首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have shown that gypenosides (Gyp) induced cell cycle arrest and apoptosis in many human cancer cell lines. However, there are no reports showing that show Gyp acts on human leukemia HL-60 cells in vitro and in a murine xenograft model in vivo. In the present study effects of Gyp on cell morphological changes and viability, cell cycle arrest and induction of apoptosis in vitro and effects on Gyp in an in vivo murine xenograft model. Results indicated that Gyp induced morphological changes, decreased cell viability, induced G0/G1 arrest, DNA fragmentation and apoptosis (sub-G1 phase) in HL-60 cells. Gyp increased reactive oxygen species production and Ca2+ levels but reduced mitochondrial membrane potential in a dose- and time-dependent manner. Gyp also changed one of the primary indicators of endoplasmic reticulum (ER) stress due to the promotion of ATF6-α and ATF4-α associated with Ca2+ release. Gyp reduced the ratio of Bcl-2 to Bax due to an increase in the pro-apoptotic protein Bax and inhibited levels of the anti-apoptotic protein Bcl-2. Oral consumption of Gyp reduced tumor size of HL-60 cell xenograft mode mice in vivo. These results provide new information on understanding mechanisms by which Gyp induces cell cycle arrest and apoptosis in vitro and in vivo.  相似文献   

2.
BackgroundTriple-negative breast cancer (TNBC), lacking targeted therapies currently, is susceptible to ferroptosis, a recently defined form of cell death.PurposeTo evaluate the anticancer activity of Shuganning injection (SGNI), a traditional Chinese patent medicine, on TNBC cells; To elucidate the mechanism of SGNI induced ferroptosis.MethodsThe anticancer activity of SGNI was examined via in vitro cell proliferation assays and in vivo xenograft growth assay. Ferroptosis was determined by flow-cytometric analysis of lipid ROS, labile iron pool measurement, and propidium iodide exclusion assay. The dependency on heme oxygenase 1 (HO-1) of SGNI induced ferroptosis was confirmed by genetic knockdown and pharmacological inhibition of the protein.ResultsSGNI selectively inhibited the proliferation of TNBC cells compared to non-TNBC breast cancer cells and normal cells. The cell death induced by SGNI in TNBC cells showed distinct morphology from apoptosis and could not be rescued by the pan-caspase inhibitor Z-VAD(OMe)-FMK. On the other hand, SGNI induced cell death was blocked by the lipid ROS scavengers ferrostatin-1 and liproxstatin-1, the acyl-CoA synthetase long chain family member 4 inhibitor rosiglitazone, and the iron chelators 1,10-phenanthroline and deferoxamine. These data indicated that SGNI induced a ferroptotic cell death of TNBC cells. Mechanistically, SGNI induced ferroptosis was dependent on HO-1, which promotes intracellular labile iron pool accumulation, and was alleviated by HO-1 knockdown and inhibition by tin protoporphyrin IX. In line with the in vitro data, SGNI significantly inhibited the xenograft growth of TNBC cell line MD-MB-231 in nude mice.ConclusionCollectively, our study elaborates on a promising regimen for TNBC treatment through induction of ferroptosis by SGNI, a traditional Chinese patent medicine currently available in the clinic, which merits further investigation.  相似文献   

3.
Background: The application of chimeric antigen receptor (CAR) NK cells in solid tumors is hindered by lack of tumor-specific targets and inefficient CAR NK cell efficacy. It has been reported that mesothelin (MSLN) may be an ideal immunotherapy target for gastric cancer. However, the feasibility of using anti-MSLN CAR NK cells to treat gastric cancer remains to be studied.Methods: MSLN expression in primary human gastric cancer, normal tissues and cell lines were detected. MSLN and CD19 targeted CAR NK-92 (MSLN- and CD19-CAR NK) cells were constructed, purified and verified. N87, MKN-28, AGS and Huh-7 cells expressing the GFP and luciferase genes were transduced. Cell- and patient-derived xenograft (PDX) were established via NSG mice. The ability of MSLN-CAR NK cells to kill MSLN-positive gastric cancer cells were evaluated in vitro and in vivo.Results: MSLN-CAR NK cells can specifically kill MSLN-positive gastric cancer cells (N87, MKN-28 and AGS), rather than MSLN negative cell (Huh-7), in vitro. Moreover, compared with parental NK-92 cells and CD19-CAR NK cells, stronger cytokine secretions were secreted in MSLN-CAR NK cells cocultured with N87, MKN-28 and AGS. Furthermore, MSLN-CAR NK cells can effectively eliminate gastric cancer cells in both subcutaneous and intraperitoneal tumor models. They could also significantly prolong the survival of intraperitoneally tumor-bearing mice. More importantly, the potent antitumor effect and considerable NK cell infiltration were observed in the patient-derived xenograft treated with MSLN-CAR NK cells, which further warranted the therapeutic effects of MSLN-CAR NK cells to treat gastric cancer.Conclusion: These results demonstrate that MSLN-CAR NK cells possess strong antitumor activity and represent a promising therapeutic approach to gastric cancer.  相似文献   

4.
5.
BackgroundCancer is one of the major threats to human health and current cancer therapies have been unsuccessful in eradicating it. Ferroptosis is characterized by iron-dependence and lipid hydroperoxides accumulation, and its primary mechanism involves the suppression of system Xc-GSH (glutathione)-GPX4 (glutathione peroxidase 4) axis. Co-incidentally, cancer cells are also metabolically characterized by iron addiction and ROS tolerance, which makes them vulnerable to ferroptosis. This may provide a new tactic for cancer therapy.Scope of reviewThe general features and mechanisms of ferroptosis, and the basis that makes cancer cells vulnerable to ferroptosis are described. Further, we emphatically discussed that disrupting GSH may not be ideal for triggering ferroptosis of cancer cells in vivo, but directly inhibiting GPX4 and its compensatory members could be more effective. Finally, the various approaches to directly inhibit GPX4 without disturbing GSH were described.Major conclusionsTargeting system Xc or GSH may not effectively trigger cancer cells' ferroptosis in vivo the existence of other compensatory pathways. However, directly targeting GPX4 and its compensatory members without disrupting GSH may be more effective to induce ferroptosis in cancer cells in vivo, as GPX4 is essential in preventing ferroptosis.General significanceCancer is a severe threat to human health. Ferroptosis-based cancer therapy strategies are promising, but how to effectively induce ferroptosis in cancer cells in vivo is still a question without clear answers. Thus, the viewpoints raised in this review may provide some references and different perspectives for researchers working on ferroptosis-based cancer therapy.  相似文献   

6.
Advances in the fields of cancer initiating cells and high-throughput in vivo shRNA screens have highlighted a need to observe the growth of tumor cells in cancer models at the clonal level. While in vivo cancer cell growth heterogeneity in xenografts has been described, it has yet to be measured. Here, we tested an approach to quantify the clonal growth heterogeneity of cancer cells in subcutaneous xenograft mouse models. Using a high-throughput sequencing method, we followed the fate in vitro and in vivo of ten thousand HCT-116 cells individually tagged with a unique barcode delivered by lentiviral transduction. While growth in vitro was less homogeneous than anticipated, we still find that 95% of the final cells derived from 80% of the original cells. In xenografts, however, 95% of the retrieved barcoded cells originated from only 6% of the initially injected cells, an effect we term “clonal dominance”. We observed this clonal dominance in two additional xenograft models (MDA-MB-468 and A2780cis) and in two different host strains (NSG and Nude). By precisely and reproducibly quantifying clonal cancer cell growth in vivo, we find that a small subset of clones accounts for the vast majority of the descendant cells, even with HCT-116, a cell line reported to lack a tumor-initiating compartment. The stochastic in vivo selection process we describe has important implications for the fields of in vivo shRNA screening and tumor initiating cells.  相似文献   

7.
8.
Arctic ground squirrels (Urocitellus parryii, AGS) are unique in their ability to hibernate with a core body temperature near or below freezing 1. These animals also resist ischemic injury to the brain in vivo2,3 and oxygen-glucose deprivation in vitro4,5. These unique qualities provided the impetus to isolate AGS neurons to examine inherent neuronal characteristics that could account for the capacity of AGS neurons to resist injury and cell death caused by ischemia and extremely cold temperatures. Identifying proteins or gene targets that allow for the distinctive properties of these cells could aid in the discovery of effective therapies for a number of ischemic indications and for the study of cold tolerance. Adult AGS hippocampus contains neural stem cells that continue to proliferate, allowing for easy expansion of these stem cells in culture. We describe here methods by which researchers can utilize these stem cells and differentiated neurons for any number of purposes. By closely following these steps the AGS neural stem cells can be expanded through two passages or more and then differentiated to a culture high in TUJ1-positive neurons (~50%) without utilizing toxic chemicals to minimize the number of dividing cells. Ischemia induces neurogenesis 6 and neurogenesis which proceeds via MEK/ERK and PI3K/Akt survival signaling pathways contributes to ischemia resistance in vivo7 and in vitro8 (Kelleher-Anderson, Drew et al., in preparation). Further characterization of these unique neural cells can advance on many fronts, using some or all of these methods.  相似文献   

9.
Instead of relying on mitochondrial oxidative phosphorylation, most cancer cells rely heavily on aerobic glycolysis, a phenomenon termed as “the Warburg effect”. We considered that this effect is a direct consequence of damage which persists in cancer cells that recover from damage. To this end, we studied glycolysis and rate of cell proliferation in cancer cells that recovered from severe damage. We show that in vitro Damage-Recovered (DR) cells exhibit mitochondrial structural remodeling, display Warburg effect, and show increased in vitro and in vivo proliferation and tolerance to damage. To test whether cancer cells derived from tumor microenvironment can show similar properties, we isolated Damage-Recovered (TDR) cells from tumors. We demonstrate that TDR cells also show increased aerobic glycolysis and a high proliferation rate. These findings show that Warburg effect and its consequences are induced in cancer cells that survive severe damage.  相似文献   

10.
Lung cancer is a major cause of cancer-related mortality in the United States and around the world. Due to the pre-existing or acquired chemo-resistance, the current standard chemotherapy regimens only show moderate activity against lung cancer. In the current study, we explored the potential anti-lung cancer activity of cinobufotalin in vivo and in vitro, and studied the underlying mechanisms. We demonstrated that cinobufotalin displayed considerable cytotoxicity against lung cancer cells (A549, H460 and HTB-58 lines) without inducing significant cell apoptosis. Our data suggest that mitochondrial protein cyclophilin D (Cyp-D)-dependent mitochondrial permeability transition pore (mPTP) opening mediates cinobufotalin-induced non-apoptotic death of lung cancer cells. The Cyp-D inhibitor cyclosporine A (CsA), the mPTP blocker sanglifehrin A (SfA), and Cyp-D shRNA-silencing significantly inhibited cinobufotalin-induced mitochondrial membrane potential (MMP) reduction and A549 cell death (but not apoptosis). Using a mice xenograft model, we found that cinobufotalin inhibited A549 lung cancer cell growth in vivo. Thus, cinobufotalin mainly induces Cyp-D-dependent non-apoptotic death in cultured lung cancer cells. The results of this study suggest that cinobufotalin might be further investigated as a novel anti-lung cancer agent.  相似文献   

11.
The biological activities of the ethanol extract from Cirsium japonicum var. maackii (ICF-1) and its major component, polyphenol cirsimaritin, were investigated as part of the search for possible alternative drugs for breast cancer. Three in vitro cell-based assays were used: the cell proliferation assay, tube-formation assay, and Western blot analysis. Both the ICF-1 extract and cirsimaritin inhibited the viability of HUVECs in a dose-dependent manner. The inhibition achieved was 36.89% at a level of 200 μg/ml by the ICF-1 extract and 62.04% at a level of 100 μM by cirsimaritin. The ICF-1 extract and cirsimaritin reduced tube formation by 12.69% at level of 25 μg/ml and 32.18% at the levels of 6.25 μM, respectively. Cirsimaritin inhibited angiogenesis by downregulation of VEGF, p-Akt and p-ERK in MDA-MB-231 cells, suggesting that cirsimaritin is potentially useful as an anti-metastatic agent. The present study demonstrated that Cirsium japonicum extract and its active component cirsimaritin is an excellent candidate as an alternative anti-breast cancer drug.  相似文献   

12.

Background

The current knowledge of immunological responses to schistosomiasis, a major tropical helminthic disease, is insufficient, and a better understanding of these responses would support vaccine development or therapies to control granuloma-associated immunopathology. CD4+ T cells play critical roles in both host immune responses against parasitic infection and immunopathology in schistosomiasis. The induction of T helper (Th)1, Th2 and T regulatory (Treg) cells and their roles in schistosome infections are well-illustrated. However, little in vivo data are available on the dynamics of Th17 cells, another important CD4+ T cell subset, after Schistosoma japonicum infection or whether these cells and their defining IL-17 cytokine mediate host protective responses early in infection.

Methodology

Levels of Th17 and the other three CD4+ T cell subpopulations and the cytokines related to induction or repression of Th17 cell generation in different stages of S. japonicum infection were observed. Contrary to reported in vitro studies, our results showed that the Th17 cells were induced along with the Th1, Th2, Treg cells and the IFN-γ and IL-4 cytokines in S. japonicum infected mice. The results also suggested that S. japonicum egg antigens but not adult worm antigens preferentially induced Th17 cell generation. Furthermore, decreasing IL-17 with a neutralizing anti-IL-17 monoclonal antibody (mAb) increased schistosome-specific antibody levels and partial protection against S. japonicum infection in mice.

Conclusions

Our study is the first to report the dynamics of Th17 cells during S. japonicum infection and indicate that Th17 cell differentiation results from the integrated impact of inducing and suppressive factors promoted by the parasite. Importantly, our findings suggest that lower IL-17 levels may result in favorable host protective responses. This study significantly contributes to the understanding of immunity to schistosomiasis and may aid in developing interventions to protect hosts from infection or restrain immunopathology.  相似文献   

13.
Overexpression and/or overactivation of sphingosine kinase 1/2 (SphK1/2) is important for tumorigenesis and progression of cervical cancer. The current study examined the potential activity and signaling mechanisms of SKI-V, a non-lipid small molecule SphK inhibitor, against cervical cancer cells. In different primary and immortalized cervical cancer cells, SKI-V exerted significant anti-cancer activity by inhibiting cell viability, colony formation, proliferation, cell cycle progression and cell migration. Significant apoptosis activation was detected in SKI-V-treated cervical cancer cells. Significantly, SKI-V also provoked programmed necrosis cascade in cervical cancer cells, as it induced mitochondrial p53-cyclophilin-D-adenine nucleotide translocator-1 (ANT1) complexation, mitochondrial membrane potential collapse, reactive oxygen species production and the release of lactate dehydrogenase into the medium. Further, SKI-V blocked SphK activation and induced ceramide accumulation in primary cervical cancer cells, without affecting SphK1/2 expression. SKI-V-induced cytotoxicity in cervical cancer cells was largely inhibited by sphingosine-1-phosphate or the SphK1 activator K6PC-5, but was sensitized by adding the short-chain ceramide C6. Moreover, SKI-V inhibited Akt-mTOR (mammalian target of rapamycin) activation in primary cervical cancer cells, and its cytotoxicity was mitigated by a constitutively-active Akt. In vivo, daily intraperitoneal injection of SKI-V significantly inhibited subcutaneous primary cervical cancer xenograft growth in nude mice. Together, the SphK inhibitor SKI-V suppresses cervical cancer growth in vitro and in vivo.  相似文献   

14.

Background

Parasitic helminths need to suppress the host immune system to establish chronic infections. Paradoxically, immunosuppression induced by the worm also benefits the host by limiting excessive inflammation and tissue damage, which remains the major cause leading to serious morbidity and mortality. Regulatory T cells (Tregs) are key immune regulators of this mutualism. The successive rise in Tregs during schistosome infection plays a critical role in immunoregulation. We and others previously showed that Schistosoma japonicum (S. japonicum) egg antigens (SEA) induce Tregs both in vitro and in vivo. In addition, we identified that SjHSP60 derived from SEA significantly induces Tregs in vivo and in vitro. However, the contribution of SjHSP60 in SEA to Treg induction and the related mechanisms of the Treg induction have not yet been identified.

Methodology/Principal Findings

In this study, we showed that S. japonicum stress protein HSP60 (SjHSP60) was constitutively and extensively expressed in eggs of S. japonicum. SjHSP60 specially induced Tregs in vivo and in vitro without inducing other CD4+ T sub-populations including Th1, Th2 and Th17 cells. Furthermore, we showed that the SjHSP60-depleted SEA almost lost the ability in vitro and displayed a significant impaired ability to induce Tregs in vivo. Finally, our study illustrated that the mechanisms of SjHSP60-mediated induction of Tregs are through both conversion of CD4+CD25- T cells into CD4+CD25+Foxp3+ Tregs and expansion of preexisting CD4+CD25+Foxp3+ Tregs in a TLR4-dependent manner.

Conclusions/Significance

Collectively, our findings identify SjHSP60 as a major parasitic contributor of Treg induction in S. japonicum egg antigens, which not only contributes to the better understanding of the mechanism of immunoregulation during helminth infection, but also suggests its potential as a therapeutic target for control of immunopathology, allergic and autoimmune diseases.  相似文献   

15.
16.
We have successfully delivered a reactive alkylating agent, chlorambucil (Cbl), to the mitochondria of mammalian cells. Here, we characterize the mechanism of cell death for mitochondria-targeted chlorambucil (mt-Cbl) in vitro and assess its efficacy in a xenograft mouse model of leukemia. Using a ρ° cell model, we show that mt-Cbl toxicity is not dependent on mitochondrial DNA damage. We also illustrate that re-targeting Cbl to mitochondria results in a shift in the cell death mechanism from apoptosis to necrosis, and that this behavior is a general feature of mitochondria-targeted Cbl. Despite the change in cell death mechanisms, we show that mt-Cbl is still effective in vivo and has an improved pharmacokinetic profile compared to the parent drug. These findings illustrate that mitochondrial rerouting changes the site of action of Cbl and also alters the cell death mechanism drastically without compromising in vivo efficacy. Thus, mitochondrial delivery allows the exploitation of Cbl as a promiscuous mitochondrial protein inhibitor with promising therapeutic potential.  相似文献   

17.
Hepatocellular carcinoma (HCC) is a prevalent disease worldwide, and the majority of HCC-related deaths occur due to local invasion and distant metastasis. Cancer stem cells (CSCs) are a small subpopulation of cancer cells that have been hypothesized to be responsible for metastatic disease. Recently, we and others have identified a CSC population from human HCC cell lines and xenograft tumors characterized by their expression of CD133. However, the precise molecular mechanisms by which CD133+ cancer stem-like cells mediate HCC metastasis have not been sufficiently analyzed. Here, we have sorted HCC cells using CD133 as a cancer stem cell (CSC) marker by magnetic-activated cell sorting (MACS) and demonstrated that the CD133+ HCC cells not only possess greater migratory and invasive capacity in vitro but are also endowed with enhanced metastatic capacity in vivo and in human HCC specimens when compared to CD133 HCC cells. Gene expression analysis of the CD133+ and CD133 cells of the HCC line SMMC-7721 revealed that G protein-coupled receptor 87 (GPR87) is highly expressed in CD133+ HCC cells. In this study, we explored the role of GPR87 in the regulation of CD133 expression. We demonstrated that the overexpression of GPR87 up-regulated CD133 expression, promoted CSC-associated migratory and invasive properties in vitro, and increased tumor initiation in vivo. Conversely, silencing of GPR87 expression reduced the levels of CD133 expression. Conclusion: GPR87 promotes the growth and metastasis of CD133+ cancer stem-like cells, and our findings may reveal new targets for HCC prevention or therapy.  相似文献   

18.

Objective

In this study, the anticancer mechanisms of MT-4 were examined in A2780 and multidrug-resistant NCI-ADR/res human ovarian cancer cell lines.

Methods

To evaluate the activity of MT-4, we performed in vitro cell viability and cell cycle assays and in vivo xenograft assays. Immunoblotting analysis was carried out to evaluate the effect of MT-4 on ovarian cancer. Tubulin polymerization was determined using a tubulin binding assay.

Results

MT-4 (2-Methoxy-5-[2-(3,4,5-trimethoxy-phenyl)-ethyl]-phenol), a derivative of moscatilin, can inhibit both sensitive A2780 and multidrug-resistant NCI-ADR/res cell growth and viability. MT-4 inhibited tubulin polymerization to induce G2/M arrest followed by caspase-mediated apoptosis. Further studies indicated that MT-4 is not a substrate of P-glycoprotein (p-gp). MT-4 also caused G2/M cell cycle arrest, accompanied by the upregulation of cyclin B, p-Thr161 Cdc2/p34, polo-like kinase 1 (PLK1), Aurora kinase B, and phospho-Ser10-histone H3 protein levels. In addition, we found that p38 MAPK pathway activation was involved in MT-4-induced apoptosis. Most importantly, MT-4 also decreased heat shock protein 27 expression and reduced its interaction with caspase-3, which inured cancer cells to chemotherapy resistance. Treatment of cells with SB203580 or overexpression of dominant negative (DN)-p38 or wild-type HSP27 reduced PARP cleavage caused by MT-4. MT-4 induced apoptosis through regulation of p38 and HSP27. Our xenograft models also show the in vivo efficacy of MT-4. MT-4 inhibited both A2780 and NCI-ADR/res cell growth in vitro and in vivo.

Conclusion

These findings indicate that MT-4 could be a potential lead compound for the treatment of multidrug-resistant ovarian cancer.  相似文献   

19.
Glutathione peroxidase 4 (GPX4), an antioxidant defense enzyme active in repairing oxidative damage to lipids, is a key inhibitor of ferroptosis, a non-apoptotic form of cell death involving lipid reactive oxygen species. Here we show that GPX4 is essential for motor neuron health and survival in vivo. Conditional ablation of Gpx4 in neurons of adult mice resulted in rapid onset and progression of paralysis and death. Pathological inspection revealed that the paralyzed mice had a dramatic degeneration of motor neurons in the spinal cord but had no overt neuron degeneration in the cerebral cortex. Consistent with the role of GPX4 as a ferroptosis inhibitor, spinal motor neuron degeneration induced by Gpx4 ablation exhibited features of ferroptosis, including no caspase-3 activation, no TUNEL staining, activation of ERKs, and elevated spinal inflammation. Supplementation with vitamin E, another inhibitor of ferroptosis, delayed the onset of paralysis and death induced by Gpx4 ablation. Also, lipid peroxidation and mitochondrial dysfunction appeared to be involved in ferroptosis of motor neurons induced by Gpx4 ablation. Taken together, the dramatic motor neuron degeneration and paralysis induced by Gpx4 ablation suggest that ferroptosis inhibition by GPX4 is essential for motor neuron health and survival in vivo.  相似文献   

20.
In the present study, we investigate the effect of curcumin, a major active component isolated from rhizomes of Curcuma longa, on the cytotoxicity of three human carcinoma cell lines (AGS, HT-29 and MGC803) in gastrointestinal tract and a normal gastric epithelial cell line GES-1, and the mechanism of curcumin-induced apoptosis. The results indicated that curcumin inhibited the gastrointestinal carcinoma cell growth in a dose-dependent manner and cytotoxicity was more towards the gastric carcinoma cell AGS and colon carcinoma cell HT-29 compared to normal gastric cell GES-1, and increased externalization of phosphatidylserine residue was observed by Annexin V/PI staining in the two cell lines. Treatment of AGS and HT-29 cells with curcumin enhanced the cleavage of procaspase-3, -7, -8 and -9. Meanwhile, curcumin induced endoplasmic reticulum (ER) stress and mitochondrial dysfunction as evidenced by up-regulation of CCAAT/enhancer binding protein homologous protein (CHOP), phosphorylation of JNK and down-regulation of SERCA2ATPase, release of cytochrome c, decrease of Bcl-2 and reduction of mitochondrial membrane potential in both AGS and HT-29 cells. Overexpression of bax, total JNK, phospho-FADD and total FADD were also observed in curcumin-treated HT-29 cells. Moreover, curcumin decreased cytosolic and ER Ca2+, but increased mitochondrial Ca2+ in the two cell lines. 2-Aminoethoxydiphenyl borate, an antagonist of inositol 1, 4, 5-triphosphate receptor, partly blocked curcumin-induced cytosolic Ca2+ decrease in AGS and HT-29 cells. Additionally, carbonyl cyanide m-chlorophenylhydrazone, an inhibitor of mitochondrial Ca2+ uptake, reversed curcumin-triggered AGS and HT-29 cells growth inhibition. siRNA to CHOP markedly reduced curcumin-induced apoptosis. These results suggest that curcumin can impact on ER stress and mitochondria functional pathways in AGS and HT-29 cells, death receptor pathway was also involved in curcumin-treated HT-29 cells, thus identifying specific well-defined molecular mechanisms that may be targeted by therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号