binding is highly dynamic to allow frequent transfer of folding protein chains between chaperone and catalytic domains.  相似文献   

14.
ATP- and NAD(+)-dependent DNA ligases, ATP-dependent RNA ligases and GTP-dependent mRNA capping enzymes comprise a superfamily of proteins that catalyze nucleotidyl transfer to polynucleotide 5' ends via covalent enzyme-(lysyl-N)-NMP intermediates. The superfamily is defined by five peptide motifs that line the nucleotide-binding pocket and contribute amino acid sidechains essential for catalysis. Early crystal structures revealed a shared core tertiary structure for DNA ligases and capping enzymes, which are composed minimally of a nucleotidyltransferase domain fused to a distal OB-fold domain. Recent structures of viral and bacterial DNA ligases, and a fungal mRNA capping enzyme underscore how the substrate-binding and chemical steps of the ligation and capping pathways are coordinated with large rearrangements of the component protein domains and with remodeling of the atomic contacts between the enzyme and the nucleotide at the active site. The first crystal structure of an RNA ligase suggests that contemporary DNA ligases, RNA ligases and RNA capping enzymes evolved by fusion of ancillary effector domains to an ancestral catalytic module involved in RNA repair.  相似文献   

15.
Two novel chimeric pneumococcal cell wall lytic enzymes, named LC7 and CL7, have been constructed by in vitro recombination of the lytA gene encoding the major autolysin (LYTA amidase) of Streptococcus pneumoniae, a choline-dependent enzyme, and the cpl7 gene encoding the CPL7 lysozyme of phage Cp-7, a choline-independent enzyme. In remarkable contrast with previous chimeric constructions, we fused here two genes that lack nucleotide homology. The CL7 enzyme, which contains the N-terminal domain of CPL7 and C-terminal domain of LYTA, exhibited a choline-dependent lysozyme activity. This experimental rearrangement of domains might mimic the process that have generated the choline-dependent CPL1 lysozyme of phage Cp-1 during evolution, providing additional support to the modular theory of protein evolution. The LC7 enzyme, built up by fusion of the N-terminal domain of LYTA and the C-terminal domain of CPL7, exhibited an amidase activity capable of degrading ethanolamine-containing cell walls. The chimeric amidase behaved as an autolytic enzyme when it was cloned and expressed in S. pneumoniae. The chimeric enzymes provided new insights on the mechanisms involved in regulation of the host pneumococcal autolysins and on the participation of these enzymes in the process of cell separation. Furthermore, our experimental approach confirmed the basic role of the C-terminal domains in substrate recognition and revealed the influence of these domains on the optimal pH for catalytic activity.  相似文献   

16.
Mechanisms that allow replicative DNA polymerases to attain high processivity are often specific to a given polymerase and cannot be generalized to others. Here we report a protein engineering-based approach to significantly improve the processivity of DNA polymerases by covalently linking the polymerase domain to a sequence non-specific dsDNA binding protein. Using Sso7d from Sulfolobus solfataricus as the DNA binding protein, we demonstrate that the processivity of both family A and family B polymerases can be significantly enhanced. By introducing point mutations in Sso7d, we show that the dsDNA binding property of Sso7d is essential for the enhancement. We present evidence supporting two novel conclusions. First, the fusion of a heterologous dsDNA binding protein to a polymerase can increase processivity without compromising catalytic activity and enzyme stability. Second, polymerase processivity is limiting for the efficiency of PCR, such that the fusion enzymes exhibit profound advantages over unmodified enzymes in PCR applications. This technology has the potential to broadly improve the performance of nucleic acid modifying enzymes.  相似文献   

17.

Background

Carbohydrate binding modules (CBMs) bind polysaccharides and help target glycoside hydrolases catalytic domains to their appropriate carbohydrate substrates. To better understand how CBMs can improve cellulolytic enzyme reactivity, representatives from each of the 18 families of CBM found in Ruminoclostridium thermocellum were fused to the multifunctional GH5 catalytic domain of CelE (Cthe_0797, CelEcc), which can hydrolyze numerous types of polysaccharides including cellulose, mannan, and xylan. Since CelE is a cellulosomal enzyme, none of these fusions to a CBM previously existed.

Results

CelEcc_CBM fusions were assayed for their ability to hydrolyze cellulose, lichenan, xylan, and mannan. Several CelEcc_CBM fusions showed enhanced hydrolytic activity with different substrates relative to the fusion to CBM3a from the cellulosome scaffoldin, which has high affinity for binding to crystalline cellulose. Additional binding studies and quantitative catalysis studies using nanostructure-initiator mass spectrometry (NIMS) were carried out with the CBM3a, CBM6, CBM30, and CBM44 fusion enzymes. In general, and consistent with observations of others, enhanced enzyme reactivity was correlated with moderate binding affinity of the CBM. Numerical analysis of reaction time courses showed that CelEcc_CBM44, a combination of a multifunctional enzyme domain with a CBM having broad binding specificity, gave the fastest rates for hydrolysis of both the hexose and pentose fractions of ionic-liquid pretreated switchgrass.

Conclusion

We have shown that fusions of different CBMs to a single multifunctional GH5 catalytic domain can increase its rate of reaction with different pure polysaccharides and with pretreated biomass. This fusion approach, incorporating domains with broad specificity for binding and catalysis, provides a new avenue to improve reactivity of simple combinations of enzymes within the complexity of plant biomass.
  相似文献   

18.
19.
Murine adenosine 3'-phosphate 5'-phosphosulfate (PAPS) synthetase consists of a COOH-terminal ATP-sulfurylase domain covalently linked through a nonhomologous intervening sequence to an NH2-terminal adenosine 5'-phosphosulfate (APS) kinase domain forming a bifunctional fused protein. Possible advantages of bifunctionality were probed by separating the domains on the cDNA level and expressing them as monofunctional proteins. Expressed protein generated from the ATP-sulfurylase domain alone was fully active in both the forward and reverse sulfurylase assays. APS kinase-only recombinants exhibited no kinase activity. However, extension of the kinase domain at the COOH terminus by inclusion of the 36 residue linker region restored kinase activity. An equimolar mixture of the two monofunctional enzymes catalyzed the overall reaction (synthesis of PAPS from ATP + SO42-) comparably to the fused bifunctional enzyme. The importance of the domain order and organization was demonstrated by generation of a series of rearranged recombinants in which the order of the two active domains was reversed or altered relative to the linker region. The critical role of the linker region was established by generation of recombinants that had the linker deleted or rearranged relative to the two active domains. The intrinsic stability of the various recombinants was also investigated by measuring enzyme deactivation as a function of time of incubation at 25 or 37 degrees C. The expressed monofunctional ATP-sulfurylase, which was initially fully active, was unstable compared with the fused bifunctional wild type enzyme, decaying with a t1/2 of 10 min at 37 degrees C. Progressive extension by addition of kinase sequence at the NH2-terminal side of the sulfurylase recombinant eventually stabilized sulfurylase activity. Sulfurylase activity was significantly destabilized in a time-dependent manner in the rearranged proteins as well. In contrast, no significant deactivation of any truncated kinase-containing recombinants or misordered kinase recombinants was observed at either temperature. It would therefore appear that fusion of the two enzymes enhances the intrinsic stability of the sulfurylase only.  相似文献   

20.
Here, we established a system for displaying heterologous protein to the C terminus of the peptidoglycan-binding domain (cA domain) of AcmA (a major autolysin from Lactococcus lactis). Western blot and flow cytometric analyses revealed that the fusion proteins (cA-AmyA) of the cA domain and α-amylase from Streptococcus bovis 148 (AmyA) are efficiently expressed and successfully displayed on the surfaces of L. lactis cells. AmyA was also displayed on the cell surface while retaining its activity. Moreover, with an increase in the number of cA domains, the quantity of cA-AmyA fusion proteins displayed on the cell surface increased. When three repeats of the cA domain were used as an anchor protein, 82% of α-amylase activity was detected on the cells. The raw starch-degrading activity of AmyA was significantly higher when AmyA was fused to the C terminus of the cA domain than when it was fused to the N terminus. In addition, cA-AmyA fusion proteins were successfully displayed on the cell surfaces of Lactobacillus plantarum and Lactobacillus casei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号