首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveNeurodevelopmental diseases are common disorders caused by the disruption of essential neurodevelopmental processes. Recent human exome sequencing and genome‐wide association studies have shown that mutations in the subunits of the SWI/SNF (BAF) complex are risk factors for neurodevelopmental diseases. Clinical studies have found that ARID1A (BAF250a) is the most frequently mutated SWI/SNF gene and its mutations lead to mental retardation and microcephaly. However, the function of ARID1A in brain development and its underlying mechanisms still remain elusive.MethodsThe present study used Cre/loxP system to generate an Arid1a conditional knockout mouse line. Cell proliferation, cell apoptosis and cell differentiation of NSPCs were studied by immunofluorescence staining. In addition, RNA‐seq and RT‐PCR were performed to dissect the molecular mechanisms of Arid1a underlying cortical neurogenesis. Finally, rescue experiments were conducted to evaluate the effects of Neurod1 or Fezf2 overexpression on the differentiation of NSPCs in vitro.ResultsConditional knockout of Arid1a reduces cortical thickness in the developing cortex. Arid1a loss of function inhibits the proliferation of radial glial cells, and increases cell death during late cortical development, and leads to dysregulated expression of genes associated with proliferation and differentiation. Overexpression of Neurod1 or Fezf2 in Arid1a cKO NSPCs rescues their neural differentiation defect in vitro.ConclusionsThis study demonstrates for the first time that Arid1a plays an important role in regulating the proliferation and differentiation of NSPCs during cortical development, and proposes several gene candidates that are worth to understand the pathological mechanisms and to develop novel interventions of neurodevelopment disorders caused by Arid1a mutations.  相似文献   

2.
Glia contribute to synapse elimination through phagocytosis in the central nervous system. Despite the important roles of this process in development and neurological disorders, the identity and regulation of the "eat‐me" signal that initiates glia‐mediated phagocytosis of synapses has remained incompletely understood. Here, we generated conditional knockout mice with neuronal‐specific deletion of the flippase chaperone Cdc50a, to induce stable exposure of phosphatidylserine, a well‐known "eat‐me" signal for apoptotic cells, on the neuronal outer membrane. Surprisingly, acute Cdc50a deletion in mature neurons causes preferential phosphatidylserine exposure in neuronal somas and specific loss of inhibitory post‐synapses without effects on other synapses, resulting in abnormal excitability and seizures. Ablation of microglia or the deletion of microglial phagocytic receptor Mertk prevents the loss of inhibitory post‐synapses and the seizure phenotype, indicating that microglial phagocytosis is responsible for inhibitory post‐synapse elimination. Moreover, we found that phosphatidylserine is used for microglia‐mediated pruning of inhibitory post‐synapses in normal brains, suggesting that phosphatidylserine serves as a general "eat‐me" signal for inhibitory post‐synapse elimination.  相似文献   

3.
ObjectivesParkinson''s disease (PD) is a common neurodegenerative disorder characterized by the progressive and selective degeneration of dopaminergic neurons. Microglial activation and neuroinflammation are associated with the pathogenesis of PD. However, the relationship between microglial activation and PD pathology remains to be explored.Materials and MethodsAn acute regimen of MPTP was administered to adult C57BL/6J mice with normal, much reduced or repopulated microglial population. Damages of the dopaminergic system were comprehensively assessed. Inflammation‐related factors were assessed by quantitative PCR and Multiplex immunoassay. Behavioural tests were carried out to evaluate the motor deficits in MPTP‐challenged mice.ResultsThe receptor for colony‐stimulating factor 1 inhibitor PLX3397 could effectively deplete microglia in the nigrostriatal pathway of mice via feeding a PLX3397‐formulated diet for 21 days. Microglial depletion downregulated both pro‐inflammatory and anti‐inflammatory molecule expression at baseline and after MPTP administration. At 1d post‐MPTP injection, dopaminergic neurons showed a significant reduction in PLX3397‐fed mice, but not in control diet (CD)‐fed mice. However, partial microglial depletion in mice exerted little effect on MPTP‐induced dopaminergic injuries compared with CD mice at later time points. Interestingly, microglial repopulation brought about apparent resistance to MPTP intoxication.ConclusionsMicroglia can inhibit PD development at a very early stage; partial microglial depletion has little effect in terms of the whole process of the disease; and microglial replenishment elicits neuroprotection in PD mice.  相似文献   

4.
Cellular senescence is characterized by an irreversible cell cycle arrest and a pro‐inflammatory senescence‐associated secretory phenotype (SASP), which is a major contributor to aging and age‐related diseases. Clearance of senescent cells has been shown to improve brain function in mouse models of neurodegenerative diseases. However, it is still unknown whether senescent cell clearance alleviates cognitive dysfunction during the aging process. To investigate this, we first conducted single‐nuclei and single‐cell RNA‐seq in the hippocampus from young and aged mice. We observed an age‐dependent increase in p16Ink4a senescent cells, which was more pronounced in microglia and oligodendrocyte progenitor cells and characterized by a SASP. We then aged INKATTAC mice, in which p16Ink4a‐positive senescent cells can be genetically eliminated upon treatment with the drug AP20187 and treated them either with AP20187 or with the senolytic cocktail Dasatinib and Quercetin. We observed that both strategies resulted in a decrease in p16Ink4a exclusively in the microglial population, resulting in reduced microglial activation and reduced expression of SASP factors. Importantly, both approaches significantly improved cognitive function in aged mice. Our data provide proof‐of‐concept for senolytic interventions'' being a potential therapeutic avenue for alleviating age‐associated cognitive impairment.  相似文献   

5.
ObjectivesThis study investigated the ability of immunity‐ and matrix‐ regulatory cells (IMRCs) to improve cognitive function in a rat model of vascular cognitive impairment.Materials and MethodsA chronic cerebral hypoperfusion (CCH) model was established in rats via permanent bilateral occlusion of the common carotid arteries (two‐vessel occlusion, 2VO). The rats then received intravenous injections of IMRCs or saline. A single injection of different doses of IMRCs (1 × 106 cells/rat, 2 × 106 cells/rat, or 4 × 106 cells/rat) was administered via tail vein 72 h after establishment of the model. To evaluate functional recovery, the rats were subjected to behavioural tests after 30 days of CCH. Imaging, western blotting, immunofluorescence staining, and quantitative real‐time PCR were used to analyse neuroinflammation and white matter injury after 14 and 40 days of CCH. RNA sequencing (RNA‐seq) was used to profile gene expression changes in copine 1 (CPNE1) in response to IMRCs treatment.ResultsIntravenous injection of 4 × 106 IMRCs alleviated white matter damage and ameliorated cognitive deficits in rats subjected to CCH. Immunofluorescence staining suggested that activation of microglia and astrocytes was reduced, and RNA sequencing showed that CPNE1 expression was significantly elevated following treatment with IMRCs.ConclusionsIntravenous injection of IMRCs protected against CCH‐induced white matter injury and cognitive impairment inhibition of microglial activation and regulation of microglia polarization.

Diagram of proposed action of IMRCs on vascular cognitive impairment. Intravenous injection of IMRCs protected against CCH‐induced white matter injury and cognitive impairment through polarization of microglia and astrocytes.  相似文献   

6.
The cell‐to‐cell transfer of α‐synuclein (α‐Syn) greatly contributes to Parkinson''s disease (PD) pathogenesis and underlies the spread of α‐Syn pathology. During this process, extracellular α‐Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α‐Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α‐Syn inhibited the autophagy initiation, as indicated by LC3‐II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia‐enriched population isolated from αSyn‐overexpressing mice induced by adeno‐associated virus (AAV2/9)‐encoded wildtype human αSyn injection into the substantia nigra (SN). Mechanistically, α‐Syn led to microglial autophagic impairment through activating toll‐like receptor 4 (Tlr4) and its downstream p38 and Akt‐mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α‐Syn‐induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α‐Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre (Lyz2 cre)‐mediated depletion of autophagyrelated gene 5 (Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in αSyn‐overexpressing mice. Taken together, the results suggest that extracellular α‐Syn, via Tlr4‐dependent p38 and Akt‐mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development.  相似文献   

7.
8.
9.
10.
Haploinsufficiency of the progranulin (PGRN)‐encoding gene (GRN) causes frontotemporal lobar degeneration (GRN‐FTLD) and results in microglial hyperactivation, TREM2 activation, lysosomal dysfunction, and TDP‐43 deposition. To understand the contribution of microglial hyperactivation to pathology, we used genetic and pharmacological approaches to suppress TREM2‐dependent transition of microglia from a homeostatic to a disease‐associated state. Trem2 deficiency in Grn KO mice reduced microglia hyperactivation. To explore antibody‐mediated pharmacological modulation of TREM2‐dependent microglial states, we identified antagonistic TREM2 antibodies. Treatment of macrophages from GRN‐FTLD patients with these antibodies led to reduced TREM2 signaling due to its enhanced shedding. Furthermore, TREM2 antibody‐treated PGRN‐deficient microglia derived from human‐induced pluripotent stem cells showed reduced microglial hyperactivation, TREM2 signaling, and phagocytic activity, but lysosomal dysfunction was not rescued. Similarly, lysosomal dysfunction, lipid dysregulation, and glucose hypometabolism of Grn KO mice were not rescued by TREM2 ablation. Synaptic loss and neurofilament light‐chain (NfL) levels, a biomarker for neurodegeneration, were further elevated in the Grn/Trem2 KO cerebrospinal fluid (CSF). These findings suggest that TREM2‐dependent microglia hyperactivation in models of GRN deficiency does not promote neurotoxicity, but rather neuroprotection.  相似文献   

11.
12.
13.
Alzheimer''s disease (AD), the most common cause of dementia in the elderly, is pathologically characterized by extracellular deposition of amyloid‐β peptides (Aβ) and microglia‐dominated inflammatory activation in the brain. p38α‐MAPK is activated in both neurons and microglia. How p38α‐MAPK in microglia contributes to AD pathogenesis remains unclear. In this study, we conditionally knocked out p38α‐MAPK in all myeloid cells or specifically in microglia of APP‐transgenic mice, and examined animals for AD‐associated pathologies (i.e., cognitive deficits, Aβ pathology, and neuroinflammation) and individual microglia for their inflammatory activation and Aβ internalization at different disease stages (e.g., at 4 and 9 months of age). Our experiments showed that p38α‐MAPK‐deficient myeloid cells were more effective than p38α‐MAPK‐deficient microglia in reducing cerebral Aβ and neuronal impairment in APP‐transgenic mice. Deficiency of p38α‐MAPK in myeloid cells inhibited inflammatory activation of individual microglia at 4 months but enhanced it at 9 months. Inflammatory activation promoted microglial internalization of Aβ. Interestingly, p38α‐MAPK‐deficient myeloid cells reduced IL‐17a‐expressing CD4‐positive lymphocytes in 9 but not 4‐month‐old APP‐transgenic mice. By cross‐breeding APP‐transgenic mice with Il‐17a‐knockout mice, we observed that IL‐17a deficiency potentially activated microglia and reduced Aβ deposition in the brain as shown in 9‐month‐old myeloid p38α‐MAPK‐deficient AD mice. Thus, p38α‐MAPK deficiency in all myeloid cells, but not only in microglia, prevents AD progression. IL‐17a‐expressing lymphocytes may partially mediate the pathogenic role of p38α‐MAPK in peripheral myeloid cells. Our study supports p38α‐MAPK as a therapeutic target for AD patients.  相似文献   

14.
Epilepsy is a chronic brain disease characterized by recurrent seizures. Circular RNA (circRNA) is a novel family of endogenous non‐coding RNAs that have been proposed to regulate gene expression. However, there is a lack of data on the role of circRNA in epilepsy. In this study, the circRNA profiles were evaluated by microarray analysis. In total, 627 circRNAs were up‐regulated, whereas 892 were down‐regulated in the hippocampus in mice with kainic acid (KA)‐induced epileptic seizures compared with control. The expression of circHivep2 was significantly down‐regulated in hippocampus tissues of mice with KA‐induced epileptic seizures and BV‐2 microglia cells upon KA treatment. Bioinformatics analysis predicted that circHivep2 interacts with miR‐181a‐5p to regulate SOCS2 expression, which was validated using a dual‐luciferase reporter assay. Moreover, overexpression of circHivep2 significantly inhibited KA‐induced microglial activation and the expression of inflammatory factors in vitro, which was blocked by miR‐181a‐5p, whereas circHivep2 knockdown further induced microglia cell activation and the release of pro‐inflammatory proteins in BV‐2 microglia cells after KA treatment. The application of circHivep2+ exosomes derived from adipose‐derived stem cells (ADSCs) exerted significant beneficial effects on the behavioural seizure scores of mice with KA‐induced epilepsy compared to control exosomes. The circHivep2+ exosomes also inhibited microglial activation, the expression of inflammatory factors, and the miR‐181a‐5p/SOCS2 axis in vivo. Our results suggest that circHivep2 regulates microglia activation in the progression of epilepsy by interfering with miR‐181a‐5p to promote SOCS2 expression, indicating that circHivep2 may serve as a therapeutic tool to prevent the development of epilepsy.  相似文献   

15.
ObjectivesThis study aimed to investigate the protective effect of SCARF1 on acute rejection (AR), phagocytic clearance of Kupffer cells (KCs), M2 polarization and the exact mechanism underlying these processes.MethodsAAV was transfected into the portal vein of rats, and AR and immune tolerance (IT) models of liver transplantation were established. Liver tissue and blood samples were collected. The level of SCARF1 was detected via WB and immunohistochemical staining. Pathological changes in liver tissue were detected using HE staining. Apoptotic cells were detected using TUNEL staining. KC polarization was assessed via immunohistochemical staining. Primary KCs were isolated and co‐cultured with apoptotic T lymphocytes. Phagocytosis of apoptotic cells and polarization of KCs were both detected using immunofluorescence. Calcium concentration was determined using immunofluorescence and a fluorescence microplate reader. The levels of PI3K, p‐AKT and P‐STAT3 were assessed via WB and immunofluorescence.ResultsCompared to the IT group, the level of SCARF1 was significantly decreased in the AR group. Overexpression of SCARF1 in KCs improved AR and liver function markers. Enhanced phagocytosis mediated by SCARF1 is beneficial for improving the apoptotic clearance of AR and promoting M2 polarization of KCs. SCARF1‐mediated enhancement of phagocytosis promotes increased calcium concentration in KCs, thus further activating the PI3K‐AKT‐STAT3 signalling pathway.ConclusionsSCARF1 promotes the M2 polarization of KCs by promoting phagocytosis through the calcium‐dependent PI3K‐AKT‐STAT3 signalling pathway.  相似文献   

16.
17.
Microglia are critical in damage/repair processes during ischemic white matter injury (WMI). Voltage-gated proton channel (Hv1) is expressed in microglia and contributes to nicotinamide adenine dinucleotide phosphate oxidase complex-dependent production of reactive oxygen species (ROS). Recent findings have shown that Hv1 is involved in regulating luminal pH of M1-polarized microglial phagosomes and inhibits endocytosis in microglia. We previously reported that Hv1 facilitated production of ROS and pro-inflammatory cytokines in microglia and enhanced damage to oligodendrocyte progenitor cells from oxygen and glucose deprivation. To investigate the role of Hv1 in hypoperfusion-induced WMI, we employed mice that were genetically devoid of Hv1 (Hv1-/-), as well as a model of subcortical vascular dementia via bilateral common carotid artery stenosis. Integrity of myelin was assessed using immunofluorescent staining and transmission electron microscopy, while cognitive impairment was assessed using an eight-arm radial maze test. Hv1 deficiency was found to attenuate bilateral common carotid artery stenosis-induced disruption of white matter integrity and impairment of working memory. Immunofluorescent staining and western blotting were used to assay changes in oligodendrocytes, OPCs, and microglial polarization. Compared with that in wild-type (WT) mice, Hv1-/- mice exhibited reduced ROS generation, decreased pro-inflammatory cytokines production, and an M2-dominant rather than M1-dominant microglial polarization. Furthermore, Hv1-/- mice exhibited enhanced OPC proliferation and differentiation into oligodendrocytes. Results of mouse-derived microglia-OPC co-cultures suggested that PI3K/Akt signaling was involved in Hv1-deficiency-induced M2-type microglial polarization and concomitant OPC differentiation. These results suggest that microglial Hv1 is a promising therapeutic target for reducing ischemic WMI and cognitive impairment.  相似文献   

18.
ARID1A, encoding a subunit of chromatin remodeling SWI/SNF complexes, has recently been considered as a new type of tumor suppressor gene for its somatic mutations frequently found in various human tumors, including hepatocellular carcinoma (HCC). However, the role and mechanism of inactivated ARID1A mutations in tumorigenesis remain unclear. To investigate the role of ARID1A inactivation in HCC pathogenesis, we generated hepatocyte-specific Arid1a knockout (Arid1a LKO) mice by crossing mice carrying loxP-flanked Arid1a exon 8 alleles (Arid1a f/f) with albumin promoter-Cre transgenic mice. Significantly, the hepatocyte-specific Arid1a deficiency results in mouse steatohepatitis and HCC development. In Arid1a LKO mice, we found that innate immune cells, including F4/80+ macrophages and CD11c+ neutrophil cells, infiltrate into the liver parenchyma, accompanied by the increased tumor necrosis factor (TNF)-α and interleukin (IL)-6, and activation of STAT3 and NF-κB pathways. In conclusion, hepatocyte-specific Arid1a deficiency could lead to mouse steatohepatitis and HCC development. This study provides an alternative mechanism by which Arid1a deficiency contributes to HCC tumorigenesis.  相似文献   

19.
BackgroundThe tumour microenvironment primarily constitutes macrophages in the form of an immunosuppressive M2 phenotype, which promotes tumour growth. Thus, the development of methodologies to rewire M2‐like tumour‐associated macrophages (TAMs) into the M1 phenotype, which inhibits tumour growth, might be a critical advancement in cancer immunotherapy research.MethodsThe expressions of IL‐33 and indicators related to macrophage polarization in oesophageal squamous cell carcinoma (ESCC) tissues and peripheral blood mononuclear cell (PBMC)–derived macrophages were determined. Inhibition of ornithine decarboxylase (ODC) with small interfering RNA was used to analyse the phenotype of macrophage polarization and polyamine secretory signals. CCK‐8, wound‐healing and Transwell assays were used to detect the proliferation and migration of ECA109 cells in vitro. The tumour xenograft assay in nude mice was used to examine the role of IL‐33 in ESCC development in vivo.ResultsThis study showed the substantially elevated IL‐33 expression in ESCC tissues compared with the normal tissues. Additionally, enhanced infiltration of M2‐like macrophages into the ESCC tumour tissue was also observed. We observed a strong correlation between the IL‐33 levels and the infiltration of M2‐like macrophages in ESCC tumours locally. Mechanistically, IL‐33 induces M2‐like macrophage polarization by activating ODC, a key enzyme that catalyses the synthesis of polyamines. Inhibition of ODC suppressed M2‐like macrophage polarization. Finally, in vivo, we confirmed that IL‐33 promotes tumour progression.ConclusionsThis study revealed an oncogenic role of IL‐33 by actively inducing M2‐like macrophage differentiation; thus, contributing to the formation of an immunosuppressive ESCC tumour microenvironment. Thus, IL‐33 could act as a novel target for cancer immunotherapies.  相似文献   

20.
Microglia, the resident immune cells of the central nervous system (CNS), monitor the brain for disturbances of tissue homeostasis by constantly moving their fine processes. Microglia respond to tissue damage through activation of ATP/ADP receptors followed by directional process extension to the damaged area. A common feature of several neurodegenerative diseases is the loss of norepinephrine, which might contribute to the associated neuroinflammation. We carried out a high resolution analysis of the effects of norepinephrine (NE) on microglial process dynamics in acute brain slices from mice that exhibit microglia-specific enhanced green fluorescent protein expression. Bath application of NE to the slices resulted in significant process retraction in microglia. Analysis of adrenergic receptor expression with quantitative PCR indicated that resting microglia primarily express β2 receptors but switch expression to α2A receptors under proinflammatory conditions modeled by LPS treatment. Despite the differential receptor expression, NE caused process retraction in both resting and LPS-activated microglia cultured in the gelatinous substrate Matrigel in vitro. The use of subtype-selective receptor agonists and antagonists confirmed the involvement of β2 receptors in mediating microglial process dynamics in resting cells and α2A receptors in activated cells. Co-application of NE with ATP to resting microglia blocked the ATP-induced process extension and migration in isolated microglia, and β2 receptor antagonists prolonged ATP effects in brain slice tissues, suggesting the presence of cross-talk between adrenergic and purinergic signaling in microglia. These data show that the neurotransmitter NE can modulate microglial motility, which could affect microglial functions in pathogenic situations of either elevated or reduced NE levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号