首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PurposeTo evaluate the planning feasibility of dose-escalated total marrow irradiation (TMI) with simultaneous integrated boost (SIB) to the active bone marrow (ABM) using volumetric modulated arc therapy (VMAT), and to assess the impact of using planning organs at risk (OAR) volumes (PRV) accounting for breathing motion in the optimization.MethodsFive patients underwent whole-body CT and thoraco-abdominal 4DCT. A planning target volume (PTV) including all bones and ABM was contoured on each whole-body CT. PRV of selected OAR (liver, heart, kidneys, lungs, spleen, stomach) were determined with 4DCT. Planning consisted of 9–10 full 6 MV photon VMAT arcs. Four plans were created for each patient with 12 Gy prescribed to the PTV, with or without an additional 4 Gy SIB to the ABM. Planning dose constraints were set on the OAR or on the PRV. Planning objective was a PTV Dmean < 110% of the prescribed dose, a PTV V110% < 50%, and OAR Dmean ≤ 50–60%.ResultsPTV Dmean < 110% was accomplished for most plans (n = 18/20), while all achieved V110%<50%. SIB plans succeeded to optimally cover the boost volume (median ABM Dmean = 16.3 Gy) and resulted in similar OAR sparing compared to plans without SIB (median OAR Dmean = 40–54% of the ABM prescribed dose). No statistically significant differences between plans optimized with constraints on OAR or PRV were found.ConclusionsAdding a 4 Gy SIB to the ABM for TMI is feasible with VMAT technique, and results in OAR sparing similar to plans without SIB. Setting dose constraints on PRV does not impair PTV dosimetric parameters.  相似文献   

2.
BackgroundUtilization of stereotactic radiosurgery (SRS) for brain metastases (BM) has become the technique of choice as opposed to whole brain radiation therapy (WBRT). The aim of this work is to evaluate the feasibility and potential benefits in terms of normal tissue (NT) and dose escalation of volumetric modulated arc therapy (VMAT) in SRS metastasis treatment. A VMAT optimization procedure has therefore been developed for internal dose scaling which minimizes planner dependence.Materials and methodsFive patient-plans incorporating treatment with frame-based SRS with dynamic conformal arc technique (DA) were re-planned for VMAT. The lesions selected were between 4–6 cm3. The same geometry used in the DA plans was maintained for the VMAT cases. A VMAT planning procedure was performed attempting to scale the dose in inner auxiliary volumes, and to explore the potential for dose scaling with this technique. Comparison of dose-volume histogram (DVH) parameters were obtained.ResultsVMAT allows a superior NT sparing plus conformity and dose scaling using the auxiliary volumes. The VMAT results were significantly superior in NT sparing, improving both the V10 and V12 values in all cases, with a 2–3 cm3 saving. In addition, VMAT improves the dose coverage D95 by about 0.5 Gy. The objective of dose escalation was achieved with VMAT with an increment of the Dmean and the Dmedian of about 2 Gy.ConclusionsThis work shows a benefit of VMAT in SRS treatment with significant NT sparing. A VMAT optimization procedure, based on auxiliary inner volumes, has been developed, enabling internal dose escalation.  相似文献   

3.
PurposeRadiation treatment planning inherently involves multiple conflicting planning goals, which makes it a suitable application for multicriteria optimization (MCO). This study investigates a MCO algorithm for VMAT planning (VMAT–MCO) for prostate cancer treatments including pelvic lymph nodes and uses standard inverse VMAT optimization (sVMAT) and Tomotherapy planning as benchmarks.MethodsFor each of ten prostate cancer patients, a two stage plan was generated, consisting of a stage 1 plan delivering 22 Gy to the prostate, and a stage 2 plan delivering 50.4 Gy to the lymph nodes and 56 Gy to the prostate with a simultaneous integrated boost. The single plans were generated by three planning techniques (VMAT–MCO, sVMAT, Tomotherapy) and subsequently compared with respect to plan quality and planning time efficiency.ResultsPlan quality was similar for all techniques, but sVMAT showed slightly better rectum (on average Dmean −7%) and bowel sparing (Dmean −17%) compared to VMAT–MCO in the whole pelvic treatments. Tomotherapy plans exhibited higher bladder dose (Dmean +42%) in stage 1 and lower rectum dose (Dmean −6%) in stage 2 than VMAT–MCO. Compared to manual planning, the planning time with MCO was reduced up to 12 and 38 min for stage 1 and 2 plans, respectively.ConclusionMCO can generate highly conformal prostate VMAT plans with minimal workload in the settings of prostate-only treatments and prostate plus lymph nodes irradiation. In the whole pelvic plan manual VMAT optimization led to slightly improved OAR sparing over VMAT–MCO, whereas for the primary prostate treatment plan quality was equal.  相似文献   

4.
AimThe aim is a dosimetric comparison of dynamic conformal arc integrated with the segment shape optimization and variable dose rate (DCA_SSO_VDR) versus VMAT for liver SBRT and interaction of various treatment plan quality indices with PTV and degree of modulation (DoM) for both techniques.BackgroundThe DCA is the state-of-the-art technique but overall inferior to VMAT, and the DCA_SSO_VDR technique was not studied for liver SBRT.Materials and methodsTwenty-five patients of liver SBRT treated using the VMAT technique were selected. DCA_SSO_VDR treatment plans were also generated for all patients in Monaco TPS using the same objective constraint template and treatment planning parameters as used for the VMAT technique. For comparison purpose, organs at risk (OARs) doses and treatment plans quality indices, such as maximum dose of PTV (Dmax%), mean dose of PTV (Dmean%), maximum dose at 2 cm in any direction from the PTV (D2cm%), total monitor units (MU’s), gradient index R50%, degree of modulation (DoM), conformity index (CI), homogeneity index (HI), and healthy tissue mean dose (HTMD) were compared.ResultsSignificant dosimetric differences were observed in several OARs doses and lowered in VMAT plans. The D2cm%, R50%, CI, HI and HTMD are dosimetrically inferior in DCA_SSO_VDR plans. The higher DoM results in poor dose gradient and better dose gradient for DCA_SSO_VDR and VMAT treatment plans, respectively.ConclusionsFor liver SBRT, DCA_SSO_VDR treatment plans are neither dosimetrically superior nor better alternative to the VMAT delivery technique. A reduction of 69.75% MU was observed in DCA_SSO_VDR treatment plans. For the large size of PTV and high DoM, DCA_SSO_VDR treatment plans result in poorer quality.  相似文献   

5.
BackgroundA high-definition multi-leaf collimator (HD-MLC) with 5- and 10-mm fine MLCs is useful for radiotherapy. However, it is difficult to irradiate the mammary gland and supraclavicular region using a HD-MLC because of the narrow field of volumetric modulated arc radiotherapy (VMAT). Therefore, we aimed to evaluate the dose distribution of the VMAT dose using a HD-MLC in 15 patients with left breast cancer undergoing postoperative irradiation of breast and regional lymph nodes, including the internal mammary node.Materials and methodsThe following four plans were generated: three-arc VMAT using HD-MLC (HD-VMAT), two tangential arcs and one-arc VMAT using HD-MLC (tHD-VMAT), three-dimensional conformal radiotherapy (3DCRT) using HD-MLC, and two-arc VMAT using the Millennium 120-leaf MLC (M-VMAT). We assessed the doses to the target volume and organs at risk.ResultsThe target dose distributions were higher for HD-VMAT than 3DCRT. There were no significant differences in the heart mean dose (Dmean) or lung volume receiving 20 Gy (V20 Gy) between HD-VMAT and 3DCRT. The heart Dmean and lung V20 Gy of tHD-VMAT were higher than those of HD-VMAT, and the heart Dmean of M-VMAT was higher than that of HD-VMAT. However, the target doses of tHD-VMAT, M-VMAT, and HD-VMAT were equivalent.ConclusionsIn cases of the mammary gland and regional lymph node irradiation, including the internal mammary node in patients with left breast cancer, HD-VMAT was not inferior to M-VMAT and provided a better dose distribution to the target volume and organs at risk compared with 3DCRT and tHD-VMAT.  相似文献   

6.
PurposeTo investigate the use of dual isocenters for VMAT planning in patients with lymph node positive synchronous bilateral breast cancer (BBC) compared to a single isocenter option.MethodsTreatment plans of 11 patients with lymph node positive BBC were retrospectively analyzed using two different VMAT planning techniques: dual-isocenter split-arc VMAT plans (Iso2) were compared with mono-isocenter VMAT plans (Iso1). For Iso2 plans, PTV dose was investigated after introducing ±2 and ±5 mm couch shift errors between the two isocenters in the lateral, longitudinal and vertical direction.ResultsFor both techniques the planning aims for PTV coverage and OARs were met. The mean dose for the bilateral lungs and heart was reduced from 11.3 Gy and 3.8 Gy to 10.9 Gy (p < .05) and 3.6 Gy (p < .05), respectively, for Iso2 plans when compared to Iso1 plans. Positive statistically significant correlation (rho = 0.76, p = .006) was found between PTV volume and D2ccPTV for Iso1 plans. No clinically significant change was seen in the D98CTV or D2ccPTV after the 2 and 5 mm errors were introduced between isocenters for Iso2 plans.ConclusionsThe split arc method was shown to be a feasible treatment technique in the case of synchronous BBC for both mono and dual isocenter techniques. The dose parameters were slightly favoring dual-isocenter option instead of mono-isocenter. The dual-isocenter method was shown to be a robust treatment option in the presence of ≤5 mm errors in the shifts between the two isocenters.  相似文献   

7.
BackgroundThis study quantified clinical outcomes by molecular subtype of metastatic breast cancer (BC) following whole brain radiation therapy (WBRT) or stereotactic radiosurgery (SRS). Doing so is important for patient counseling and to assess the potential benefit of combining targeted therapy and brain radiotherapy for certain molecular subtypes in ongoing trials.Materials and methodsThe National Cancer Database was queried for BC (invasive ductal carcinoma) cases receiving brain radiotherapy (divided into WBRT and SRS ). Statistics included multivariable logistic regression to determine factors associated with SRS delivery, Kaplan-Meier analysis to evaluate overall survival (OS), and Cox proportional hazards modeling.ResultsOf 1,112 patients, 186 (16.7%) received SRS and 926 (83.3%) underwent WBRT. Altogether, 410 (36.9%), 195 (17.5%), 162 (14.6%), and 345 (31.0%) were ER+/HER2−, ER+/HER2+, ER−/HER2+, and ER−/HER2−, respectively. In the respective molecular subtypes, the proportion of subjects who underwent SRS was 13.4%, 19.4%, 24.1%, and 15.7%. Respective OS for WBRT patients were 12.9, 22.8, 10.6, and 5.8 months; corresponding figures for the SRS cohort were 28.3, 40.7, 15.0, and 12.9 months (p < 0.05 for both). When comparing OS between treatment different histologic subtypes, patients with ER−/HER2+ and ER−/HER2− disease had worse OS than patients with ER+/HER2− disease, for both patients treated with SRS and for patients treated with WBRT.ConclusionsMolecular subtype may be a useful prognostic marker to quantify survival following SRS/WBRT for metastatic BC. Patients with HER 2-enriched and triple-negative disease had the poorest survival following brain irradiation, lending credence to ongoing studies testing the addition of targeted therapies for these subtypes.  相似文献   

8.
In this paper, we report the results of our investigation into whole brain radiotherapy (WBRT) using linear accelerator-based intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) in lung cancer patients with a high risk of metastasis to the brain. Specifically, we assessed the absorbed dose and the rate of adverse effects for several organs at risk (OAR), including the hippocampus, according to the tilt of a patient’s head. We arbitrarily selected five cases where measurements were made with the patients’ heads tilted forward and five cases without such tilt. We set the entire brain as the planning target volume (PTV), and the hippocampi, the lenses, the eyes, and the cochleae as the main OAR, and formulated new plans for IMRT (coplanar, non-coplanar) and VMAT (coplanar, non-coplanar). Using the dose-volume histogram (DVH), we calculated and compared the effective uniform dose (EUD), normal tissue complication probability (NTCP) of the OAR and the mean and the maximum doses of hippocampus. As a result, if the patient tilted the head forward when receiving the Linac-based treatment, for the same treatment effect in the PTV, we confirmed that a lower dose entered the OAR, such as the hippocampus, eye, lens, and cochlea. Moreover, the damage to the hippocampus was expected to be the least when receiving coplanar VMAT with the head tilted forward. Accordingly, if patients tilt their heads forward when undergoing Linac-based WBRT, we anticipate that a smaller dose would be transmitted to the OAR, resulting in better quality of life following treatment.  相似文献   

9.
BackgroundThe objective of the study was to dosimetrically compare the intensity-modulated-arc-therapy (IMAT), Cyber-Knife therapy (CK), single fraction interstitial high-dose-rate (HDR) and low-dose-rate (LDR) brachytherapy (BT) in low-risk prostate cancer.Materials and methodsTreatment plans of ten patients treated with CK were selected and additional plans using IMAT, HDR and LDR BT were created on the same CT images. The prescribed dose was 2.5/70 Gy in IMAT, 8/40 Gy in CK, 21 Gy in HDR and 145 Gy in LDR BT to the prostate gland. EQD2 dose-volume parameters were calculated for each technique and compared.ResultsEQD2 total dose of the prostate was significantly lower with IMAT and CK than with HDR and LDR BT, D90 was 79.5 Gy, 116.4 Gy, 169.2 Gy and 157.9 Gy (p < 0.001). However, teletherapy plans were more conformal than BT, COIN was 0.84, 0.82, 0.76 and 0.76 (p < 0.001), respectively. The D2 to the rectum and bladder were lower with HDR BT than with IMAT, CK and LDR BT, it was 66.7 Gy, 68.1 Gy, 36.0 Gy and 68.0 Gy (p = 0.0427), and 68.4 Gy, 78.9 Gy, 51.4 Gy and 70.3 Gy (p = 0.0091) in IMAT, CK, HDR and LDR BT plans, while D0.1 to the urethra was lower with both IMAT and CK than with BTs: 79.9 Gy, 88.0 Gy, 132.7 Gy and 170.6 Gy (p < 0.001). D2 to the hips was higher with IMAT and CK, than with BTs: 13.4 Gy, 20.7 Gy, 0.4 Gy and 1.5 Gy (p < 0.001), while D2 to the sigmoid, bowel bag, testicles and penile bulb was higher with CK than with the other techniques.ConclusionsHDR monotherapy yields the most advantageous dosimetrical plans, except for the dose to the urethra, where IMAT seems to be the optimal modality in the radiotherapy of low-risk prostate cancer.  相似文献   

10.
BackgroundThis study aimed to verify the dosimetric impact of Acuros XB (AXB) (AXB, Varian Medical Systems Palo Alto CA, USA), a two model-based algorithm, in comparison with Anisotropic Analytical Algorithm (AAA ) calculations for prostate, head and neck and lung cancer treatment by volumetric modulated arc therapy (VMAT ), without primary modification to AA. At present, the well-known and validated AA algorithm is clinically used in our department for VMAT treatments of different pathologies. AXB could replace it without extra measurements. The treatment result and accuracy of the dose delivered depend on the dose calculation algorithm.Materials and methodNinety-five complex VMAT plans for different pathologies were generated using the Eclipse version 15.0.4 treatment planning system (TPS). The dose distributions were calculated using AA and AXB (dose-to-water, AXBw and dose-to-medium, AXBm), with the same plan parameters for all VMAT plans. The dosimetric parameters were calculated for each planning target volume (PTV) and involved organs at risk (OA R). The patient specific quality assurance of all VMAT plans has been verified by Octavius®-4D phantom for different algorithms.ResultsThe relative differences among AA, AXBw and AXBm, with respect to prostate, head and neck were less than 1% for PTV D95%. However, PTV D95% calculated by AA tended to be overestimated, with a relative dose difference of 3.23% in the case of lung treatment. The absolute mean values of the relative differences were 1.1 ± 1.2% and 2.0 ± 1.2%, when comparing between AXBw and AA, AXBm and AA, respectively. The gamma pass rate was observed to exceed 97.4% and 99.4% for the measured and calculated doses in most cases of the volumetric 3D analysis for AA and AXBm, respectively.ConclusionThis study suggests that the dose calculated to medium using AXBm algorithm is better than AAA and it could be used clinically. Switching the dose calculation algorithm from AA to AXB does not require extra measurements.  相似文献   

11.
BackgroundThe present study was to investigate the usefulness of deep inspiration breath hold (DIBH) in bilateral breast patients using 6MV flattened beam (FB) and flattening filter free beam (FFFB).Materials and methodsTwenty bilateral breast cancer patients were simulated, using left breast patients treated with DIBH technique. CT scans were performed in the normal breathing (NB) and DIBH method. Three-dimensional conformal radiotherapy (3DCRT) and volumetric arc therapy (VMAT) plans were generated.ResultsIn our study the best organ at risk (OAR) sparing is achieved in the 3DCRT DIBH plan with adequate PTV coverage (V95 ≥ 47.5 Gy) as compared to 6MV FB and FFFB VMAT DIBH plans. The DIBH scan plan reduces the heart mean dose significantly at the rate of 49% in 3DCRT (p = 0.00) and 22% in VMAT (p = 0.010). Similarly, the DIBH scan plan produces lesser common lung mean dose of 18% in 3DCRT (p = 0.011) and 8% in VMAT (0.007) as compared to the NB scan. The conformity index is much better in VMAT FB (1.04 ± 0.04 vs. 1.04 ± 0.05), p =1.00 and VMAT FFFB (1.04 ± 0.05 vs. 1 ± 0.24, p = 0.345) plans as compared to 3DCRT (1.63 ± 0.2 vs. 1.47 ± 0.28, p = 0.002). The homogeneity index of all the plans is less than 0.15. The global dmax is more in VMAT FFFB DIBH plan (113.7%). The maximum MU noted in the NB scan plan (478 vs. 477MU, 1366 vs. 1299 MU and 1853 vs. 1788 MU for 3DCRT, VMAT FB and VMAT FFFB technique as compared to DIBH scan.ConclusionWe recommend that the use of DIBH techniques for bilateral breast cancer patients significantly reduces the radiation doses to OARs in both 3DCRT and VMAT plans.  相似文献   

12.
BackgroundWith full access to both helical tomotherapy (HT) and volumetric modulated arc therapy (VMAT), we compared locally advanced non-small cell lung cancer (LA-NSCLC) treatment plans and verified the plans using patient-specific pretreatment quality assurance (PSQA).Materials and methodsFor each of the seventeen patients included in the study, two treatment plans (i.e. HT and VMAT) were created. Optimized plans were evaluated following the ICRU 83 criteria. Planned quality indexes and dosimetric parameters were compared. Lastly, all plans were subjected to PSQA assessment by determining the gamma passing rate (GPR).ResultsAll dosimetry results obtained from the planning target volume passed the ICRU 83 criteria. With regard to similar homogeneity indices, VMAT produced better conformity number values than HT (0.78 vs. 0.64), but differences in the values were insignificant. Furthermore, VMAT was associated with a significantly shorter mean treatment time (1.91 minutes vs. 6.66 minutes). For PSQA assessment, both techniques resulted in adequate GPR values (> 90% at the 3%/3 mm criteria).ConclusionBoth HT and VMAT techniques led to the generation of clinically satisfactory and reliable radiotherapy plans. However, the VMAT plan was associated with a non-significantly better degree of conformity and a significantly shorter treatment time. Thus, VMAT was determined to be a better choice for LA-NSCLC.  相似文献   

13.
PurposeThe purpose of this study was to design and develop a new range optimization for target and organs at risk (OARs) in dynamic adaptive proton beam therapy (PBT).MethodsThe new range optimization for target and OARs (RO-TO) was optimized to maintain target dose coverage but not to increase the dose exposure of OARs, while the other procedure, range optimization for target (RO-T), only focused on target dose coverage. A retrospective analysis of a patient who received PBT for abdominal lymph node metastases was performed to show the effectiveness of our new approach. The original plan (OP), which had a total dose of 60 Gy (relative biological effectiveness; RBE), was generated using six treatment fields. Bone-based registration (BR) and tumor-based registration (TR) were performed on each pretreatment daily CT image dataset acquired once every four fractions, to align the isocenter.ResultsBoth range adaptive approaches achieved better coverage (D95%) and homogeneity (D5%−D95%) than BR and TR only. However, RO-T showed the greatest increases in D2cc and Dmean values of the small intestine and stomach and exceeded the limitations of dose exposure for those OARs. RO-TO showed comparable or superior dose sparing compared with the OP for all OARs.ConclusionsOur results suggest that BR and TR alone may reduce target dose coverage, and that RO-T may increase the dose exposure to the OARs. RO-TO may achieve the planned dose delivery to the target and OARs more efficiently than the OP. The technique requires testing on a large clinical dataset.  相似文献   

14.
BackgroundThe aim of the study was to individualize accelerated partial breast irradiation based on optimal dose distribution, protect risk organ and predict most advantageous technique.Materials and methods138 breast cancer patients receiving postoperative APBI were enrolled. APBI plans were generated using 3D-conformal (3D-CRT), sliding window intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT). In the case of superficial tumours, additional plans were developed by adding electron beam. To planning target volume (PTV) 37.5 Gy/10 fractions, 1 fraction/day was prescribed. A novel plan quality index (PQI) served as the basis for comparisons.ResultsIMRT was the most advantageous technique regarding homogeneity. VMAT provided best conformity, 3D-CR T — the lowest lung and heart exposure. PQI was the best in 45 (32.61%) VMAT, 13 (9.42%) IMRT, 9 (6.52%) 3D-CRT plans. In 71 cases (51.45%) no difference was detected. In patients with large PTV, 3D-CRT was the most favourable. Additional electron beam improved PQI of 3D-CRT plans but had no meaningful effect on IMRT or VMAT. IMRT was superior to VMAT if the tumour was superficial (p < 0.001), situated in the medial (p = 0.032) or upper quadrant (p = 0.046).ConclusionsIn half of all cases, individually selected teletherapy techniques provide superior results over others; relevance of a certain technique may be predicted by volume and PTV localization.  相似文献   

15.

The clinical information on the relationship between the cardiac contact distance (CCD), the maximum dose (Dmax) delivered to the left anterior descending (LAD) coronary artery and the mean heart dose has mostly focused on patients with breast-conserving surgery (BCS), being scarce in postmastectomy patients. The aim of this study is to determine the association between the CCD and the Dmax delivered to the LAD. The secondary objective was to evaluate the dosimetric results of comparing three-dimensional conformal radiotherapy (3D-CRT) to intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques for post mastectomized breast cancer patients with irradiation to the left chest wall. 53 cases of women who received adjuvant standard fractionated postmastectomy radiotherapy (PMRT) were used. Three types of plans were created for each patient: 3D-CRT, seven equidistant IMRT fields, and four partial VMAT arcs. Correlations were evaluated using Pearson’s correlation coefficient. Plans made with IMRT and VMAT showed improved homogeneity and conformity. Associations between CCD and Dmax to LAD were positive for all three plan types. Compared to 3D-CRT, the modulated intensity plans obtained better dose homogeneity and conformity to the target volume. The LAD and heart doses were significantly lower for IMRT and VMAT plans. The CCD can be used as a predictor of the maximum and mean doses of the LAD. Modulated intensity techniques allow for better dose distribution and dose reduction to the heart and LAD.

  相似文献   

16.

Background

Intensity-modulated radiotherapy (IMRT) improves dose distribution in head and neck (HN) radiation therapy. Volumetric-modulated arc therapy (VMAT), a new form of IMRT, delivers radiation in single or multiple arcs, varying dose rates (VDR-VMAT) and gantry speeds, has gained considerable attention. Constant dose rate VMAT (CDR-VMAT) associated with a fixed gantry speed does not require a dedicated linear accelerator like VDR-VMAT. The present study explored the feasibility, efficiency and delivery accuracy of CDR-VMAT, by comparing it with IMRT and VDR-VMAT in treatment planning for HN cancer.

Methods and materials

Step and shoot IMRT (SS-IMRT), CDR-VMAT and VDR-VMAT plans were created for 15 HN cancer patients and were generated by Pinnacle3 TPS (v 9.8) using 6 MV photon energy. Three PTVs were defined to receive respectively prescribed doses of 66 Gy, 60 Gy and 54 Gy, in 30 fractions. Organs at risk (OARs) included the mandible, spinal cord, brain stem, parotids, salivary glands, esophagus, larynx and thyroid. SS-IMRT plans were based on 7 co-planar beams at fixed gantry angles. CDR-VMAT and VDR-VMAT plans, generated by the SmartArc module, used a 2-arc technique: one clockwise from 182° to 178° and the other one anti-clockwise from 178° to 182°. Comparison parameters included dose distribution to PTVs (Dmean, D2%, D50%, D95%, D98% and Homogeneity Index), maximum or mean doses to OARs, specific dose-volume data, the monitor units and treatment delivery times.

Results

Compared with SS-IMRT, CDR-VMAT significantly reduced the maximum doses to PTV1 and PTV2 and significantly improved all PTV3 parameters, except D98% and D95%. It significantly spared parotid and submandibular glands and was associated with a lower Dmean to the larynx. Compared with VDR-VMAT, CDR-VMAT was linked to a significantly better Dmean, to the PTV3 but results were worse for the parotids, left submandibular gland, esophagus and mandible. Furthermore, the Dmean to the larynx was also worse. Compared with SS-IMRT and VDR-VMAT, CDR-VMAT was associated with higher average monitor unit values and significantly shorter average delivery times.

Conclusions

CDR-VMAT appeared to be a valid option in Radiation Therapy Centers that lack a dedicated linear accelerator for volumetric arc therapy with variable dose-rates and gantry velocities, and are unwilling or unable to sanction major expenditure at present but want to adopt volumetric techniques.  相似文献   

17.
18.
AimThe aim of the analysis was to compare doses obtained for temporal lobes in patients being irradiated for meningiomas of the brain using the conformal technique and volumetric modulated arc therapy (VMAT). We try to answer the question whether the application of VMAT would lead to higher doses within temporal lobes.BackgroundIn recent years a significant increase in the detection of meningiomas and effectiveness of treatment has been observed. Hence quality of life should be considered as an important aspect after a treatment course.Materials and methodsTreatment plans of 27 patients were evaluated retrospectively. Radiotherapy procedures were carried out from 2007 until 2016 at the Department of Radiation Oncology in Wroclaw, Poland. For individual patients, alternative treatment plans were generated in relation to the ones originally used, wherein from dynamic techniques, volumetric modulated arc therapy was selected for analysis. Evaluated dosimetric parameters for temporal lobes were: mean dose, V10 Gy, V20 Gy, V45 Gy.ResultsStatistically significant differences were observed for V45 Gy for both temporal lobes (p = 0.023) and for V45 Gy for the right (p = 0.001) and the left temporal lobe (p = 0.016) considered for VMAT. The mean values of the V45 Gy for both temporal lobes, for the right temporal lobe and for the left temporal lobe were lower for VMAT than for 3D, respectively: 7.54% and 7.90%, 6.82% and 9.47%, 5.67% and 7.14%.Analysis of the remaining results found no statistical differences.ConclusionApplication of VMAT in patients treated for meningioma of the brain is not related to higher doses of radiation in the temporal lobe area, compared with the conformal technique.  相似文献   

19.
BackgroundThe aim of the study was to evaluate analysis criteria for the identification of the presence of rectal gas during volumetric modulated arc therapy (VMAT) for prostate cancer patients by using electronic portal imaging device (EPID)-based in vivo dosimetry (IVD).Materials and methodsAll measurements were performed by determining the cumulative EPID images in an integrated acquisition mode and analyzed using PerFRACTION commercial software. Systematic setup errors were simulated by moving the anthropomorphic phantom in each translational and rotational direction. The inhomogeneity regions were also simulated by the I’mRT phantom attached to the Quasar phantom. The presence of small and large air cavities (12 and 48 cm3) was controlled by moving the Quasar phantom in several timings during VMAT. Sixteen prostate cancer patients received EPID-based IVD during VMAT.ResultsIn the phantom study, no systematic setup error was detected in the range that can happen in clinical (< 5-mm and < 3 degree). The pass rate of 2% dose difference (DD2%) in small and large air cavities was 98.74% and 79.05%, respectively, in the appearance of the air cavity after irradiation three quarter times. In the clinical study, some fractions caused a sharp decline in the DD2% pass rate. The proportion for DD2% < 90% was 13.4% of all fractions. Rectal gas was confirmed in 11.0% of fractions by acquiring kilo-voltage X-ray images after the treatment.ConclusionsOur results suggest that analysis criteria of 2% dose difference in EPID-based IVD was a suitable method for identification of rectal gas during VMAT for prostate cancer patients.  相似文献   

20.
PurposeTo increase the superficial dose and reduce the brain dose for radiotherapy of scalp angiosarcoma, we propose a novel irradiation technique of tangential irradiation volumetric modulated arc therapy (TI-VMAT).MethodsTI-VMAT and the conventional VMAT treatment plans for thirteen scalp angiosarcoma patients were created with a prescribed dose of 70 Gy. Each treatment was normalized to cover 95% of the planning target volume (PTV) with its prescribed dose. To realize TI-VMAT, an avoidance structure (AS) function was applied. AS was defined as a contour subtracted PTV by a certain space from the brain contour. TI-VMAT treatment plans for six different spaces between PTV and AS were developed and compared with the conventional VMAT treatment plan with respect to the following dosimetric parameters: homogeneity index (HI) and conformity index (CI) of the PTV, mean brain dose, and brain volume irradiated with 20% (V20% [cc]), 40% (V40% [cc]), 60% (V60% [cc]), 80% (V80% [cc]), and 100% (V100% [cc]) of the prescribed dose.ResultsHI and CI were comparable between TI-VMAT and the conventional VMAT, the mean brain dose for TI-VMAT with AS defined by a space of 2.0 cm and jaw tracking was 14.27 Gy, which was significantly lower than that for the conventional VMAT (21.20 Gy). In addition, dosimetric parameters such as V20% [cc] were significantly suppressed compared to those for high doses.ConclusionOur proposed irradiation technique TI-VMAT shows the potential to reduce radiation doses in the brain with maintaining higher dose coverage on the PTV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号