首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Rous sarcoma virus (RSV) oncogene product pp60src is known to trigger the acquisition of the transformed phenotype by phosphorylating host cell target molecule(s) at tyrosine residues. To identify phosphotyrosine-containing proteins, rabbit antibodies were raised against the synthetic hapten p-azobenzene-phosphonate (ABP) that specifically cross-reacts with phosphorylated tyrosine. By immuno-decoration of proteins extracted from RSV-transformed mouse fibroblasts and transferred to nitrocellulose sheets, phosphoproteins of 130, 70 and 60 kd were identified. These molecules were found to be associated with the cellular fraction insoluble in non-ionic detergent. Moreover, ABP antibodies precipitated detergent-insoluble proteins of 130, 70 and 60 kd, plus two additional components of 85 and 65 kd, that had been phosphorylated in vitro by [gamma-32P]ATP under conditions allowing the kinase reaction catalyzed by pp60src. Phosphoproteins of closely related mol. wts. were immunoprecipitated from RSV-transformed avian fibroblasts. The radioactivity co-migrated with authentic phosphotyrosine in two-dimensional chromatography. The 60-kd protein comigrated with pp60src, while the identity between the 130-kd protein and vinculin was disproved by the lack of cross-reaction with appropriate antisera. In transformed mouse and duck fibroblasts ABP antibodies, employed in indirect immunofluorescence microscopy, stained diffusely the cytoplasm and intensely decorated restricted areas of the ventral cell plasma membrane. These data show that antibodies reacting with phosphotyrosine may be usefully employed in the identification and in the intracellular localization of molecules that are potential targets of the pp60src protein kinase.  相似文献   

2.
We have examined the phosphorylation of a 50,000-dalton cellular polypeptide associated with the Rous sarcoma virus (FSV) transforming protein pp60-src. It has been shown that pp60src forms a complex with two cellular polypeptides, an 89,000-dalton heat-shock protein (89K) and a 50,000-dalton phosphoprotein (50K). The pp60src-associated protein kinase activity phosphorylates at tyrosine residues, and the 50K polypeptide present in the complex contains phosphotyrosine and phosphoserine. These observations suggest that the 50K polypeptide may be a substrate for the protein kinase activity of pp60src. To examine this possibility, we isolated the 50K polypeptide by two-dimensional polyacrylamide gel electrophoresis from lysates of uninfected or virally infected cells. Tryptic phosphopeptide analysis indicated that the 50K polypeptide isolated by this method was the same polypeptide as that complexed to pp60src. In uninfected cells or cells infected by a transformation-defective mutant, the 50K polypeptide contained phosphoserine but little or no phosphotyrosine. In cells infected by Schmidt-Ruppin or Prague RSV, there was a 40- to 50-fold increase in the quantity of phosphotyrosine in the 50K protein. Thus, the phosphorylation of the 50K polypeptide at tyrosine is dependent on the presence of pp60src. However, the 50K polypeptide isolated from cells infected by temperature-sensitive mutants of RSV was found to be phosphorylated at tyrosine at both permissive and nonpermissive temperatures; this behavior is different from that of other substrates or putative substrates of the pp60src kinase activity. It is possible that the 50K polypeptide is a high-affinity substrate of pp60src.  相似文献   

3.
The transforming protein of Rous' sarcoma virus (RSV) is a phosphoprotein of Mr 60 000 (pp60src) which displays protein kinase activity specific for tyrosine residues; pp60src is associated with the plasma membrane and is recovered in the detergent-insoluble material which represents the subcellular matrix of the cell. After phosphorylation of this material of RSV-transformed cells with [gamma-32P]ATP, five phosphoproteins have been detected which are not seen in normal cells. These proteins (Mr = 135 000, 125 000, 75 000, 70 000, 60 000) contain phosphotyrosine. Their phosphorylation is strongly inhibited by anti-pp60src antibodies. In cells transformed by a temperature-sensitive mutant of RSV, these phosphoproteins, present at the permissive temperature, are no longer detected at the non-permissive temperature. It is concluded that these phosphorylations are mediated by pp60src protein kinase activity. This supports a possible role of the phosphorylation of cytoskeletal proteins in the transformation process.  相似文献   

4.
K Radke  T Gilmore  G S Martin 《Cell》1980,21(3):821-828
Transformation of chicken embryo fibroblasts by Rous sarcoma virus (RSV) is caused by a single viral gene, src, which encodes a phosphoprotein, pp60src, with the enzymatic activity of a protein kinase. The relative abundance of a 36,000 molecular weight (36K) phosphorylated polypeptide which can be detected by two-dimensional electrophoresis of 32P-labeled phosphoproteins is greatly increased in RSV-transformed fibroblasts. We have reported previously that phosphorylation of the 36K polypeptide is an early event in the process of transformation and that protein synthesis is not required for its appearance. Here we identify a nonphosphorylated 36K polypeptide, present in both uninfected and transformed cells, which is homologous to the 36K phosphoprotein as judged by limited proteolysis and by tryptic peptide mapping. We conclude that the 36K phosphoprotein is generated by phosphorylation of this 36K polypeptide. It has recently been shown that pp60src phosphorylates tyrosine residues in vitro: phosphotyrosine and also phosphoserine are present in the 36K phosphoprotein isolated from RSV-transformed cells. On the basis of these results we propose that the 36K polypeptide present in chicken fibroblasts is a substrate for the protein kinase activity of pp60src. Phosphorylation of this polypeptide may be important in cellular transformation by Rous sarcoma virus.  相似文献   

5.
Cells transformed with the middle tumor antigen (mT) of polyomavirus were treated with sodium orthovanadate (Na3VO4), an inhibitor of phosphotyrosine phosphatases, to enhance for the detection of cellular proteins which are phosphorylated on tyrosine. Na3VO4 treatment of mT-transformed rat F1-11 cells resulted in a 16-fold elevation in the level of phosphotyrosine associated with total cellular proteins. Parental F1-11 cells displayed only a twofold increase in phosphotyrosine following Na3VO4 treatment. The abundance of phosphotyrosine in Na3VO4-treated mT-transformed F1-11 cells was twofold higher than in untreated Rous sarcoma virus (RSV)-transformed F1-11 cells and 3.5-fold lower than in Na3VO4-treated RSV-transformed F1-11 cells. Tyrosine phosphorylation of many cellular proteins, including p36, the major substrate of the RSV pp60v-src protein, was detected in Na3VO4-treated mT-transformed F1-11 cells at levels comparable to those observed in RSV-transformed cells. Some of the major protein species recognized by antiphosphotyrosine antibodies in Na3VO4-treated mT-transformed cells displayed electrophoretic mobilities similar to those detected in RSV-transformed F1-11 cells. Tyrosine phosphorylation of p36 was also detected in fibroblasts infected with polyomavirus. There was no detectable difference in the kinase activity of pp60c-src:mT extracted from untreated and Na3VO4-treated mT-transformed cells; however, Na3VO4 treatment of F1-11 and mT-transformed F1-11 cells was shown to inhibit the activity of phosphotyrosine phosphatases in a crude assay of total cellular activity with pp60v-src as the substrate. Thus, Na3VO4 treatment may allow the detection of phosphotyrosine-containing proteins in mT-transformed cells by preventing the turnover of phosphate on substrates phosphorylated by activated cellular protein-tyrosine kinases associated with mT. These results suggest that tyrosine phosphorylation of cellular proteins may be involved in the events that are responsible for mT-induced cellular transformation.  相似文献   

6.
Phosphorylation on tyrosine residues mediated by pp60src appears to be a primary biochemical event leading to the establishment of the transformed phenotype in Rous sarcoma virus (RSV)-infected cells. To identify the cellular proteins that undergo tyrosine phosphorylation during transformation, a 32P-labeled RSV-transformed chicken embryo cell extract was analyzed by electrophoresis on a polyacrylamide gel. After slicing the gel into approximately 60 slices, phosphoamino acid analyses were carried out on the protein recovered from each gel slice. Phosphotyrosine was found in every gel slice, with two major peaks of this phosphoamino acid around M(r)'s of 59 and 36 kilodaltons. When the same analysis was performed with cells infected with a transformation-defective src deletion mutant of RSV (tdNY101), significant and reproducible peaks of phosphotyrosine were found in only 2 of 60 gel slices. These gel slices corresponded to M(r)'s of 42 and 40 kilodaltons. Identical results were obtained with normal uninfected chicken embryo fibroblasts. We conclude from these observations that pp60src or the combined action of pp60src and pp60src-activated cellular protein kinases cause the tyrosine-specific phosphorylation of a very large number of cellular polypeptides in RSV-transformed cells. In addition, untransformed cells appear to possess one or more active tyrosine-specific protein kinases which are responsible for the phosphorylation of a limited number of proteins. These proteins are different from the major phosphotyrosine-containing proteins of the transformed cells.  相似文献   

7.
pp60v-src is a nonreceptor protein tyrosine kinase that can transform both chicken and rodent fibroblasts. The src homology 2 (SH2) domain of this protein serves a critical role in the regulation of protein tyrosine kinase activity. The host range proteins pp60v-src-L, which contains a deletion of a highly conserved residue (Phe-172) in the SH2 domain, and pp60v-src-PPP, which contains a change from a Leu to a Phe at amino acid 186 in the SH2 domain, transform chicken but not rat cells and have slightly reduced kinase activity measured in vitro. The data presented here show that these altered proteins require autophosphorylation on Tyr-416 for high kinase activity and transforming ability. In the absence of autophosphorylation, there is a further decrease of at least threefold in in vitro kinase activity relative to the phosphorylated host range parental protein, no morphological transformation, a reduction in anchorage independent growth, and no disruption of the actin cytoskeleton. In addition, these SH2 mutations abolish the ability of the SH2 domain to bind a phosphorylated peptide that corresponds to the autophosphorylation site of pp60src. Thus, like mutant alleles of c-src encoding transformation competent proteins, and unlike v-src, transformation by pp60v-src-F172 delta and pp60v-src-L186F is dependent on phosphorylation of Y-416 for high kinase activity and transformation ability. The dependence of transformation on phosphotyrosine is not a reflection of an intramolecular interaction between the autophosphorylation site and the SH2 domains since purified SH2 domains are incapable of binding phosphorylated autophosphorylation site peptides in vitro.  相似文献   

8.
The receptors for polypeptide growth factors and proteins coded by oncogenes of the src family are endowed with protein kinase activity and share the uncommon property of autophosphorylating at tyrosine residues. It is unclear whether the tyrosine kinase activity is also directed towards other targets of physiological significance. In this work, phosphotyrosine antibodies were used to detect, by Western blots and immunoprecipitation, proteins phosphorylated at tyrosine in fibroblasts either stimulated by growth factors (PDGF and EGF) or transformed by oncogene-coded tyrosine kinases. In stimulated cells the antibodies detected the autophosphorylated receptors, but only trace amounts of other proteins phosphorylated at tyrosine. In fibroblasts transformed by retroviral oncogenes (v-src, v-abl, v-fps or v-fes) proteins other than the corresponding oncogene-coded kinase, were found. A p70 was found to be heavily phosphorylated in fibroblasts transformed by v-src, v-fes and v-fps. A p130 and a p36 were found in cells transformed by v-src and v-abl. A unique p70 was phosphorylated in v-abl-transformed fibroblasts. These proteins were also phosphorylated in vitro in an immunocomplex kinase reaction. This reaction was blocked by the specific kinase inhibitors. These data strongly suggest that tyrosine kinases phosphorylate protein targets other than themselves. These targets are barely detectable in normal cells stimulated by growth factors, where the kinase activity is triggered rapidly and transiently. By contrast, a number of intracellular proteins phosphorylated at tyrosine accumulate in cells transformed by v-onc-coded kinases, endowed with constitutive and non-regulated enzymatic activity.  相似文献   

9.
To generate the antibodies to the transforming protein of Rous sarcoma virus (RSV) pp60src, rabbits were immunized with the peptide, corresponding to 415-421 sequence of pp60src. These antibodies immunoprecipitate pp60src in RSV-transformed chicken and mammalian cells, and also some proteins (45, 85 and 120 kDa), which could be autophosphorylated in vitro. It was shown that 415-421 sequence of pp60src is not recognized by the antibodies to pp60src from RSV-induced tumour bearing rabbits (TBR serum). In contrast to TBR serum, antibodies, generated against synthetic peptide, corresponding 415-421 sequence of pp60src couldn't be phosphorylated in vitro, when [gamma-32P]ATP is added to the immune complex. The antipeptide antibodies, bound to pp60src did not block phosphorylation of TBR immunoglobulins, added to this immune complex. Hence, 415-421 sequence of pp60src RSV containing the major tyrosine phosphorylation site does not take part in the kinase reaction in vitro.  相似文献   

10.
Tyrosine-specific phosphorylation of cellular proteins has been implicated in the neoplastic transformation of cells by Rous sarcoma virus (RSV). One of the putative substrates for the src gene product (pp60v-src) of RSV is the cytoskeletal protein vinculin, giving rise to the hypothesis that tyrosine-specific phosphorylation of vinculin disrupts adhesion plaque integrity, leading to the characteristic rounded morphology of RSV-transformed cells. We have investigated this hypothesis by analysing the properties of fibroblasts transformed by conditional and non-conditional mutants of RSV which confer different morphologies on infected cells, with respect to formation of microfilament bundles, formation of vinculin-containing adhesion plaques, the deposition of a fibronectin-containing extracellular matrix, the localization of pp60v-src and the tyrosine-specific phosphorylation of vinculin. Cells transformed by the temperature-sensitive (ts) RSV mutant LA32 cultured at 41 degrees C were morphologically normal, and contained prominent microfilament bundles and well-developed adhesion plaques. However, these cells had a fully active pp60v-src kinase, had pp60v-src concentrated in their adhesion plaques and contained vinculin which was heavily phosphorylated on tyrosine residues. Cells transformed by a recovered avian sarcoma virus, rASV 2234.3 exhibited a markedly fusiform morphology with pp60v-src concentrated in well-developed adhesion plaques and an elevation of the phosphotyrosine content of vinculin. Cells transformed by LA32 at restrictive temperature comprise morphologically normal cells, indistinguishable from untransformed CEF, yet which contain tyrosine-phosphorylated vinculin and suggest that neither tyrosine-specific phosphorylation of vinculin nor pp60v-src concentration in adhesion plaques is sufficient for the rounded morphology of RSV-transformed cells.  相似文献   

11.
A protein kinase activity (PK) was associated with immunoprecipitates between polypeptides of human lymphoblastoid cells of malignant origin (Raji cell line) or of their normal counterparts ( Priess cell line) and antibodies directed against avian pp60 src or against the carboxyterminal hexapeptide of pp60 src. Therefore, these human cells and Rous Sarcoma Virus (RSV) transformed avian cells share antigenic determinants of pp60 src and, in particular, its carboxyterminal sequence, as well as one of its functions, a protein kinase activity. The protein kinase from Raji cells phosphorylated predominantly tyrosine residues, that from Priess cells threonine residues.  相似文献   

12.
Expression of the src gene of Rous sarcoma virus (RSV) in chicken embryo neuroretinal (NR) cells results in morphological transformation and sustained proliferation of a normally resting cell population. We have previously reported the isolation of mutants of RSV which retain full growth-promoting activity while displaying reduced transforming properties. Two such mutants, PA101 and PA104, were used to investigate whether the p60src-associated kinase activity is required for the mitogenic function of src. A comparison of the patterns of phosphorylation of wild-type and mutant p60src revealed that the phosphorylation of tyrosine residues of p60src of PA104 was markedly reduced, whereas the relative amount of phosphotyrosine in p60src of PA101 was comparable to that of the wild-type protein. In vitro kinase activity of p60src immunoprecipitated from NR cells infected with PA101 or PA104 as measured by phosphorylation of the heavy chains of specific immunoglobulin G molecules was 1/10 that of the wild-type molecule. Moreover, when NR cells infected with mutants temperature sensitive for mitogenic capacity were maintained at a temperature either permissive or restrictive for cell growth, quantitation of kinase activity indicated that proliferation of NR cells could not be linked to the absolute level of in vitro kinase activity of p60src. Transformation of NR cells by wild-type RSV resulted in a 10-fold increase in total cellular phosphotyrosine and in the phosphorylation of tyrosine residues of a 34K protein, a possible in vivo substrate for p60src. In contrast, phosphorylation of tyrosine residues of cellular targets was markedly reduced in NR cells infected with PA101 or PA104. These results indicate that the mitogenic capacity of RSV in NR cells does not require elevated levels of p60src kinase activity.  相似文献   

13.
Vinculin: a cytoskeletal target of the transforming protein of Rous sarcoma virus   总被引:138,自引:0,他引:138  
B M Sefton  T Hunter  E H Ball  S J Singer 《Cell》1981,24(1):165-174
Vinculin, a protein associated with the cytoplasmic face of the focal adhesion plaques which anchor actin-containing microfilaments to the plasma membrane and attach a cell to the substratum, contains 8-fold more phosphotyrosine in cells transformed by Rous sarcoma virus than in uninfected cells. Because the transforming protein of RSV, p60src, is a protein kinase that modifies cellular proteins through the phosphorylation of tyrosine and because phosphotyrosine is a very rare modified amino acid, this result is a very rare modified amino acid, this result suggests that vinculin is a primary substrate of p60src. Only trace amounts of phosphotyrosine were detected in myosin heavy chains, alpha-actinin, filamin, and the intermediate filament protein vimentin. The modification of vinculin by p60src may be responsible in part for the disruption of the microfilament organization and for the changes in cell shape and adhesiveness which accompany transformation by Rous sarcoma virus.  相似文献   

14.
We constructed a mutant, called RSV-SF2, at the ATP-binding site of pp60v-src. In this mutant, lysine-295 is replaced with methionine. SF2 pp60v-src was found to have a half-life similar to that of wild-type pp60v-src and was localized in the membranous fraction of the cell. Rat cells expressing SF2 pp60v-src were morphologically untransformed and do not form tumors. The SF2 pp60v-src isolated from these cells lacked kinase activity with either specific immunoglobulin or other substrates, and expression of SF2 pp60v-src failed to cause an increase of total phosphotyrosine in the proteins of infected cells. Wild-type pp60v-src was phosphorylated on serine and tyrosine in infected cells, and the analogous phosphorylations could also be carried out in vitro. Phosphorylation of serine was catalyzed by a cyclic AMP-dependent protein kinase, and phosphorylation of tyrosine was perhaps catalyzed by pp60v-src itself. By contrast, SF2 pp60v-src could not be phosphorylated on serine or tyrosine either in infected cells or in vitro. These findings strengthen the belief that the phosphotransferase activity of pp60v-src is required for neoplastic transformation by the protein and suggest that the binding of ATP to pp60v-src elicits an allosteric change required for phosphorylation of serine in the protein.  相似文献   

15.
As cells adhere to extracellular matrix proteins, several focal adhesion proteins become tyrosine phosphorylated. One of the most prominent of these has been identified as the tyrosine kinase p125FAK (focal adhesion kinase, FAK). An interaction between FAK and members of the Src family tyrosine kinases p59fyn, pp60v-src, and activated pp60c-src (527F) has been demonstrated, raising the possibility that these kinases may regulate FAK activity. To explore the role of Src family kinases in focal adhesions and in the regulation of FAK activity, we isolated fibroblasts from transgenic mice that lack either pp60c-src p59fyn, or pp62c-yes. These primary fibroblasts, and those of a control mouse, were passaged numerous times and resulted in spontaneously immortalized cell lines without the addition of transforming agents. After confirming the absence of the appropriate nonreceptor tyrosine kinases in the fyc¯, srn¯ and yes¯ fibroblasts, the ability of these fibroblasts to form focal adhesions and stress fibers was assessed by immunofluorescence microscopy and found to be comparable to that of normal fibroblasts. We investigated phosphotyrosine levels in response to adhesion to fibronectin and identified the pp60src substrate p130 as the one major protein with reduced levels of tyrosine phosphorylation in the cells lacking p59fyn and pp62c-yes, and particularly in those lacking pp60c-scr. We examined FAK phosphorylation and kinase activity and found that there were no significant differences between these cells.  相似文献   

16.
The tyrosine protein kinase activities of pp60c-src and pp60v-src were compared. The activities were qualitatively similar in vitro when the src proteins were bound in an immune complex with monoclonal antibody; both proteins utilized either ATP or GTP as phosphate donors, preferred Mn2+ to Mg2+, and had similar exogenous substrate specificities. The specific activity of pp60c-src was about 10-fold lower than that of pp60v-src for exogenous substrate phosphorylation but was only 1.1- to 2-fold lower than that of pp60v-src for autophosphorylation. Six glycolytic enzymes, including three not previously identified as substrates for pp60src phosphorylation, were phosphorylated by both pp60c-src and pp60v-src. Levels of pp60c-src fourfold higher than the amount of pp60v-src in src-plasmid-transformed cells did not detectably alter the level of phosphotyrosine in cellular proteins, but increasing the expression of pp60c-src another twofold (which induces cells to form foci in monolayer culture (P.J. Johnson, P.M. Coussens, A.V. Danko, and D. Shalloway, Mol. Cell. Biol. 5:1073-1083, 1985) resulted in a threefold increase in the level of cellular protein phosphotyrosine. Immunoprecipitation and analysis of the alkali-stable phosphoproteins by two-dimensional electrophoresis showed that, in contrast to pp60v-src-transformed cells, pp36 and enolase are only weakly phosphorylated in these high-level pp60c-src overexpresser cells. Even allowing for the in vitro differences in specific activities of phosphorylation, these results suggest that the pp60c-src tyrosine protein phosphorylating activity may be restricted relative to that of pp60v-src by additional in vivo mechanisms.  相似文献   

17.
Rous sarcoma virus (RSV)-induced transformation is mediated by the action of the viral src gene product pp60src. This transforming protein is found at several cytoplasmic locations, including the adhesion plaques of RSV-transformed cells. In these studies, we have focused on the adhesion plaque location of pp60src and determined whether any of the induced transformation parameters correlate with the presence of pp60src in the adhesion plaques. A series of partial transformation mutants of RSV that induce distinct transformation phenotypes were used, and infected chicken embryo cells were examined for (i) intracellular pp60src location, (ii) vinculin localization, (iii) abundance of phosphotyrosine on vinculin, (iv) integrity of stress fibers, and (v) expression of cell surface fibronectin. The results indicate that, among the limited number of mutants studied here, the presence of pp60src in adhesion plaques is independent of growth in soft agar and the increased phosphorylation of vinculin on tyrosine, but it does correlate with the loss of cell surface fibronectin. An elevated abundance of phosphotyrosine on vinculin is insufficient to cause stress fiber dissolution and is independent of the loss of fibronectin from the extracellular matrix. However, the increased relative amount of phosphotyrosine on vinculin is related to the ability of the cells to grow in soft agar. The adhesion plaque binding and tyrosine-specific kinase activities seem to represent two independent functions of pp60src.  相似文献   

18.
Incubation of quiescent chicken embryo cells with platelet-derived growth factor, epidermal growth factor, or serum was found to stimulate phosphorylation of two proteins of ca. 42,000 daltons on tyrosine. These proteins are structurally related to each other and to two proteins phosphorylated on tyrosine under similar conditions in mitogen-treated mouse fibroblasts. Three other very different mitogenic agents, the protease trypsin and the chemically unrelated tumor promoters 12-O-tetradecanoyl-phorbol-13-acetate and teleocidin, stimulated phosphorylation of the same proteins. In all cases, phosphotyrosine was detected in these phosphoproteins. Although additional changes in protein phosphorylation were evident, no other proteins were observed by two-dimensional gel electrophoresis which contained increased amounts of phosphotyrosine in mitogen-treated chicken embryo cells. One of these 42,000-dalton proteins was shown previously to be phosphorylated on tyrosine in chicken embryo cells transformed with various retroviruses whose transforming proteins possess tyrosine protein kinase activity. Phosphorylation of the 42,000-dalton proteins could be important in the regulation of cell division.  相似文献   

19.
Phosphotyrosine antibodies were used to identify tyrosine-phosphorylated proteins in Rous sarcoma virus (RSV)-transformed chicken embryo fibroblasts. A large number of tyrosine phosphoproteins were detected. A similar set of proteins was observed in RSV-transformed murine cells. An 85,000-dalton protein, however, was present in transformed avian cells but missing in transformed murine cells. Neither the 85,000-dalton protein nor any of the other tyrosine phosphoproteins appeared to be viral structural proteins. Use of RSV mutants encoding partially deleted src gene products enabled us to identify a 60,000-dalton cellular tyrosine phosphoprotein that comigrated with wild-type pp60v-src. With the exception of calpactin I, the major tyrosine phosphoproteins detected in immunoblots appeared to be different from several previously characterized substrates of pp60v-src with similar molecular masses (ezrin, vinculin, and the fibronectin receptor).  相似文献   

20.
Molecular events in cells transformed by Rous Sarcoma virus   总被引:20,自引:5,他引:15       下载免费PDF全文
The Rous sarcoma virus (RSV) transforming gene product has been identified and characterized as a phosphoprotein with a molecular weight of 60,000, denoted pp60src. Partially purified pp60src displays a closely associated phosphotransferase activity with the unusual specificity of phosphorylating tyrosine residues in a variety of proteins. That the enzymatic activity observed is actually encoded by the RSV-transforming gene is indicated by the comparison of the pp60src- protein kinase isolated from cells tranformed by a wild-type RSV or by a RSV temperature-sensitive transformation mutant; these experiments revealed that the latter enzyme had a half-life of 3 min at 41 degrees C, whereas that of the wild-type enzyme was 20 min. Evidence is now beginning to accumulate showing that viral pp60src expresses its protein kinase activity in transformed cells as well as in vitro because at least one cellular protein has been identified as a substrate for this activity of pp60src. Although the protein kinase activity associated with pp60src is itself cyclic AMP (cAMP) independent, the molecule contains at least one serine residue that is directly phosphorylated by the cellular cAMP-dependent protein kinase, thus suggesting that the viral transforming gene product may be regulated indirectly by the level of cAMP. The significance of this latter observation must be regarded from the point of view that the RSV src gene is apparently derived from a normal cellular gene that seemingly expresses in normal uninfected cells a phosphoprotein structurally and functionally closely related to pp60src. This celluar protein, found in all vertebrate species tested, also is a substrate for a cAMP-dependent protein kinase of normal cells, and, therefore, may be evolved to function in a regulatory circuit involving cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号