首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studying the strategies of improving abiotic stress tolerance is quite imperative and research under this field will increase our understanding of response mechanisms to abiotic stress such as heat. The Hsp70 is an essential regulator of protein having the tendency to maintain internal cell stability like proper folding protein and breakdown of unfolded proteins. Hsp70 holds together protein substrates to help in movement, regulation, and prevent aggregation under physical and or chemical pressure. However, this review reports the molecular mechanism of heat shock protein 70 kDa (Hsp70) action and its structural and functional analysis, research progress on the interaction of Hsp70 with other proteins and their interaction mechanisms as well as the involvement of Hsp70 in abiotic stress responses as an adaptive defense mechanism.  相似文献   

2.
Spodoptera frugiperda (J. E. Smith) is a highly adaptable polyphagous migratory pest in tropical and subtropical regions. Small heat shock proteins (sHsps) are molecular chaperones that play important roles in the adaptation to various environment stressors. The present study aimed to clarify the response mechanisms of S. frugiperda to various environmental stressors. We obtained five S. furcifera sHsp genes (SfsHsp21.3, SfsHsp20, SfsHsp20.1, SfsHsp19.3, and SfsHsp29) via cloning. The putative proteins encoded by these genes contained a typical α-crystallin domain. The expression patterns of these genes during different developmental stages, in various tissues of male and female adults, as well as in response to extreme temperatures and UV-A stress were studied via real-time quantitative polymerase chain reaction. The results showed that the expression levels of all five SfsHsp genes differed among the developmental stages as well as among the different tissues of male and female adults. The expression levels of most SfsHsp genes under extreme temperatures and UV-A-induced stress were significantly upregulated in both male and female adults. In contrast, those of SfsHsp20.1 and SfsHsp19.3 were significantly downregulated under cold stress in male adults. Therefore, the different SfsHsp genes of S. frugiperda play unique regulatory roles during development as well as in response to various environmental stressors.  相似文献   

3.
Lysosomes play a vital role in the maintenance of cellular homeostasis through the recycling of cell constituents, a key metabolic function which is highly dependent on the correct function of the lysosomal hydrolases and membrane proteins, as well as correct membrane lipid stoichiometry and composition. The critical role of lysosomal functionality is evident from the severity of the diseases in which the primary lesion is a genetically defined loss-of-function of lysosomal hydrolases or membrane proteins. This group of diseases, known as lysosomal storage diseases (LSDs), number more than 50 and are associated with severe neurodegeneration, systemic disease, and early death, with only a handful of the diseases having a therapeutic option. Another key homeostatic system is the metabolic stress response or heat shock response (HSR), which is induced in response to a number of physiological and pathological stresses, such as protein misfolding and aggregation, endoplasmic reticulum stress, oxidative stress, nutrient deprivation, elevated temperature, viral infections, and various acute traumas. Importantly, the HSR and its cardinal members of the heat shock protein 70 family has been shown to protect against a number of degenerative diseases, including severe diseases of the nervous system. The cytoprotective actions of the HSR also include processes involving the lysosomal system, such as cell death, autophagy, and protection against lysosomal membrane permeabilization, and have shown promise in a number of LSDs. This review seeks to describe the emerging understanding of the interplay between these two essential metabolic systems, the lysosomes and the HSR, with a particular focus on their potential as a therapeutic target for LSDs.  相似文献   

4.
Chaperone function plays a key role in repairing proteotoxic damage and in the maintenance of cell survival. Here we compare the regulatory role of molecular chaperones (heat shock proteins, stress proteins) in cellular senescence, apoptosis and necrosis. We also review the current data on chaperone level and function in aging cells, and list some possible therapeutic interventions. Finally, we postulate a hypothesis, that increasing chaperone occupancy might be an important event which forces cells out of the normal cell cycle towards senescence. In the case of severe stress, this may lead to apoptosis or, following lethal stress, to cell necrosis.  相似文献   

5.
Although bone marrow-derived mesenchymal stem cells (MSCs) are an attractive cell therapy candidate, their potential is limited by poor survival following transplantation. Over-expression of anti-apoptotic heat shock proteins using viral vectors can improve the survival of these cells under stressful conditions in vitro and in vivo. It is also possible to induce heat shock protein expression in many cell types by simply exposing them to a transient, nonlethal elevation in temperature. The response profile of MSCs to such a thermal stress has not yet been reported. Therefore, this study sought to determine the kinetics of thermally induced heat shock protein expression by MSCs in vitro. To determine if heat shock protein expression was a function of thermal stress exposure time, MSCs were exposed to 42°C for 15, 30, 45, and 60 min and were harvested 24 h later. To establish the time-course of heat shock protein expression, MSCs were heat shocked for 60 min and harvested 2, 24, 48, 72, 96, and 120 h later. The cells were then analyzed for Hsp27 and Hsp70 expression by Western blot. Densitometric analysis revealed that exposure to a thermal stress induced expression of both Hsp27 and Hsp70 and that the level of expression was dependant on stress exposure time. Following 60 min of heat stress, both Hsp27 and Hsp70 accumulated maximal expression after 48 h with both proteins returning to constitutive expression levels by 120 h. This study demonstrates that heat shock protein expression can be induced in MSCs by a simple thermal stress.  相似文献   

6.
7.
8.
热激蛋白70(hsp70s)具有分子伴侣的功能,其中在非胁迫条件下表达的hsp70s称为热激同源蛋白70(hsc70).为更好地了解hsc70基因的特性,鉴定了盐芥(Thellungiella halophila(C.A.Mey.)O.E. Schulz)中编码胞质hsc70蛋白的基因Thhsc70.实验结果表明:在非胁迫条件下,Thhsc70基因具有组织特异性表达;Thhsc70基因受热胁迫和冷胁迫的诱导表达,但几乎不受盐诱导和干旱诱导.Thhsc70基因在拟南芥中过量表达后提高了转基因拟南芥的热耐受性和冷耐受性.  相似文献   

9.
10.
热激蛋白70(hsp70s)具有分子伴侣的功能,其中在非胁迫条件下表达的hsp70s称为热激同源蛋白70(hsc70)。为更好地了解hsc70基因的特性,鉴定了盐芥(Thellungiella halophila(C. A. Mey. )O. E. Schulz)中编码胞质hsc70蛋白的基因Thhsc70。实验结果表明:在非胁迫条件下,Thhsc70基因具有组织特异性表达;Thhsc70基因受热胁迫和冷胁迫的诱导表达,但几乎不受盐诱导和干旱诱导。Thhsc70基因在拟南芥中过量表达后提高了转基因拟南芥的热耐受性和冷耐受性。  相似文献   

11.
This study compared resting and exercise heat/hypoxic stress-induced levels of plasma extracellular heat shock protein 70 (eHSP70) in humans using two commercially available enzyme-linked immunosorbent assay (ELIS)A kits. EDTA plasma samples were collected from 21 males during two separate investigations. Participants in part A completed a 60-min treadmill run in the heat (HOT70; 33.0 ± 0.1 °C, 28.7 ± 0.8 %, n = 6) at 70 % V̇O2max. Participants in part B completed 60 min of cycling exercise at 50 % V̇O2max in either hot (HOT50; 40.5 °C, 25.4 relative humidity (RH)%, n = 7) or hypoxic (HYP50; fraction of inspired oxygen (FIO2) = 0.14, 21 °C, 35 % RH, n = 8) conditions. Samples were collected prior to and immediately upon termination of exercise and analysed for eHSP70 using EKS-715 high-sensitivity HSP70 ELISA and new ENZ-KIT-101 Amp’d™ HSP70 high-sensitivity ELISA. ENZ-KIT was superior in detecting resting eHSP70 (1.54 ± 3.27 ng·mL−1; range 0.08 to 14.01 ng·mL−1), with concentrations obtained from 100 % of samples compared to 19 % with EKS-715 assay. The ENZ-KIT requires optimisation prior to running samples in order to ensure participants fall within the standard curve, a step not required with EKS-715. Using ENZ-KIT, a 1:4 dilution allowed for quantification of resting HSP70 in 26/32 samples, with a 1:8 (n = 3) and 1:16 (n = 3) dilution required to determine the remaining samples. After exercise, eHSP70 was detected in 6/21 and 21/21 samples using EKS-715 and ENZ-KIT, respectively. eHSP70 was increased from rest after HOT70 (p < 0.05), but not HOT50 (p > 0.05) or HYP50 (p > 0.05) when analysed using ENZ-KIT. It is recommended that future studies requiring the precise determination of resting plasma eHSP70 use the ENZ-KIT (i.e. HSP70 Amp’d® ELISA) instead of the EKS-715 assay, despite additional assay development time and cost required.  相似文献   

12.
黄琼  胡杰  孙灵  王勤 《昆虫学报》2013,56(5):475-485
为给黄粉虫Tenebrio molitor抗逆机理研究提供理论依据, 本研究采用PCR和RACE法从黄粉虫幼虫中克隆出一个热休克蛋白70基因Tmhsp70, 并运用半定量RT-PCR法检测其在黄粉虫不同发育阶段的mRNA表达水平。结果表明: 克隆出的Tmhsp70 序列全长2 282 bp, 具有一个富含A的115 bp 5′ 非翻译区和一个1 935 bp的开放阅读框及一个富含A、 T的232 bp 3′-非翻译区。5′-非翻译区含有7个热休克元件nGAAn, 3′-非翻译区末端有长22 bp的Poly(A)尾。Tmhsp70编码的黄粉虫热休克蛋白(TmHSP70)具有3个典型的HSP70特征基序(IDLGTTYS, IFDLGGGTFDVSIL和IVLVGGSTRIPKIQQ)和1个胞质HSP70末端特征基序(EEVD), 无信号肽和跨膜区域, 包含2个主要的结构域, 即: N-端42 kDa的高度保守ATPase功能域和C-端18 kDa的保守多肽结合功能域。ATPase功能域的三级结构由2个大球形亚功能域组成, 具有1个核苷酸结合中心; 多肽结合功能域形成1个双层4股β-折叠片样的三明治结构和2个α-螺旋, 内含1个多肽结合通道。此外, 黄粉虫Tmhsp70 mRNA的表达具有热激诱导和发育调控的特征。半定量RT-PCR分析表明, 42℃热激1 h的黄粉虫各发育阶段Tmhsp70 mRNA的表达量上升了1.4~26.9倍。25℃下1日龄黄粉虫蛹中的Tmhsp70 mRNA 表达量要高于其余各发育阶段的累积表达量; 42℃热激1 h 后90日龄幼虫中的Tmhsp70 mRNA 表达量最丰富, 既高于30日龄和60日龄幼虫中的累积表达量, 也高于15日龄和30日龄成虫中的累积表达量。这些结果为进一步研究黄粉虫热休克蛋白的结构、 功能和表达调控及其与抗逆性的关系奠定了基础。  相似文献   

13.
A conserved reaction of all organisms exposed to heat stress is an increased expression of heat shock proteins (HSPs). Several studies have proposed that HSP expression in heat‐stressed plant cells is triggered by an increased fluidity of the plasma membrane. Among the main lines of evidence in support of this model are as follows: (a) the degree of membrane lipid saturation was higher in cells grown at elevated temperatures and correlated with a lower amplitude of HSP expression upon a temperature upshift, (b) membrane fluidizers induce HSP expression at physiological temperatures, and (c) membrane rigidifier dimethylsulfoxide dampens heat‐induced HSP expression. Here, we tested whether this holds also for Chlamydomonas reinhardtii. We show that heat‐induced HSP expression in cells grown at elevated temperatures was reduced because they already contained elevated levels of cytosolic HSP70A/90A that apparently act as negative regulators of heat shock factor 1. We find that membrane rigidifier dimethylsulfoxide impaired translation under heat stress conditions and that membrane fluidizer benzyl alcohol not only induced HSP expression but also caused protein aggregation. These findings support the classical model for the cytosolic unfolded protein response, according to which HSP expression is induced by the accumulation of unfolded proteins. Hence, the membrane fluidity model should be reconsidered.  相似文献   

14.
Protein phosphatase 5 plays a pivotal role in signal transduction in animal and plant cells, and it was previously shown that Arabidopsis protein phosphatase 5 (AtPP5) performs multiple enzymatic activities that are mediated by conformational changes induced by heat shock stress. In addition, transgenic overexpression of AtPP5 gene conferred enhanced heat shock resistance compared with wild-type plant. However, the molecular mechanism underlying this enhanced heat shock tolerance through functional and conformational changes upon heat stress is not clear. In this report, AtPP5 was shown to preferentially interact with its substrate, MDH, under heat stress conditions. In addition, in co-IP analysis, AtPP5 was observed to form a complex with AtHsp90 in Arabidopsis. These results suggest that AtPP5 may enhance thermotolerance via forming multi-chaperone complexes under heat shock conditions in Arabidopsis. Finally, we show that AtPP5 is primarily localized in the cytoplasm of Arabidopsis.  相似文献   

15.
A strawberry genomic clone containing an osmotin-like protein (OLP) gene, designated FaOLP2, was isolated and sequenced. FaOLP2 is predicted to encode a precursor protein of 229 amino acid residues, and its sequence shares high degrees of homology with a number of other OLPs. Genomic DNA hybridization analysis indicated that FaOLP2 represents a multi-gene family. The expression of FaOP2 in different strawberry organs was analyzed using real-time PCR. The results showed that FaOLP2 expressed at different levels in leaves, crowns, roots, green fruits and ripe red fruits. In addition, the expression of FaOLP2 under different abiotic stresses was analyzed at different time points. All of the three tested abiotic stimuli, abscisic acid, salicylic acid and mechanical wounding, triggered a significant induction of FaOLP2 within 2-6h post-treatment. Moreover, FaOLP2 was more prominently induced by salicylic acid than by abscisic acid or mechanical wounding. The positive responses of FaOLP2 to the three abiotic stimuli suggested that strawberry FaOLP2 may help to protect against osmotic-related environmental stresses and that it may also be involved in plant defense system against pathogens.  相似文献   

16.
Heat shock protein expression in fish   总被引:19,自引:0,他引:19  
Heat shock proteins (HSP) are a family of proteins expressed in response to a wide range of biotic and abiotic stressors. They are thus also referred to as stress proteins. Their extraordinarily high degree of identity at the amino acid sequence level and the fact that this cellular stress response has been described in nearly all organisms studied, make this group of proteins unique. We provide a brief historical overview of HSP research, as a background to summarizing what is known about HSP expression in fish. The expression of HSPs in fish has been described in cell lines, primary cultures of various cells, and in the tissues of whole organisms. Collectively, the data show that the expression of HSPs are affected in a wide variety of fish cells and tissues, in response both to biological stressors such as infectious pathogens, as well as to abiotic stressors such as heat and cold shock, and environmental contaminants. HSP research in fish is in its early stages and many studies are describing the expression of proteins in response to various stressors. Several studies have contributed to our understanding of the molecular nature and the molecular biology of HSPs in fish. Recent studies have shown a relationship between HSP expression and the generalized stress response in fish, but further research is needed to clarify the complex relationships between stress hormones and the cellular HSP response. In general, the HSP response seems to be related to the sensing of the stressor and the subsequent cellular effects which may adapt the cells to cope with the stressors. Consequently, such data may be of central importance in understanding the significance of HSP expression to the whole organism. We conclude with sections on laboratory methods used in HSP research and on potential applications of this knowledge in biomonitoring.  相似文献   

17.
Pyrococcus furiosus, a hyperthermophilic archaeon growing optimally at 100 degrees C, encodes three protein chaperones, a small heat shock protein (sHsp), a prefoldin (Pfd), and a chaperonin (Cpn). In this study, we report that the passive chaperones sHsp and Pfd from P. furiosus can boost the protein refolding activity of the ATP-dependent Cpn from the same hyperthermophile. The thermo-stability of Taq polymerase was significantly improved by combinations of P. furiosus chaperones, showing ongoing protein folding activity at elevated temperatures and during thermal cycling. Based on these results, we propose that the protein folding apparatus in the hyperthermophilic archaeon, P. furiosus can be utilized to enhance the durability and cost effectiveness of high temperature biocatalysts.  相似文献   

18.
[目的]探究热激蛋白70 (heat shock protein 70,HSP70)基因在美国白蛾Hyphantria cunea抵御高温胁迫过程中的作用,为揭示美国白蛾的扩散机制以及预测潜在分布区提供理论支撑.[方法]利用PCR技术克隆美国白蛾HSP70基因,并进行生物信息学分析;利用qPCR技术检测新蜕皮的美国白蛾...  相似文献   

19.
20.
Leignel V  Cibois M  Moreau B  Chénais B 《Gene》2007,396(1):84-92
Crabs of the Bythograeidae family (Crustacea: Brachyura: Bythogreoidea) are the only endemic crab family living in hydrothermal fields. The hydrothermal environment is characterized by unique ecological parameters, such as the high temperature gradient around the hydrothermal chimney (2-350 degrees C), a fluid environment containing high levels of metals and numerous gases. The 70-kDa Heat Shock Protein (HSP70) group is the most-studied HSP, because it is ubiquitous, and a strong positive correlation has been found between the amounts of HSP70 produced in response to stress, and the ability of the organism to withstand stressful conditions. The 70-kDa heat shock protein genes from Bythograeids (species analyzed: Bythograea thermydron, Cyanagraea praedator and Segonzacia mesatlantica) were characterized. Our results revealed that Bythograeidae possess genes which are similar with those present in Xanthids (coastal crabs). The deduced protein sequences displayed motifs distinct from those in the other crustacean HSC70/HSP70s available in the databases. Phylogenetic analysis showed that these members of HSP70 family identified in Bythograeidae and Xanthidae constitute a new subgroup within this family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号