首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was recently shown that rhythmic entrainment, long considered a human-specific mechanism, can be demonstrated in a selected group of bird species, and, somewhat surprisingly, not in more closely related species such as nonhuman primates. This observation supports the vocal learning hypothesis that suggests rhythmic entrainment to be a by-product of the vocal learning mechanisms that are shared by several bird and mammal species, including humans, but that are only weakly developed, or missing entirely, in nonhuman primates. To test this hypothesis we measured auditory event-related potentials (ERPs) in two rhesus monkeys (Macaca mulatta), probing a well-documented component in humans, the mismatch negativity (MMN) to study rhythmic expectation. We demonstrate for the first time in rhesus monkeys that, in response to infrequent deviants in pitch that were presented in a continuous sound stream using an oddball paradigm, a comparable ERP component can be detected with negative deflections in early latencies (Experiment 1). Subsequently we tested whether rhesus monkeys can detect gaps (omissions at random positions in the sound stream; Experiment 2) and, using more complex stimuli, also the beat (omissions at the first position of a musical unit, i.e. the ‘downbeat’; Experiment 3). In contrast to what has been shown in human adults and newborns (using identical stimuli and experimental paradigm), the results suggest that rhesus monkeys are not able to detect the beat in music. These findings are in support of the hypothesis that beat induction (the cognitive mechanism that supports the perception of a regular pulse from a varying rhythm) is species-specific and absent in nonhuman primates. In addition, the findings support the auditory timing dissociation hypothesis, with rhesus monkeys being sensitive to rhythmic grouping (detecting the start of a rhythmic group), but not to the induced beat (detecting a regularity from a varying rhythm).  相似文献   

2.
内源褪黑素对人类和其他哺乳动物的节律行为具有调控功能。生物节律是自然进化赋予生命的基本特征之一,生物体的生命活动受到生物节律的控制与影响。在哺乳动物中,节律调控中心是松果体,其主要功能是合成和分泌褪黑素。褪黑素广泛参与生物体节律行为的调节,本文从褪黑素的产生和作用机制,分别阐述褪黑素对昼夜节律行为和多种年节律行为的调控作用,同时明确褪黑素与生物钟及神经内分泌系统的直接作用和反馈互动的复杂集合,进一步揭示褪黑素调控生物节律的重要作用,以期为褪黑素的基础研究以及未来探究生物体的生物钟内源性发生机制提供参考。  相似文献   

3.
Disordered speech can present with rhythmic problems, impacting on an individual''s ability to communicate. Effective treatment relies on the availability of sensitive methods to characterize the problem. Rhythm metrics based on segmental durations originally designed for cross-linguistic research have the potential to provide such information. However, these measures may be associated with problems that impact on their clinical usefulness. This paper aims to address the perceptual validity of cross-linguistic metrics as indicators of rhythmic disorder. Speakers with dysarthria and matched healthy participants performed a range of tasks, including syllable and sentence repetition and a spontaneous monologue. A range of rhythm metrics as well as clinical measures were applied. Results showed that none of the metrics could differentiate disordered from healthy speakers, despite clear perceptual differences, suggesting that factors beyond segment duration impacted on rhythm perception. The investigation also highlighted a number of areas where caution needs to be exercised in the application of rhythm metrics to disordered speech. The paper concludes that the underlying speech impairment leading to the perceptual and acoustic characterization of rhythmic problems needs to be established through detailed analysis of speech characteristics in order to construct effective treatment plans for individuals with speech disorders.  相似文献   

4.
具有特定频率的节律性刺激能同步大脑内相应频率的神经振荡,使神经活动与外界刺激发生相位锁定,称之为神经振荡-外界节律同步化(neural entrainment).这种同步化的现象伴随着大脑内神经元集群兴奋水平的周期性波动,并与节律信息加工、知觉及注意等认知过程存在关联.得益于其非侵入、易操作以及能有效调控神经活动的特性,神经振荡-外界节律同步化成为了研究神经振荡与知觉和认知功能关系的有力手段,也为认知障碍诊断及干预提供了新的思路和方法.  相似文献   

5.
The evolutionary origins of speech remain obscure. Recently, it was proposed that speech derived from monkey facial signals which exhibit a speech-like rhythm of ∼5 open-close lip cycles per second. In monkeys, these signals may also be vocalized, offering a plausible evolutionary stepping stone towards speech. Three essential predictions remain, however, to be tested to assess this hypothesis'' validity; (i) Great apes, our closest relatives, should likewise produce 5Hz-rhythm signals, (ii) speech-like rhythm should involve calls articulatorily similar to consonants and vowels given that speech rhythm is the direct product of stringing together these two basic elements, and (iii) speech-like rhythm should be experience-based. Via cinematic analyses we demonstrate that an ex-entertainment orangutan produces two calls at a speech-like rhythm, coined “clicks” and “faux-speech.” Like voiceless consonants, clicks required no vocal fold action, but did involve independent manoeuvring over lips and tongue. In parallel to vowels, faux-speech showed harmonic and formant modulations, implying vocal fold and supralaryngeal action. This rhythm was several times faster than orangutan chewing rates, as observed in monkeys and humans. Critically, this rhythm was seven-fold faster, and contextually distinct, than any other known rhythmic calls described to date in the largest database of the orangutan repertoire ever assembled. The first two predictions advanced by this study are validated and, based on parsimony and exclusion of potential alternative explanations, initial support is given to the third prediction. Irrespectively of the putative origins of these calls and underlying mechanisms, our findings demonstrate irrevocably that great apes are not respiratorily, articulatorilly, or neurologically constrained for the production of consonant- and vowel-like calls at speech rhythm. Orangutan clicks and faux-speech confirm the importance of rhythmic speech antecedents within the primate lineage, and highlight potential articulatory homologies between great ape calls and human consonants and vowels.  相似文献   

6.
A key feature of speech is its stereotypical 5 Hz rhythm. One theory posits that this rhythm evolved through the modification of rhythmic facial movements in ancestral primates. If the hypothesis has any validity, then a comparative approach may shed some light. We tested this idea by using cineradiography (X-ray movies) to characterize and quantify the internal dynamics of the macaque monkey vocal tract during lip-smacking (a rhythmic facial expression) versus chewing. Previous human studies showed that speech movements are faster than chewing movements, and the functional coordination between vocal tract structures is different between the two behaviors. If rhythmic speech evolved through a rhythmic ancestral facial movement, then one hypothesis is that monkey lip-smacking versus chewing should also exhibit these differences. We found that the lips, tongue, and hyoid move with a speech-like 5 Hz rhythm during lip-smacking, but not during chewing. Most importantly, the functional coordination between these structures was distinct for each behavior. These data provide empirical support for the idea that the human speech rhythm evolved from the rhythmic facial expressions of ancestral primates.  相似文献   

7.
This study investigated a potential auditory illusion in duration perception induced by rhythmic temporal contexts. Listeners with or without musical training performed a duration discrimination task for a silent period in a rhythmic auditory sequence. The critical temporal interval was presented either within a perceptual group or between two perceptual groups. We report the just-noticeable difference (difference limen, DL) for temporal intervals and the point of subjective equality (PSE) derived from individual psychometric functions based on performance of a two-alternative forced choice task. In musically untrained individuals, equal temporal intervals were perceived as significantly longer when presented between perceptual groups than within a perceptual group (109.25% versus 102.5% of the standard duration). Only the perceived duration of the between-group interval was significantly longer than its objective duration. Musically trained individuals did not show this effect. However, in both musically trained and untrained individuals, the relative difference limens for discriminating the comparison interval from the standard interval were larger in the between-groups condition than in the within-group condition (7.3% vs. 5.6% of the standard duration). Thus, rhythmic grouping affected sensitivity to duration changes in all listeners, with duration differences being harder to detect at boundaries of rhythm groups than within rhythm groups. Our results show for the first time that temporal Gestalt induces auditory duration illusions in typical listeners, but that musical experts are not susceptible to this effect of rhythmic grouping.  相似文献   

8.
Is speech rhythmic? In the absence of evidence for a traditional view that languages strive to coordinate either syllables or stress-feet with regular time intervals, we consider the alternative that languages exhibit contrastive rhythm subsisting merely in the alternation of stronger and weaker elements. This is initially plausible, particularly for languages with a steep ‘prominence gradient’, i.e. a large disparity between stronger and weaker elements; but we point out that alternation is poorly achieved even by a ‘stress-timed’ language such as English, and, historically, languages have conspicuously failed to adopt simple phonological remedies that would ensure alternation. Languages seem more concerned to allow ‘syntagmatic contrast’ between successive units and to use durational effects to support linguistic functions than to facilitate rhythm. Furthermore, some languages (e.g. Tamil, Korean) lack the lexical prominence which would most straightforwardly underpin prominence of alternation. We conclude that speech is not incontestibly rhythmic, and may even be antirhythmic. However, its linguistic structure and patterning allow the metaphorical extension of rhythm in varying degrees and in different ways depending on the language, and it is this analogical process which allows speech to be matched to external rhythms.  相似文献   

9.
10.
Bilateral optic stalk severance or lamina-medulla region removal were carried out in 47 adult male crickets Gryllus bimaculatus DeGeer. Effects of the operations on circadian locomotor activity were investigated under 12 h light: 12 h dark and at a constant temperature of 26°C. In the pre-operative days, 39 of the animals showed a typical nocturnal activity rhythm (normal rhythm), but the remaining 8 exhibited an atypical rhythm which is diurnal rather than nocturnal (abnormal rhythm). The operations eventually caused an arrhythmicity in all animals, suggesting that the crucial part of the central nervous system controlling the cricket circadian activity is located in the lamina-medulla region. However, in some of the post-operative crickets, the rhythm did not immediately disappear but persisted for a while: the diurnal increase of activity was observed up to 2 weeks in all 8 abnormal- and 4 normal-rhythm animals. In addition, 8 out of 39 normal-rhythm animals showed a single well-defined post-operative peak which occurred approximately in phase with the nocturnal peak prior to surgery. These results are discussed in relation to a possibility of involvement of the oscillatory structure outside the optic lobes.  相似文献   

11.
The 24 h profiles of plasma hormone concentrations are rhythmic. The circadian period (τ) changes in development, with seasons, and in women with different stages of the menstrual cycle. It is known that the rhythms of prolactin and cortisol are sensitive to environmental time cues, such as changes in day length and phase; however, the importance of these changes is not yet understood. This study investigates whether there is a relation between the ability of a subject to respond to external cues that are associated with seasonal changes causing alteration of the rhythm's periods in cortisol and prolactin and the epidemiologically determined susceptibility to breast cancer. It is shown that the rhythmic output pattern of prolactin and cortisol in vivo is generated by more than one oscillator and structured by more than one rhythmic component. Each cohort of American women, classified on an epidemiologic basis as high risk (HR) or low risk (LR) to develop breast cancer, expresses different rhythmic output patterns of both variables, suggesting that the genetic background as defined by the risk state is related to differences in the circadian time structure, including the ability of the subject to change the rhythm's τ. The LR cohort exhibited a statistically significant change between seasons in the rhythm's τ of both the prolactin and cortisol patterns. In contrast, the HR cohort showed no change in the rhythm's τ between seasons for prolactin and cortisol patterns. These results show that in human beings, the presence of a circannual rhythm in the circadian time structure or the ability to adapt the circadian rhythmic pattern of these variables to external cues, such as seasons, is related to the partly genetically determined risk state to develop breast cancer and may be of importance for human health.  相似文献   

12.
13.
Abstract

A study was made on the developmental rhythms of Ephestia kuehniella during different photoperiods: constant lighting (L/L), under conditions of 12 hours light per day (L/D) and in constant darkness (D/D). Observations were made every 2 hrs, for 3 successive 24‐hr periods, of the number of wandering larvae emerging from food, the number of pupations and of imaginai moults. Emergence of wandering larvae is rhythmic only under L/D conditions, and in addition this is also affected by the density of the larvae. Rhythm is least apparent with greatest density of the larvae. Pupation in E. kuehniella is a non‐rhythmic process with each of the photoperiods examined, whereas the imaginai moult is characterized by an endogenous (existing under D/D conditions) rhythm. Emergence of imagines is non‐rhythmic under L/L, and also when pupae under L/D fail to receive the final period of darkness. The rhythm of the imaginai moult is possibly controlled by the biological clock, which stops under conditions of constant light.  相似文献   

14.
Studies of the sites and mechanisms involved in mammalian respiratory rhythm generation point to two clusters of rhythmic neurons forming a coupled oscillator network within the brainstem. The location of these oscillators, the pre-Bötzinger complex (preBötC) at vagal level, and the para-facial respiratory group at facial level, probably result from regional patterning schemes specifying neural types in the hindbrain during embryogenesis. Here, we report evidence that the preBötC oscillator (i) is first active at embryonic stages, (ii) originates in the post-otic hindbrain neural tube and (iii) requires the glutamate vesicular transporter 2 for rhythm generation.  相似文献   

15.
Cardiovascular function is regulated by the rhythmicity of circadian, infradian and ultradian clocks. Specific time scales of different cell types drive their functions: circadian gene regulation at hours scale, activation-inactivation cycles of ion channels at millisecond scales, the heart''s beating rate at hundreds of millisecond scales, and low frequency autonomic signaling at cycles of tens of seconds. Heart rate and rhythm are modulated by a hierarchical clock system: autonomic signaling from the brain releases neurotransmitters from the vagus and sympathetic nerves to the heart’s pacemaker cells and activate receptors on the cell. These receptors activating ultradian clock functions embedded within pacemaker cells include sarcoplasmic reticulum rhythmic spontaneous Ca2+ cycling, rhythmic ion channel current activation and inactivation, and rhythmic oscillatory mitochondria ATP production. Here we summarize the evidence that intrinsic pacemaker cell mechanisms are the end effector of the hierarchical brain-heart circadian clock system. [BMB Reports 2015; 48(12): 677-684]  相似文献   

16.
17.
Development involves interactions between genetic and environmental influences. Vertebrate mothers are generally the first individuals to encounter and interact with young animals. Thus, their role is primordial during ontogeny. The present study evaluated non‐genomic effects of mothers on the development of rhythms of precocial Japanese quail (Coturnix c. japonica). First, we investigated the influence of mothering on the ontogeny of endogenous rhythms of young. We compared circadian and ultradian rhythms of feeding activity of quail reared with or without adoptive mothers. More brooded than non‐brooded quail presented a circadian and/or an ultradian rhythm. Thus, the presence of the mother during the normal brooding period favors, in the long term, expression of rhythms in the young. Second, we investigated the influence of rhythmic phenotype of the mother on the development of endogenous rhythms of young by comparing quail brooded by circadian‐rhythmic adoptive mothers (R) to quail brooded by circadian‐arrhythmic adoptive mothers (A). More R‐brooded than A‐brooded quail expressed circadian rhythmicity, and circadian rhythm clarities were greater in R‐brooded than A‐brooded quail. Ultradian rhythmicity did not differ between R‐ and A‐brooded quail, nor between R and A adoptive mothers. Thus, the rhythmic phenotypes of quail mothers influence the rhythmic phenotypes of their young. Our results demonstrate that mothers of precocial birds influence epigenetically the ontogeny of endogenous rhythms of the young they raise.  相似文献   

18.
In conditions of constant darkness, interindividual variability in the clarity of circadian rhythmicity was observed in sexually immature young quail, with birds classified as more or less rhythmic or arrhythmic. The relative clarity of this circadian rhythm was observed on the actograms by measurement of the autocorrelation coefficient ratio over 12 cycles. Autocorrelation coefficients were calculated from sequential series of total activity over 12-minute periods. Crosses of selected phenotypes with different clarities of rhythmicity were conducted in order to study the possibility of selection of this characteristic. From a random population (N = 42, twice), pairs of the most rhythmic birds (3 families), and pairs of arrhythmic birds (4 families) were reared. Autocorrelation coefficient ratios of Fl birds from rhythmic families (N = 54) were greater than those of Fl birds (N = 48) from arrhythmic families (t-test, p <. 0001). These ratios in offspring were significantly correlated with that of the mean parent of each clutch of siblings (N= 102, r =.35, p =. 0003). This result was maintained in a second generation (F2) of birds, for which significant differences in expressed rhythmicity were observed. That is, autocorrelation coefficient ratios of F2 birds from two rhythmic families (TV = 30) were greater than those of F2 birds from arrhydimic families (N = 20) (t-test, p =. 039). Comparison of F2 outbred and inbred birds from rhythmic pairs showed greater values of autocorrelation coefficient ratios in the case of inbred birds (N = 16) than for outbred birds (N = 30; t-test, p =. 036). There was no difference between outbred (N = 20) and inbred birds (N = 15) from arrhythmic pairs. Therefore, selection of a rhythmic strain seems possible, whereas crosses between two arrhythmic birds may also give rise to rhythmic birds. Comparisons between rhythmic birds of different families did not show differences in the free-running period of the circadian rhythm, which is true also for rhythmic birds bred from two arrhythmic parents. Therefore, our selection procedure did not seem to be based on the characteristics of the pacemaker itself, but rather on a downstream event. Although the parents were not selected on the basis of quantity of activity per cycle or on the duration of the active phase, significant differences among the offspring of different families were shown. (Chronobiology International, 75(3), 219–230, 1998)  相似文献   

19.
Mirror neurons are theorized to serve as a neural substrate for spoken language in humans, but the existence and functions of auditory–vocal mirror neurons in the human brain remain largely matters of speculation. Songbirds resemble humans in their capacity for vocal learning and depend on their learned songs to facilitate courtship and individual recognition. Recent neurophysiological studies have detected putative auditory–vocal mirror neurons in a sensorimotor region of the songbird''s brain that plays an important role in expressive and receptive aspects of vocal communication. This review discusses the auditory and motor-related properties of these cells, considers their potential role on song learning and communication in relation to classical studies of birdsong, and points to the circuit and developmental mechanisms that may give rise to auditory–vocal mirroring in the songbird''s brain.  相似文献   

20.
The sensitivity of the circadian photoreceptors mediating entrainment of the eclosion rhythm and phase shifts of oviposition rhythm of the high altitude (HA) strain of Drosophila ananassae originating from Badrinath (5123 m above sea level) in the Himalayas was compared with the low altitude (LA) strain from Firozpur (179 m above sea level). Reduced photic sensitivity of the HA strain is regarded as the result of natural selection, which led to the weakening of the coupling mechanism between the circadian pacemaker and light at the high altitude of origin. The present study was designed to determine whether or not the photic entrainment of the oviposition rhythm of the HA strain of D. ananassae is also altered by the high altitude of its origin, and the results are compared with those of the LA strain. The effects of light intensity on the phase angle difference (Ψ), degree of rhythmicity (R), the percent oviposition in photophase, the threshold light intensity (i.e., the intensity at which stable entrainment occurred), and the saturation light intensity (i.e., the intensity beyond which the values of Ψ or amplitude of rhythm remained unaltered) were determined. Entrainment was studied in light-dark cycles in which the light intensity of 12 h of photophase varied from 1 to 1000 lux, and complete darkness prevailed in all scotophases. The oviposition rhythm of the HA strain was arrhythmic from 1 to 90 lux, weakly rhythmic at 95 lux, but rhythmic at or above 100 lux, while that of the LA strain was weakly rhythmic at 1 lux but rhythmic at or above 2 lux. Oviposition of the HA strain occurred mostly in the photophase, while that of the LA strain occurred in the scotophase; as a result, the oviposition medians of the HA strain were around the subjective forenoons while those of the LA strain were around the subjective evenings. The percent of oviposition in photophase increased from 68 to 98 in the HA strain and from 5 to 33 in the LA strain as light intensity increased from 1 to 1000 lux. In the HA strain, the Ψ values were significantly less and values of R and percent oviposition in photophase were significantly more than those of the LA strain at each level of light intensity. Threshold and saturation intensities for Ψ were 100 and 700 lux, respectively, for the HA strain, but just 2 and 45 lux, respectively, for the LA strain. The saturation intensity for R was 650 and 700 lux for the HA and LA strains, respectively. These results extend the confirmation that the reduced photic sensitivity of the HA strain might have been acquired through natural selection in response to environmental conditions at the high altitude of its origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号