首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Formerly regarded as small 'bags' of nucleic acids with randomly diffusing enzymes, bacteria are organized by a sophisticated and tightly regulated molecular machinery. Here, we review qualitative and quantitative data on the intracellular organization of bacteria and provide a detailed inventory of macromolecular structures such as the divisome, the degradosome and the bacterial 'nucleolus'. We discuss how these metabolically active structures manage the spatial organization of the cell and how macromolecular crowding influences them. We present for the first time a visualization program, lifeexplorer, that can be used to study the interplay between metabolism and spatial organization of a prokaryotic cell.  相似文献   

2.
Biological fluids contain a very high total concentration of macromolecules that leads to volume exclusion by one molecule to another. Theory and experiment have shown that this condition, termed macromolecular crowding, can have significant effects on molecular recognition. However, the influence of molecular crowding on recognition events involving virus particles, and their inhibition by antiviral compounds, is virtually unexplored. Among these processes, capsid self-assembly during viral morphogenesis and capsid-cell receptor recognition during virus entry into cells are receiving increasing attention as targets for the development of new antiviral drugs. In this study, we have analyzed the effect of macromolecular crowding on the inhibition of these two processes by peptides. Macromolecular crowding led to a significant reduction in the inhibitory activity of: 1), a capsid-binding peptide and a small capsid protein domain that interfere with assembly of the human immunodeficiency virus capsid, and 2), a RGD-containing peptide able to block the interaction between foot-and-mouth disease virus and receptor molecules on the host cell membrane (in this case, the effect was dependent on the conditions used). The results, discussed in the light of macromolecular crowding theory, are relevant for a quantitative understanding of molecular recognition processes during virus infection and its inhibition.  相似文献   

3.
《Biophysical journal》2023,122(2):397-407
The crowdedness of the cell calls for adequate intracellular organization. Biomolecular condensates, formed by liquid-liquid phase separation of intrinsically disordered proteins and nucleic acids, are important organizers of cellular fluids. To underpin the molecular mechanisms of protein condensation, cell-free studies are often used where the role of crowding is not investigated in detail. Here, we investigate the effects of macromolecular crowding on the formation and material properties of a model heterotypic biomolecular condensate, consisting of nucleophosmin (NPM1) and ribosomal RNA (rRNA). We studied the effect of the macromolecular crowding agent poly(ethylene glycol) (PEG), which is often considered an inert crowding agent. We observed that PEG could induce both homotypic and heterotypic phase separation of NPM1 and NPM1-rRNA, respectively. Crowding increases the condensed concentration of NPM1 and decreases its equilibrium dilute phase concentration, although no significant change in the concentration of rRNA in the dilute phase was observed. Interestingly, the crowder itself is concentrated in the condensates, suggesting that co-condensation rather than excluded volume interactions underlie the enhanced phase separation by PEG. Fluorescence recovery after photobleaching measurements indicated that both NPM1 and rRNA become immobile at high PEG concentrations, indicative of a liquid-to-gel transition. Together, these results provide more insight into the role of synthetic crowding agents in phase separation and demonstrate that condensate properties determined in vitro depend strongly on the addition of crowding agents.  相似文献   

4.
We review the effects of macromolecular crowding on the folding of RNA by considering the simplest scenario when excluded volume interactions between crowding particles and RNA dominate. Using human telomerase enzyme as an example, we discuss how crowding can alter the equilibrium between pseudoknot and hairpin states of the same RNA molecule—a key aspect of crowder–RNA interactions. We summarize data showing that the crowding effect is significant only if the size of the spherical crowding particle is smaller than the radius of gyration of the RNA in the absence of crowding particles. The implication for function of the wild type and mutants of human telomerase is outlined by using a relationship between enzyme activity and its conformational equilibrium. In addition, we discuss the interplay between macromolecular crowding and ionic strength of the RNA buffer. Finally, we briefly review recent experiments which illustrate the connection between excluded volume due to macromolecular crowding and the thermodynamics of RNA folding.  相似文献   

5.
Liquid‐liquid phase separation (LLPS) in cells is known as a complex physicochemical process causing the formation of membrane‐less organelles (MLOs). Cells have well‐defined different membrane‐surrounded organelles like mitochondria, endoplasmic reticulum, lysosomes, peroxisomes, etc., however, on demand they can create MLOs as stress granules, nucleoli and P bodies to cover vital functions and regulatory activities. However, the mechanism of intracellular molecule assembly into functional compartments within a living cell remains till now not fully understood. in vitro and in vivo investigations unveiled that MLOs emerge after preceding liquid‐liquid, liquid‐gel, liquid‐semi‐crystalline, or liquid‐crystalline phase separations. Liquid‐liquid and liquid‐gel MLOs form the majority of cellular phase separation events, while the occurrence of micro‐sized crystals in cells was only rarely observed, however can be considered as a result of a preceding protein phase separation event. In vivo, also known and termed as in cellulo crystals, are reported since 1853. In some cases, they have been linked to vital cellular functions, such as storage and detoxification. However, the occurrence of in cellulo crystals is also associated to diseases like cataract, hemoglobin C diseases, etc. Therefore, better knowledge about the involved molecular processes will support drug discovery investigations to cure diseases related to in cellulo crystallization. We summarize physical and chemical determinants known today required for phase separation initiation and formation and in cellulo crystal growth. In recent years it has been demonstrated that LLPS plays a crucial role in cell compartmentalization and formation of MLOs. Here we discuss potential mechanisms and potential crowding agents involved in protein phase separation and in cellulo crystallization.  相似文献   

6.
7.
"Big it up": endoreduplication and cell-size control in plants   总被引:6,自引:0,他引:6  
Cells undergoing endoreduplication replicate chromosomal DNA without intervening mitoses. The resulting larger, higher-ploidy nucleus is often associated with an increase in cell size, but the molecular basis for this correlation remains poorly understood. Recent advances in characterising various mutants and transgenic plants are beginning to unravel how this unique type of cell cycling is regulated and how it contributes to cell-size control. Both cell growth (i.e. increase in cytoplasmic macromolecular mass) and cell expansion (i.e. increase in cell volume through vacuolation) contribute independently to increases in cell size in plants. A total organ-size checkpoint may also help to coordinate cell size and cell number within an organ, and can contribute to final cell-size determination in plants.  相似文献   

8.
The physicochemical properties of cellular environments with a high macromolecular content have been systematically characterized to explain differences observed in the diffusion coefficients, kinetics parameters, and thermodynamic properties of proteins inside and outside of cells. However, much less attention has been given to the effects of macromolecular crowding on cell physiology. Here, we review recent findings that shed some light on the role of crowding in various cellular processes, such as reduction of biochemical activities, structural reorganization of the cytoplasm, cytoplasm fluidity, and cellular dormancy. We conclude by presenting some unresolved problems that require the attention of biophysicists, biochemists, and cell physiologists. Although it is still underappreciated, macromolecular crowding plays a critical role in life as we know it.  相似文献   

9.
Biomolecular behavior commonly involves complex sets of interacting components that are challenging to understand through solution-based chemical theories. Molecular assembly is especially intriguing in the cellular environment because of its links to cell structure in processes such as chemotaxis. We use a coarse-grained Monte Carlo simulation to elucidate the importance of spatial constraints in molecular assembly. We have performed a study of actin filament polymerization through this space-aware probabilistic lattice-based model. Quantitative results are compared with nonspatial models and show convergence over a wide parameter space, but marked divergence over realistic levels corresponding to macromolecular crowding inside cells and localized actin concentrations found at the leading edge during cell motility. These conclusions have direct implications for cell shape and structure, as well as tumor cell migration.  相似文献   

10.
Membraneless organelles have emerged during the evolution of eukaryotic cells as intracellular domains in which multiple proteins organize into complex structures to perform specialized functions without the need of a lipid bilayer compartment. Here we describe the perinuclear space of eukaryotic cells as a highly organized network of cytoskeletal filaments that facilitates assembly of biomolecular condensates. Using bioinformatic analyses, we show that the perinuclear proteome is enriched in intrinsic disorder with several proteins predicted to undergo liquid-liquid phase separation. We also analyze immunofluorescence and transmission electron microscopy images showing the association between the nucleus and other organelles, such as mitochondria and lysosomes, or the labeling of specific proteins within the perinuclear region of cells. Altogether our data support the existence of a perinuclear dense sub-micron region formed by a well-organized three-dimensional network of structural and signaling proteins, including several proteins containing intrinsically disordered regions with phase behavior. This network of filamentous cytoskeletal proteins extends a few micrometers from the nucleus, contributes to local crowding, and organizes the movement of molecular complexes within the perinuclear space. Our findings take a key step towards understanding how membraneless regions within eukaryotic cells can serve as hubs for biomolecular condensates assembly, in particular the perinuclear space. Finally, evaluation of the disease context of the perinuclear proteins revealed that alterations in their expression can lead to several pathological conditions, and neurological disorders and cancer are among the most frequent.  相似文献   

11.
香烟烟雾提取物抑制肺泡上皮细胞的增殖并诱导其凋亡   总被引:2,自引:0,他引:2  
Jiao ZX  Ao QL  Xiong M 《生理学报》2006,58(3):244-254
香烟烟雾提取物(cigarette smoke extract,CSE)中含有丰富的氧化剂和自由基,由它所引起的氧化应激可导致肺泡壁的损伤进而发展为肺气肿.近年来,围绕CSE损伤肺泡壁作用机制的研究较为活跃,但其结果却一直存在着分歧.本实验的目的是观察CSE对肺泡Ⅱ型上皮细胞的损伤作用并探讨与其相关的分子机制.MTT比色法的结果显示,CSE以时间和剂量依赖性的方式降低细胞的增殖活力,流式细胞术的分析结果表明细胞增殖周期被阻滞在G1/S期.Hoechst 33258染色以及透射电镜观察从形态上确认CSE诱导细胞凋亡的发生,DNA梯的出现和Annexin V-FITC/碘化丙啶双染色的结果从分子水平得到进一步的证实.同时,运用流式细胞术检测到CSE诱导的凋亡伴随着Fas受体的高表达和caspase-3的显著活化.另外,使用H2DCFDA染色,经激光共聚焦显微镜术测得细胞内氧自由基在细胞受到CSE刺激以后大量快速积累.结果表明CSE能够抑制肺泡Ⅱ型上皮细胞来源的A549细胞的生长和增殖,并诱导细胞凋亡,由Fas受体所介导的死亡受体途径参与此凋亡过程,而CSE所引起的氧化应激则可能是阻止肺泡上皮细胞生长增殖并诱导其凋亡的始动因素.  相似文献   

12.
13.
Many proteins are composed of independently-folded domains connected by flexible linkers. The primary sequence and length of such linkers can set the effective concentration for the tethered domains, which impacts rates of association and enzyme activity. The length of such linkers can be sensitive to environmental conditions, which raises questions as to how studies in dilute buffer relate to the highly-crowded cellular environment. To examine the role of linkers in domain separation, we measured Fluorescent Protein-Fluorescence Resonance Energy Transfer (FP-FRET) for a series of tandem FPs that varied in the length of their interdomain linkers. We used discrete molecular dynamics to map the underlying conformational distribution, which revealed intramolecular contact states that we confirmed with single molecule FRET. Simulations found that attached FPs increased linker length and slowed conformational dynamics relative to the bare linkers. This makes the CLYs poor sensors of inherent linker properties. However, we also showed that FP-FRET in CLYs was sensitive to solvent quality and macromolecular crowding making them potent environmental sensors. Finally, we targeted the same proteins to the plasma membrane of living mammalian cells to measure FP-FRET in cellulo. The measured FP-FRET when tethered to the plasma membrane was the same as that in dilute buffer. While caveats remain regarding photophysics, this suggests that the supertertiary conformational ensemble of these CLY proteins may not be affected by this specific cellular environment.  相似文献   

14.
Macromolecular crowding has been proposed as a mechanism by means of which a cell can sense relatively small changes in volume or, more accurately, the concentration of intracellular solutes. According to the macromolecular theory, the kinetics and equilibria of enzymes can be greatly influenced by small changes in the concentration of ambient, inert macromolecules. A 10% change in the concentration of intracellular proteins can lead to changes of up to a factor of ten in the thermodynamic activity of putative molecular regulatory species, and consequently, the extent to which such regulator(s) may bind to and activate membrane-associated ion transporters. The aim of this review is to examine the concept of macromolecular crowding and how it profoundly affects macromolecular association in an intact cell with particular emphasis on its implication as a sensor and a mechanism through which cell volume is regulated.  相似文献   

15.
EJ Cho  JS Kim 《Biophysical journal》2012,103(3):424-433
The physics of structure formation and maintenance of nuclear bodies (NBs), such as nucleoli, Cajal bodies, promyelocytic leukemia bodies, and speckles, in a crowded nuclear environment remains largely unknown. We investigate the role of macromolecular crowding in the formation and maintenance of NBs using computer simulations of a simple spherical model, called Lennard-Jones (LJ) particles. LJ particles form a one-phase, dilute fluid when the intermolecular interaction is weaker than a critical value, above which they phase separate and form a condensed domain. We find that when volume-exclusive crowders exist in significant concentrations, domain formation is induced even for weaker intermolecular interactions, and the effect is more pronounced with increasing crowder concentration. Simulation results show that a previous experimental finding that promyelocytic leukemia bodies disappear in the less-crowded condition and reassemble in the normal crowded condition can be interpreted as a consequence of the increased intermolecular interactions between NB proteins due to crowding. Based on further analysis of the simulation results, we discuss the acceleration of macromolecular associations that occur within NBs, and the delay of diffusive transport of macromolecules within and out of NBs when the crowder concentration increases. This study suggests that in a polydisperse nuclear environment that is enriched with a variety of macromolecules, macromolecular crowding not only plays an important role in the formation and maintenance of NBs, but also may perform some regulatory functions in response to alterations in the crowding conditions.  相似文献   

16.
Hall D  Dobson CM 《FEBS letters》2006,580(11):2584-2590
We discuss the potential for inert biopolymers existing in cells to play a role in regulating the macromolecular crowding effect via their ability to undergo shape changing structural transitions. We have explored this possibility by the use of theory and experiment. The theoretical component utilized Monte-Carlo based simulations to examine the folding of a hypothetical protein in a concentrated environment of hard spheres which are themselves capable of reversible expansion and contraction. The experimental component of the study involved examination of the effect of different sized crowding agents on the thermally induced denaturation of cytochrome c [in phosphate buffered saline solution containing 1.0M guanidinium hydrochloride at pH 7.0]. On the basis of our findings we suggest that in a crowded solution environment the presence of a non-reactive polymer capable of reversible expansion/contraction via folding and unfolding may alter the excluded volume component of the solution. This ability would confer on the non-reactive polymer a novel role in influencing other processes in solution affected by macromolecular crowding.  相似文献   

17.
Folding of outer membrane proteins (OMPs) has been studied extensively in vitro. However, most of these studies have been conducted in dilute buffer solution, which is different from the crowded environment in the cell periplasm, where the folding and membrane insertion of OMPs actually occur. Using OmpA and OmpT as model proteins and Ficoll 70 as the crowding agent, here we investigated the effect of the macromolecular crowding condition on OMP membrane insertion. We found that the presence of Ficoll 70 significantly slowed down the rate of membrane insertion of OmpA while had little effect on those of OmpT. To investigate if the soluble domain of OmpA slowed down membrane insertion in the presence of the crowding agent, we created a truncated OmpA construct that contains only the transmembrane domain (OmpA171). In the absence of crowding agent, OmpA171 refolded at a similar rate as OmpA, although with decreased efficiency. However, under the crowding condition, OmpA171 refolded significantly faster than OmpA. Our results suggest that the periplasmic domain slows down the rate, while improves the efficiency, of OmpA folding and membrane insertion under the crowding condition. Such an effect was not obvious when refolding was studied in buffer solution in the absence of crowding.  相似文献   

18.
Macromolecular crowding has a profound effect upon biochemical processes in the cell. We have computationally studied the effect of crowding upon protein folding for 12 small domains in a simulated cell using a coarse-grained protein model, which is based upon Langevin dynamics, designed to unify the often disjoint goals of protein folding simulation and structure prediction. The model can make predictions of native conformation with accuracy comparable with that of the best current template-free models. It is fast enough to enable a more extensive analysis of crowding than previously attempted, studying several proteins at many crowding levels and further random repetitions designed to more closely approximate the ensemble of conformations. We found that when crowding approaches 40% excluded volume, the maximum level found in the cell, proteins fold to fewer native-like states. Notably, when crowding is increased beyond this level, there is a sudden failure of protein folding: proteins fix upon a structure more quickly and become trapped in extended conformations. These results suggest that the ability of small protein domains to fold without the help of chaperones may be an important factor in limiting the degree of macromolecular crowding in the cell. Here, we discuss the possible implications regarding the relationship between protein expression level, protein size, chaperone activity and aggregation.  相似文献   

19.
20.
Microenvironments of biological cells are dominated in vivo by macromolecular crowding and resultant excluded volume effects. This feature is absent in dilute in vitro cell culture. Here, we induced macromolecular crowding in vitro by using synthetic macromolecular globules of nm-scale radius at physiological levels of fractional volume occupancy. We quantified the impact of induced crowding on the extracellular and intracellular protein organization of human mesenchymal stem cells (MSCs) via immunocytochemistry, atomic force microscopy (AFM), and AFM-enabled nanoindentation. Macromolecular crowding in extracellular culture media directly induced supramolecular assembly and alignment of extracellular matrix proteins deposited by cells, which in turn increased alignment of the intracellular actin cytoskeleton. The resulting cell-matrix reciprocity further affected adhesion, proliferation, and migration behavior of MSCs. Macromolecular crowding can thus aid the design of more physiologically relevant in vitro studies and devices for MSCs and other cells, by increasing the fidelity between materials synthesized by cells in vivo and in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号