首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-homologous end joining is a ligation process repairing DNA double strand breaks in eukaryotes and many prokaryotes. The ring structured eukaryotic Ku binds DNA ends and recruits other factors which can access DNA ends through the threading of Ku inward the DNA, making this protein a key ingredient for the scaffolding of the NHEJ machinery. However, this threading ability seems unevenly conserved among bacterial Ku. As bacterial Ku differ mainly by their C-terminus, we evaluate the role of this region in the loading and the threading abilities of Bacillus subtilis Ku and the stimulation of the DNA ligase LigD. We identify two distinct sub-regions: a ubiquitous minimal C-terminal region and a frequent basic C-terminal extension. We show that truncation of one or both of these sub-regions in Bacillus subtilis Ku impairs the stimulation of the LigD end joining activity in vitro. We further demonstrate that the minimal C-terminus is required for the Ku-LigD interaction, whereas the basic extension controls the threading and DNA bridging abilities of Ku. We propose that the Ku basic C-terminal extension increases the concentration of Ku near DNA ends, favoring the recruitment of LigD at the break, thanks to the minimal C-terminal sub-region.  相似文献   

2.
Zhu H  Shuman S 《Nucleic acids research》2007,35(11):3631-3645
Agrobacterium tumefaciens encodes a single NAD+-dependent DNA ligase and six putative ATP-dependent ligases. Two of the ligases are homologs of LigD, a bacterial enzyme that catalyzes end-healing and end-sealing steps during nonhomologous end joining (NHEJ). Agrobacterium LigD1 and AtuLigD2 are composed of a central ligase domain fused to a C-terminal polymerase-like (POL) domain and an N-terminal 3′-phosphoesterase (PE) module. Both LigD proteins seal DNA nicks, albeit inefficiently. The LigD2 POL domain adds ribonucleotides or deoxyribonucleotides to a DNA primer-template, with rNTPs being the preferred substrates. The LigD1 POL domain has no detectable polymerase activity. The PE domains catalyze metal-dependent phosphodiesterase and phosphomonoesterase reactions at a primer-template with a 3′-terminal diribonucleotide to yield a primer-template with a monoribonucleotide 3′-OH end. The PE domains also have a 3′-phosphatase activity on an all-DNA primer-template that yields a 3′-OH DNA end. Agrobacterium ligases C2 and C3 are composed of a minimal ligase core domain, analogous to Mycobacterium LigC (another NHEJ ligase), and they display feeble nick-sealing activity. Ligation at DNA double-strand breaks in vitro by LigD2, LigC2 and LigC3 is stimulated by bacterial Ku, consistent with their proposed function in NHEJ.  相似文献   

3.
Many bacterial pathogens, including Pseudomonas aeruginosa, have a nonhomologous end joining (NHEJ) system of DNA double strand break (DSB) repair driven by Ku and DNA ligase D (LigD). LigD is a multifunctional enzyme composed of a ligase domain fused to an autonomous polymerase module (POL) that adds ribonucleotides or deoxyribonucleotides to DSB ends and primer-templates. LigD POL and the eukaryal NHEJ polymerase λ are thought to bridge broken DNA ends via contacts with a duplex DNA segment downstream of the primer terminus, a scenario analogous to gap repair. Here, we characterized the gap repair activity of Pseudomonas LigD POL, which is more efficient than simple templated primer extension and relies on a 5′-phosphate group on the distal gap strand end to confer apparent processivity in filling gaps of 3 or 4 nucleotides. Mutations of the His-553, Arg-556, and Lys-566 side chains implicated in DNA 5′-phosphate binding eliminate the preferential filling of 5′-phosphate gaps. Mutating Phe-603, which is imputed to stack on the nucleobase of the template strand that includes the 1st bp of the downstream gap duplex segment, selectively affects incorporation of the final gap-closing nucleotide. We find that Pseudomonas Ku stimulates POL-catalyzed ribonucleotide addition to a plasmid DSB end and promotes plasmid end joining by full-length Pseudomonas LigD. A series of incremental truncations from the C terminus of the 293-amino acid Ku polypeptide identifies Ku-(1–229) as sufficient for homodimerization and LigD stimulation. The slightly longer Ku-(1–253) homodimer forms stable complexes at both ends of linear plasmid DNA that protect the DSBs from digestion by 5′- and 3′-exonucleases.  相似文献   

4.
Pseudomonas aeruginosa encodes two putative DNA ligases: a classical NAD(+)-dependent DNA ligase (LigA) plus an ATP-dependent DNA ligase (LigD). LigD exemplifies a family of bacterial proteins that consist of a ligase domain fused to flanking domains that resemble nucleases and/or polymerases. Here we purify LigD and show that it possesses an intrinsic polymerase function resident within an autonomous C-terminal polymerase domain, LigD-(533-840), that flanks an autonomous DNA ligase domain, LigD-(188-527). Native LigD and the polymerase domain are both monomeric proteins. The polymerase activity is manifest in three ways: (i) non-templated nucleotide addition to a blunt-ended duplex DNA primer; (ii) non-templated addition to a single-stranded DNA primer; and (iii) templated extension of a 5'-tailed duplex DNA primer-template. The divalent cation cofactor requirement for non-templated and templated polymerase activity is satisfied by manganese or cobalt. rNTPs are preferred over dNTPs as substrates for non-templated blunt-end addition, which typically entails the incorporation of only 1 or 2 nucleotides at the primer terminus. Templated dNMP addition to a 5'-tailed substrate is efficient with respect to dNTP utilization; the primer is elongated to the end of the template strand and is then further extended with a non-templated nucleotide. The polymerase activity is abolished by alanine substitution for two aspartates (Asp-669 and Asp-671) within the putative metal-binding site. We speculate that polymerase activity is relevant to LigD function in nonhomologous end-joining.  相似文献   

5.
Nonhomologous end joining (NHEJ) is a recently described bacterial DNA double-strand break (DSB) repair pathway that has been best characterized for mycobacteria. NHEJ can religate transformed linear plasmids, repair ionizing radiation (IR)-induced DSBs in nonreplicating cells, and seal I-SceI-induced chromosomal DSBs. The core components of the mycobacterial NHEJ machinery are the DNA end binding protein Ku and the polyfunctional DNA ligase LigD. LigD has three autonomous enzymatic modules: ATP-dependent DNA ligase (LIG), DNA/RNA polymerase (POL), and 3′ phosphoesterase (PE). Although genetic ablation of ku or ligD abolishes NHEJ and sensitizes nonreplicating cells to ionizing radiation, selective ablation of the ligase activity of LigD in vivo only mildly impairs NHEJ of linearized plasmids, indicating that an additional DNA ligase can support NHEJ. Additionally, the in vivo role of the POL and PE domains in NHEJ is unclear. Here we define a LigD ligase-independent NHEJ pathway in Mycobacterium smegmatis that requires the ATP-dependent DNA ligase LigC1 and the POL domain of LigD. Mycobacterium tuberculosis LigC can also support this backup NHEJ pathway. We also demonstrate that, although dispensable for efficient plasmid NHEJ, the activities of the POL and PE domains are required for repair of IR-induced DSBs in nonreplicating cells. These findings define the genetic requirements for a LigD-independent NHEJ pathway in mycobacteria and demonstrate that all enzymatic functions of the LigD protein participate in NHEJ in vivo.  相似文献   

6.
Under growth-restricting conditions bacterial populations can rapidly evolve by a process known as stationary-phase mutagenesis. Bacterial nonhomologous end-joining (NHEJ) system which consists of the DNA-end-binding enzyme Ku and the multifunctional DNA ligase LigD has been shown to be important for survival of bacteria especially during quiescent states, such as late stationary-phase populations or sporulation. In this study we provide genetic evidence that NHEJ enzymes participate in stationary-phase mutagenesis in a population of carbon-starved Pseudomonas putida. Both the absence of LigD or Ku resulted in characteristic spectra of stationary-phase mutations that differed from each other and also from the wild-type spectrum. This indicates that LigD and Ku may participate also in mutagenic pathways that are independent from each other. Our results also imply that both phosphoesterase (PE) and polymerase (POL) domains of the LigD protein are involved in the occurrence of mutations in starving P. putida. The participation of both Ku and LigD in the occurrence of stationary-phase mutations was further supported by the results of the analysis of mutation spectra in stationary-phase sigma factor RpoS-minus background. The spectra of mutations identified in the RpoS-minus background were also distinct if LigD or Ku was absent. Interestingly, the effects of the presence of these enzymes on the frequency of occurrence of certain types of mutations were different or even opposite in the RpoS-proficient and deficient backgrounds. These results imply that RpoS affects performance of mutagenic pathways in starving P. putida that utilize LigD and/or Ku.  相似文献   

7.
DNA ligase D (LigD) is a large polyfunctional enzyme involved in nonhomologous end-joining (NHEJ) in mycobacteria. LigD consists of a C-terminal ATP-dependent ligase domain fused to upstream polymerase and phosphoesterase modules. Here we report the 2.4 angstroms crystal structure of the ligase domain of Mycobacterium LigD, captured as the covalent ligase-AMP intermediate with a divalent metal in the active site. A chloride anion on the protein surface coordinated by the ribose 3'-OH and caged by arginine and lysine side chains is a putative mimetic of the 5'-phosphate at a DNA nick. Structure-guided mutational analysis revealed distinct requirements for the adenylylation and end-sealing reactions catalyzed by LigD. We found that a mutation of Mycobacterium LigD that ablates only ligase activity results in decreased fidelity of NHEJ in vivo and a strong bias of mutagenic events toward deletions instead of insertions at the sealed DNA ends. This phenotype contrasts with the increased fidelity of double-strand break repair in deltaligD cells or in a strain in which only the polymerase function of LigD is defective. We surmise that the signature error-prone quality of bacterial NHEJ in vivo arises from a dynamic balance between the end-remodeling and end-sealing steps.  相似文献   

8.
Mammalian DNA ligases are composed of a conserved catalytic domain flanked by unrelated sequences. At the C-terminal end of the catalytic domain, there is a 16-amino acid sequence, known as the conserved peptide, whose role in the ligation reaction is unknown. Here we show that conserved positively charged residues at the C-terminal end of this motif are required for enzyme-AMP formation. These residues probably interact with the triphosphate tail of ATP, positioning it for nucleophilic attack by the active site lysine. Amino acid residues within the sequence RFPR, which is invariant in the conserved peptide of mammalian DNA ligases, play critical roles in the subsequent nucleotidyl transfer reaction that produces the DNA-adenylate intermediate. DNA binding by the N-terminal zinc finger of DNA ligase III, which is homologous with the two zinc fingers of poly(ADP-ribose) polymerase, is not required for DNA ligase activity in vitro or in vivo. However, this zinc finger enables DNA ligase III to interact with and ligate nicked DNA at physiological salt concentrations. We suggest that in vivo the DNA ligase III zinc finger may displace poly(ADP-ribose) polymerase from DNA strand breaks, allowing repair to occur.  相似文献   

9.
We use single-molecule techniques to characterize the dynamics of prokaryotic DNA repair by non-homologous end-joining (NHEJ), a system comprised only of the dimeric Ku and Ligase D (LigD). The Ku homodimer alone forms a ∼2 s synapsis between blunt DNA ends that is increased to ∼18 s upon addition of LigD, in a manner dependent on the C-terminal arms of Ku. The synapsis lifetime increases drastically for 4 nt complementary DNA overhangs, independently of the C-terminal arms of Ku. These observations are in contrast to human Ku, which is unable to bridge either of the two DNA substrates. We also demonstrate that bacterial Ku binds the DNA ends in a cooperative manner for synapsis initiation and remains stably bound at DNA junctions for several hours after ligation is completed, indicating that a system for removal of the proteins is active in vivo. Together these experiments shed light on the dynamics of bacterial NHEJ in DNA end recognition and processing. We speculate on the evolutionary similarities between bacterial and eukaryotic NHEJ and discuss how an increased understanding of bacterial NHEJ can open the door for future antibiotic therapies targeting this mechanism.  相似文献   

10.
Non homologous end-joining (NHEJ)-mediated repair of DNA double-strand breaks in prokaryotes requires Ku and a specific multidomain DNA ligase (LigD). We present crystal structures of the primase/polymerisation domain (PolDom) of Mycobacterium tuberculosis LigD, alone and complexed with nucleotides. The PolDom structure combines the general fold of the archaeo-eukaryotic primase (AEP) superfamily with additional loops and domains that together form a deep cleft on the surface, likely used for DNA binding. Enzymatic analysis indicates that the PolDom of LigD, even in the absence of accessory domains and Ku proteins, has the potential to recognise DNA end-joining intermediates. Strikingly, one of the main signals for the specific and efficient binding of PolDom to DNA is the presence of a 5'-phosphate group, located at the single/double-stranded junction at both gapped and 3'-protruding DNA molecules. Although structurally unrelated, Pol lambda and Pol mu, the two eukaryotic DNA polymerases involved in NHEJ, are endowed with a similar capacity to bind a 5'-phosphate group. Other properties that are beneficial for NHEJ, such as the ability to generate template distortions and realignments of the primer, displayed by Pol lambda and Pol mu, are shared by the PolDom of bacterial LigD. In addition, PolDom can perform non-mutagenic translesion synthesis on termini containing modified bases. Significantly, ribonucleotide insertion appears to be a recurrent theme associated with NHEJ, maximised in this case by the deployment of a dedicated primase, although its in vivo relevance is unknown.  相似文献   

11.
DNA double-strand breaks (DSBs) can be repaired either via homologous recombination (HR) or nonhomologous end-joining (NHEJ). Both pathways are operative in eukaryotes, but bacteria had been thought to rely on HR alone. Here we provide direct evidence that mycobacteria have a robust NHEJ pathway that requires Ku and a specialized polyfunctional ATP-dependent DNA ligase (LigD). NHEJ of blunt-end and complementary 5'-overhang DSBs is highly mutagenic ( approximately 50% error rate). Analysis of the recombination junctions ensuing from individual NHEJ events highlighted the participation of several DNA end-remodeling activities, including template-dependent fill-in of 5' overhangs, nontemplated addition of single nucleotides at blunt ends, and nucleolytic resection. LigD itself has the template-dependent and template-independent polymerase functions in vitro that compose the molecular signatures of NHEJ in vivo. Another ATP-dependent DNA ligase (LigC) provides a backup mechanism for LigD-independent error-prone repair of blunt-end DSBs. We speculate that NHEJ allows mycobacteria to evade genotoxic host defense.  相似文献   

12.
DNA ligase D (LigD) participates in a mutagenic pathway of nonhomologous end joining in bacteria. LigD consists of an ATP-dependent ligase domain fused to a polymerase domain (POL) and a phosphoesterase module. The POL domain performs templated and nontemplated primer extension reactions with either dNTP or rNTP substrates. Here we report that Pseudomonas LigD POL is an unfaithful nucleic acid polymerase. Although the degree of infidelity in nucleotide incorporation varies according to the mispair produced, we find that a correctly paired ribonucleotide is added to the DNA primer terminus more rapidly than the corresponding correct deoxyribonucleotide and incorrect nucleotides are added much more rapidly with rNTP substrates than with dNTPs, no matter what the mispair configuration. We find that 3' mispairs are extended by LigD POL, albeit more slowly than 3' paired primer-templates. The magnitude of the rate effect on mismatch extension varies with the identity of the 3' mispair, but it was generally the case that mispaired ends were extended more rapidly with rNTP substrates than with dNTPs. These results lend credence to the suggestion that LigD POL might fill in short 5'-overhangs with ribonucleotides when repairing double strand breaks in quiescent cells. We report that LigD POL can add a deoxynucleotide opposite an abasic lesion in the template strand, albeit slowly. Ribonucleotides are inserted more rapidly at an abasic lesion than are deoxys. LigD POL displays feeble activity in extending a preformed primer terminus opposing an abasic site, but can readily bypass the lesion by slippage of the primer 3' di- or trinucleotide and realignment to the template sequence distal to the abasic site. Covalent benzo[a]pyrene-dG and benzo[c]phenanthrene-dA adducts in the template strand are durable roadblocks to POL elongation. POL can slowly insert a dNMP opposite the adduct, but is impaired in the subsequent extension step.  相似文献   

13.
DNA ligase D (LigD), consisting of polymerase, ligase and phosphoesterase domains, is the essential catalyst of the bacterial non-homologous end-joining pathway of DNA double-strand break repair. The phosphoesterase (PE) module performs manganese-dependent 3′-phosphomonoesterase and 3′-ribonucleoside resection reactions that heal broken ends in preparation for sealing. LigD PE exemplifies a structurally and mechanistically unique class of DNA end-processing enzymes. Here, we present the resonance assignments of the PE domain of Pseudomonas aeruginosa LigD comprising the N-terminal 177 residues.  相似文献   

14.
Intracellular reactive oxygen species as well as the exposure to harsh environmental conditions can cause, in the single chromosome of Bacillus subtilis spores, the formation of apurinic/apyrimidinic (AP) sites and strand breaks whose repair during outgrowth is crucial to guarantee cell viability. Whereas double-stranded breaks are mended by the nonhomologous end joining (NHEJ) system composed of an ATP-dependent DNA Ligase D (LigD) and the DNA-end-binding protein Ku, repair of AP sites would rely on an AP endonuclease or an AP-lyase, a polymerase and a ligase. Here we show that B. subtilis Ku (BsuKu), along with its pivotal role in allowing joining of two broken ends by B. subtilis LigD (BsuLigD), is endowed with an AP/deoxyribose 5′-phosphate (5′-dRP)-lyase activity that can act on ssDNA, nicked molecules and DNA molecules without ends, suggesting a potential role in BER during spore outgrowth. Coordination with BsuLigD makes possible the efficient joining of DNA ends with near terminal abasic sites. The role of this new enzymatic activity of Ku and its potential importance in the NHEJ pathway is discussed. The presence of an AP-lyase activity also in the homolog protein from the distantly related bacterium Pseudomonas aeruginosa allows us to expand our results to other bacterial Ku proteins.  相似文献   

15.
The DNA ligase IV–Xrcc4 complex is responsible for the ligation of broken DNA ends in the non-homologous end-joining (NHEJ) pathway of DNA double strand break repair in mammals. Mutations in DNA ligase IV (Lig4) lead to immunodeficiency and radiosensitivity in humans. Only partial structural information for Lig4 and Xrcc4 is available, while the structure of the full-length proteins and their arrangement within the Lig4–Xrcc4 complex is unknown. The C-terminal domain of Xrcc4, whose structure has not been solved, contains phosphorylation sites for DNA-PKcs and is phylogenetically conserved, indicative of a regulatory role in NHEJ. Here, we have purified full length Xrcc4 and the Lig4–Xrcc4 complex, and analysed their structure by single-particle electron microscopy. The three-dimensional structure of Xrcc4 at a resolution of ~37 Å reveals that the C-terminus of Xrcc4 forms a dimeric globular domain connected to the N-terminus by a coiled-coil. The N- and C-terminal domains of Xrcc4 locate at opposite ends of an elongated molecule. The electron microscopy images of the Lig4–Xrcc4 complex were examined by two-dimensional image processing and a double-labelling strategy, identifying the site of the C-terminus of Xrcc4 and the catalytic core of Lig4 within the complex. The catalytic domains of Lig4 were found to be in the vicinity of the N-terminus of Xrcc4. We provide a first sight of the structural organization of the Lig4–Xrcc4 complex, which suggests that the BRCT domains could provide the link of the ligase to Xrcc4 while permitting some movements of the catalytic domains of Lig4. This arrangement may facilitate the ligation of diverse configurations of damaged DNA.  相似文献   

16.
Many bacterial species have a nonhomologous end joining system of DNA repair driven by dedicated DNA ligases (LigD and LigC). LigD is a multifunctional enzyme composed of a ligase domain fused to two other catalytic modules: a polymerase that preferentially adds ribonucleotides to double-strand break ends and a phosphoesterase that trims 3'-oligoribonucleotide tracts until only a single 3'-ribonucleotide remains. LigD and LigC have a feeble capacity to seal 3'-OH/5'-PO(4) DNA nicks. Here, we report that nick sealing by LigD and LigC enzymes is stimulated by the presence of a single ribonucleotide at the broken 3'-OH end. The ribonucleotide effect on LigD and LigC is specific for the 3'-terminal nucleotide and is either diminished or abolished when additional vicinal ribonucleotides are present. No such 3'-ribonucleotide effect is observed for bacterial LigA or Chlorella virus ligase. We found that in vitro repair of a double-strand break by Pseudomonas LigD requires the polymerase module and results in incorporation of an alkali-labile ribonucleotide at the repair junction. These results illuminate an underlying logic for the domain organization of LigD, whereby the polymerase and phosphoesterase domains can heal the broken 3'-end to generate the monoribonucleotide terminus favored by the nonhomologous end joining ligases.  相似文献   

17.
DNA non-homologous end-joining (NHEJ) is a major mechanism for repairing DNA double-stranded (ds) breaks in mammalian cells. Here, we characterize the interaction between two key components of the NHEJ machinery, the Ku heterodimer and the DNA ligase IV/Xrcc4 complex. Our results demonstrate that Ku interacts with DNA ligase IV via its tandem BRCT domain and that this interaction is enhanced in the presence of Xrcc4 and dsDNA. Moreover, residues 644-748 of DNA ligase IV encompassing the first BRCT motif are necessary for binding. We show that Ku needs to be in its heterodimeric form to bind DNA ligase IV and that the C-terminal tail of Ku80, which mediates binding to DNA-PKcs, is dispensable for DNA ligase IV recognition. Although the interaction between Ku and DNA ligase IV/Xrcc4 occurs in the absence of DNA-PKcs, the presence of the catalytic subunit of DNA-PK kinase enhances complex formation. Previous studies have shown that DNA-PK kinase activity causes disassembly of DNA-PKcs from Ku at the DNA end. Here, we show that DNA-PK kinase activity also results in disassembly of the Ku/DNA ligase IV/Xrcc4 complex. Collectively, our findings provide novel information on the protein-protein interactions that regulate NHEJ in cells.  相似文献   

18.
Repair of DNA double-strand breaks (DSBs) in mammalian cells by nonhomologous end-joining (NHEJ) is initiated by the DNA–PK protein complex. Recent studies have shown inositol hexakisphosphate (InsP6) is a potent cofactor for DNA–PK activity in NHEJ. Specifically, InsP6 binds to the Ku component of DNA–PK, where it induces a conformational change and a corresponding increase in DNA end-joining activity. However, the effect of InsP6 on the dynamics of Ku, such as its mobility in the nucleus, is unknown. Importantly, these dynamics reflect the character of Ku’s interactions with other molecules. To address this question, the diffusion of Ku was measured by fluorescence photobleaching experiments using cells expressing green fluorescent protein (GFP)-labeled Ku. InsP6 was depleted by treating cells with calmodulin inhibitors, which included the compounds W7 and chlorpromazine. These treatments caused a 50% reduction in the mobile fraction of Ku–GFP, and this could be reversed by replenishing cells with InsP6. By expressing deletion mutants of Ku–GFP, it was determined that its W7-sensitive region occurred at the N-terminus of the dimerization domain of Ku70. These results therefore show that InsP6 enhances Ku mobility through a discrete region of Ku70, and modulation of InsP6 levels in cells represents a potential avenue for regulating NHEJ by affecting the dynamics of Ku and hence its interaction with other nuclear proteins.  相似文献   

19.
Genetic experiments have determined that Ku, XRCC4, and ligase IV are required for repair of double-strand breaks by the end-joining pathway. The last two factors form a tight complex in cells. However, ligase IV is only one of three known mammalian ligases and is intrinsically the least active in intermolecular ligation; thus, the biochemical basis for requiring this ligase has been unclear. We demonstrate here a direct physical interaction between the XRCC4-ligase IV complex and Ku. This interaction is stimulated once Ku binds to DNA ends. Since XRCC4-ligase IV alone has very low DNA binding activity, Ku is required for effective recruitment of this ligase to DNA ends. We further show that this recruitment is critical for efficient end-joining activity in vitro. Preformation of a complex containing Ku and XRCC4-ligase IV increases the initial ligation rate 20-fold, indicating that recruitment of the ligase is an important limiting step in intermolecular ligation. Recruitment by Ku also allows XRCC4-ligase IV to use Ku's high affinity for DNA ends to rapidly locate and ligate ends in an excess of unbroken DNA, a necessity for end joining in cells. These properties are conferred only on ligase IV, because Ku does not similarly interact with the other mammalian ligases. We have therefore defined cell-free conditions that reflect the genetic requirement for ligase IV in cellular end joining and consequently can explain in molecular terms why this factor is required.  相似文献   

20.
Human DNA ligase III contains an N-terminal zinc finger domain that binds to nicks and gaps in DNA. This small domain has been described as a DNA nick sensor, but it is not required for DNA nick joining activity in vitro. In light of new structural information for mammalian ligases, we measured the DNA binding affinity and specificity of each domain of DNA ligase III. These studies identified two separate, independent DNA-binding modules in DNA ligase III that each bind specifically to nicked DNA over intact duplex DNA. One of these modules comprises the zinc finger domain and DNA-binding domain, which function together as a single DNA binding unit. The catalytic core of ligase III is the second DNA nick-binding module. Both binding modules are required for ligation of blunt ended DNA substrates. Although the zinc finger increases the catalytic efficiency of nick ligation, it appears to occupy the same binding site as the DNA ligase III catalytic core. We present a jackknife model for ligase III that posits conformational changes during nick sensing and ligation to extend the versatility of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号