首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectivesGene regulation in early embryos has been widely studied for a long time because lineage segregation gives rise to the formation of a pluripotent cell population, known as the inner cell mass (ICM), during pre‐implantation embryo development. The extraordinarily longer pre‐implantation embryo development in pigs leads to the distinct features of the pluripotency network compared with mice and humans. For these reasons, a comparative study using pre‐implantation pig embryos would provide new insights into the mammalian pluripotency network and help to understand differences in the roles and networks of genes in pre‐implantation embryos between species.Materials and methodsTo analyse the functions of SOX2 in lineage segregation and cell proliferation, loss‐ and gain‐of‐function studies were conducted in pig embryos using an overexpression vector and the CRISPR/Cas9 system. Then, we analysed the morphological features and examined the effect on the expression of downstream genes through immunocytochemistry and quantitative real‐time PCR.ResultsOur results showed that among the core pluripotent factors, only SOX2 was specifically expressed in the ICM. In SOX2‐disrupted blastocysts, the expression of the ICM‐related genes, but not OCT4, was suppressed, and the total cell number was also decreased. Likewise, according to real‐time PCR analysis, pluripotency‐related genes, excluding OCT4, and proliferation‐related genes were decreased in SOX2‐targeted blastocysts. In SOX2‐overexpressing embryos, the total blastocyst cell number was greatly increased but the ICM/TE ratio decreased.ConclusionsTaken together, our results demonstrated that SOX2 is essential for ICM formation and cell proliferation in porcine early‐stage embryogenesis.  相似文献   

2.
3.
4.
Nuclear transfer (NT) is associated with epigenetic reprogramming of donor cells. Expression of certain genes in these cells might facilitate their expression in the NT embryo. This research was aimed to investigate the effect of constitutive expression of OCT4 in bovine somatic cells used for NT on the developmental potential of derived cloned embryos as well as in the expression of pluripotency markers in the Day-7 resulting embryos. Cloned blastocysts were generated from five cell lines that expressed OCT4. Pools of blastocysts were screened to detect OCT4, SOX2, and NANOG by qPCR. In vitro-fertilized time-matched blastocysts were used as controls. The development potential was assessed on the basis of blastocysts rate; grading and total cell counts at Day 7. OCT4 expression in the cell lines positively correlates with blastocysts rate (r?=?0.92; p?=?0.02), number of grade I blastocysts (r?=?0.96; p?=?0.01), and total cell number (r?=?0.98; p?=?0.002). The high expression of OCT4 in the cell line did not improve the final outcome of cloning. Somatic expression of OCT4 lead to increased expression of OCT4 and SOX2 in cloned grade I blastocysts; however, there was a bigger variability in OCT4 and SOX2 (p?=?0.03; p?=?0.02) expression in the embryos generated from cells expressing highest levels of OCT4. Probably the higher variability in OCT4 expression in cloned embryos is due to incorrect reprogramming and incapability of the oocyte to correct for higher OCT4 levels. For that reason, we concluded that OCT4 expression in somatic cells is not a good prognosis marker for selecting cell lines.  相似文献   

5.
After fertilization, lineage specification is governed by a complicated molecular network in which permissiveness and repression of expression of pluripotency- and differentiation-associated genes are regulated by epigenetic modifications. DNA methylation operates as a very stable repressive mark in this process. In this study, we investigated the relationship between DNA methylation and expression of pluripotency-associated genes (OCT4, NANOG and SOX2), a trophectoderm (TE)-specific gene (ELF5), and genes associated with neural differentiation (SOX2 and VIMENTIN) in porcine Day 10 (E10) epiblast, hypoblast, and TE as well as in epiblast-derived neural progenitor cells (NPCs). We found that OCT4, NANOG, and SOX2 were highly expressed in the epiblast and hypoblast, while VIMENTIN was only highly expressed in the epiblast. Moreover, low expression of OCT4, NANOG, SOX2 and VIMENTIN was noted in the TE. Most CpG sites of OCT4, NANOG, SOX2 and VIMENTIN displayed low methylation levels in the epiblast and hypoblast and, strikingly, also in the TE. Hence, the expression patterns of these genes were not directly related to levels of DNA methylation in the TE in contrast to the situation in the mouse. In contrast, ELF5 was exclusively expressed in the TE and was correspondingly hypomethylated in this tissue. In NPCs, we observed down-regulation of NANOG and OCT4 expression, which correlated with hypermethylation of their promoters, whereas VIMENTIN displayed up-regulation in accordance with hypomethylation of its promoter. In conclusion, DNA methylation is an inconsistently operating epigenetic mechanism in porcine E10 blastocysts, whereas in porcine epiblast-derived NPCs, expression of pluripotency-associated and differentiation genes appear to be regulated by this modification.  相似文献   

6.
7.
8.
9.
Su J  Wang Y  Li Y  Li R  Li Q  Wu Y  Quan F  Liu J  Guo Z  Zhang Y 《PloS one》2011,6(8):e23805
Aberrant epigenetic nuclear reprogramming results in low somatic cloning efficiency. Altering epigenetic status by applying histone deacetylase inhibitors (HDACi) enhances developmental potential of somatic cell nuclear transfer (SCNT) embryos. The present study was carried out to examine the effects of Oxamflatin, a novel HDACi, on the nuclear reprogramming and development of bovine SCNT embryos in vitro. We found that Oxamflatin modified the acetylation status on H3K9 and H3K18, increased total and inner cell mass (ICM) cell numbers and the ratio of ICM∶trophectoderm (TE) cells, reduced the rate of apoptosis in SCNT blastocysts, and significantly enhanced the development of bovine SCNT embryos in vitro. Furthermore, Oxamflatin treatment suppressed expression of the pro-apoptotic gene Bax and stimulated expression of the anti-apoptotic gene Bcl-XL and the pluripotency-related genes OCT4 and SOX2 in SCNT blastocysts. Additionally, the treatment also reduced the DNA methylation level of satellite I in SCNT blastocysts. In conclusion, Oxamflatin modifies epigenetic status and gene expression, increases blastocyst quality, and subsequently enhances the nuclear reprogramming and developmental potential of SCNT embryos.  相似文献   

10.
11.
Somatic cloning in cattle is associated with impaired embryo development, caused by inappropriate epigenetic reprogramming during embryogenesis; however, there is a paucity of data regarding gene expression at the critical elongation and peri-implantation stages. The objective of the present study was to identify genes differentially expressed in bovine cloned embryos at Day 17 of development (Day 0 = day of nucleus transfer or IVF). Day 7 blastocysts (Hand Made Cloned or IVP) were transferred to recipient cattle and collected at Day 17. The efficiency of recovery of elongated embryos was similar, however cloned embryos elongated less than IVP embryos (91.8 ± 45.8 vs. 174 ± 50 mm) and fewer had embryonic discs (63 vs. 83%). Qualitative and quantitative PCR detected expression of OCT4, NANOG, IFNtau, EOMES, FGF4, SOX2, and CDX2 in all IVP embryos. In most cloned embryos, NANOG and FGF4 were absent (verified by qPCR); NANOG, EOMES, and FGF4 were underexpressed, whereas IFNtau was overexpressed in cloned embryos. Based on qPCRs, other genes, i.e., SPARC, SNRB1, and CBPP22, were down-regulated in cloned embryos, whereas HSP70 and TDKP1 were overexpressed. In bovine microarrays, 47 genes (3.6%) were deregulated in cloned embryos, including several involved in trophoblast growth and differentiation. In conclusion, we inferred that these data were indicative of incomplete epigenetic reprogramming after cloning; this could lead to aberrant gene expression and subsequently early pregnancy loss. There was an apparent association between incomplete morphological elongation and aberrant reprogramming of a subset of genes critical for early embryonic development.  相似文献   

12.
13.
14.
15.
Although the pig is considered an important model of human disease and an ideal animal for the preclinical testing of cell transplantation, the utility of this model has been hampered by a lack of genuine porcine embryonic stem cells. Here, we derived a porcine pluripotent stem cell (pPSC) line from day 5.5 blastocysts in a newly developed culture system based on MXV medium and a 5% oxygen atmosphere. The pPSCs had been passaged more than 75 times over two years, and the morphology of the colony was similar to that of human embryonic stem cells. Characterization and assessment showed that the pPSCs were alkaline phosphatase (AKP) positive, possessed normal karyotypes and expressed classic pluripotent markers, including OCT4, SOX2 and NANOG. In vitro differentiation through embryonic body formation and in vivo differentiation via teratoma formation in nude mice demonstrated that the pPSCs could differentiate into cells of the three germ layers. The pPSCs transfected with fuw-DsRed (pPSC-FDs) could be passaged with a stable expression of both DsRed and pluripotent markers. Notably, when pPSC-FDs were used as donor cells for somatic nuclear transfer, 11.52% of the reconstructed embryos developed into blastocysts, which was not significantly different from that of the reconstructed embryos derived from porcine embryonic fibroblasts. When pPSC-FDs were injected into day 4.5 blastocysts, they became involved in the in vitro embryonic development and contributed to the viscera of foetuses at day 50 of pregnancy as well as the developed placenta after the chimeric blastocysts were transferred into recipients. These findings indicated that the pPSCs were porcine pluripotent cells; that this would be a useful cell line for porcine genetic engineering and a valuable cell line for clarifying the molecular mechanism of pluripotency regulation in pigs.  相似文献   

16.

Background

Genes and signalling pathways involved in pluripotency have been studied extensively in mouse and human pre-implantation embryos and embryonic stem (ES) cells. The unsuccessful attempts to generate ES cell lines from other species including cattle suggests that other genes and pathways are involved in maintaining pluripotency in these species. To investigate which genes are involved in bovine pluripotency, expression profiles were generated from morula, blastocyst, trophectoderm and inner cell mass (ICM) samples using microarray analysis. As MAPK inhibition can increase the NANOG/GATA6 ratio in the inner cell mass, additionally blastocysts were cultured in the presence of a MAPK inhibitor and changes in gene expression in the inner cell mass were analysed.

Results

Between morula and blastocyst 3,774 genes were differentially expressed and the largest differences were found in blastocyst up-regulated genes. Gene ontology (GO) analysis shows lipid metabolic process as the term most enriched with genes expressed at higher levels in blastocysts. Genes with higher expression levels in morulae were enriched in the RNA processing GO term. Of the 497 differentially expressed genes comparing ICM and TE, the expression of NANOG, SOX2 and POU5F1 was increased in the ICM confirming their evolutionary preserved role in pluripotency. Several genes implicated to be involved in differentiation or fate determination were also expressed at higher levels in the ICM. Genes expressed at higher levels in the ICM were enriched in the RNA splicing and regulation of gene expression GO term. Although NANOG expression was elevated upon MAPK inhibition, SOX2 and POU5F1 expression showed little increase. Expression of other genes in the MAPK pathway including DUSP4 and SPRY4, or influenced by MAPK inhibition such as IFNT, was down-regulated.

Conclusion

The data obtained from the microarray studies provide further insight in gene expression during bovine embryonic development. They show an expression profile in pluripotent cells that indicates a pluripotent, epiblast-like state. The inability to culture ICM cells as stem cells in the presence of an inhibitor of MAPK activity together with the reported data indicates that MAPK inhibition alone is not sufficient to maintain a pluripotent character in bovine cells.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1448-x) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
BCL2-like 10 (BCL2L10) is abundantly expressed in mammalian oocytes and plays a crucial role in the completion of oocyte meiosis. However, the expression patterns of BCL2L10 and its biological functions during preimplantation development have not been well characterized. Here, we investigated the spatiotemporal expressions of Bcl2l10 during mouse preimplantation development using RT-qPCR and immunofluorescence and its biological function using siRNA and morpholino injection into pronuclear embryos. Results from RT-qPCR showed that Bcl2l10 was highly expressed in the metaphase Ⅱ-stage oocytes and pronuclear-stage embryos, but expression markedly decreased from the two-cell stage onwards and was no longer detected at the four-cell stage and beyond. Immunofluorescence staining showed that BCL2L10 was detectable throughout preimplantation development and localized in the cytoplasm and nuclei. Knocking down Bcl2l10 resulted in a reduced blastocyst formation rate (P < 0.01) and decreased expression of OCT4, NANOG, and SOX17 (P < 0.05). We concluded that the role of BCL2L10 is strongly associated with developmental competence of preimplantation mouse embryos.  相似文献   

19.
20.
Cross-species somatic all number transfer (SCNT) provides a potential solution to overcome the problem of oocyte shortage for therapeutic cloning. To further characterize the system, we constructed cytoplasm hybrid embryos between bovine oocytes and human fibroblasts and examined dynamics of human gene activation during preimplantation stages. Data from this study showed that human embryonic genes, OCT4, SOX2, NANOG, E-CADHERIN, as well as beta-ACTIN, were activated by enucleated bovine oocytes. Activation of human genes was correlated with developmental potential of the embryos. The extent of human gene activation varied drastically and was incomplete in a large proportion of the embryos. Activation of human genes in the human-bovine cytoplasm hybrid embryos occurs in a temporal pattern resembling that of the bovine species. Results from this study suggest that human gene products are required for hybrid embryos to develop to later preimplantation stages. Facilitating human genome activation may improve successful rates in cross-species SCNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号